0

10
1

文字

分享

0
10
1

頭痛到痛不欲生?別再狂嗑止痛藥了!——淺談偏頭痛的病理機制

科技大觀園_96
・2021/10/29 ・3751字 ・閱讀時間約 7 分鐘

頭痛讓每個人都頭痛!根據 WHO 統計,頭痛是神經科最常見的疾病,相較於所有疾病,每年頭痛造成的失能人數是世界第二。然而,我們對頭痛的理解並不夠透徹,很多人甚至覺得吃止痛藥就好,頭痛不是什麼病。

「頭痛是病,而且它有一定的病生理機轉機制,吃止痛藥對頻繁頭痛者來說,並不是最好的方式。」臺北榮民總醫院神經內科醫師、臨床醫學研究所教授陳世彬說。

17 年前陳世彬就加入榮陽頭痛研究團隊,致力解開頭痛之謎,是國際知名的腦神經研究專家,研究成果傑出,榮獲 108 年度科技部「吳大猷先生紀念獎」。

他主要研究最痛和最難纏的兩款頭痛——RCVS(Reversible cerebral vasoconstriction syndrome,可逆性腦血管收縮症候群)及 migraine(偏頭痛)。RCVS 是最嚴重也最危險的頭痛類型,若太晚發現,有相當高的機會會產生中風(缺血性腦梗塞或腦出血);偏頭痛則是造成全世界最多人失能的神經科疾病。

然而,腦神經運作相當複雜,每個人對藥物的反應不同,因此陳世彬的角色除了看診、開藥外,還得投入研究,解開頭痛之謎,才能對症治療。

陳世彬是國際知名的腦神經研究專家,研究成果傑出,榮獲108年度科技部「吳大猷先生紀念獎」。(圖/陳世彬提供)
陳世彬是國際知名的腦神經研究專家,研究成果傑出,榮獲 108 年度科技部「吳大猷先生紀念獎」。(圖/陳世彬提供)

 全台第一個發現雷擊頭痛 RCVS 的病徵

RCVS 引發的疼痛是頭痛之王,患者在發病期間會產生瞬間爆炸般的頭痛,又稱為雷擊頭痛。陳世彬說:「這個痛是會痛到在地上打滾、尖叫和求救的可怕的頭痛。」

這類的頭痛通常伴隨排便、性行為、洗澡或情緒激動等動作而誘發,對病患生活造成極大的困擾,常有患者怕到不敢洗澡、不敢上大號,北榮的頭痛門診中有 1-2% 病患屬於此類。

但在 2007 年以前,全世界對這個疾病是很陌生的,僅有北榮、美國和法國三個研究團隊關注它,RCVS 的名稱也是當時的專家共識決定的。陳世彬表示,會開啟這一系列研究,主要原因是一開始遇到一個病人頭疼到沒有藥可以解決,接著產生視覺皮質區中風而失明,團隊才開始針對這個謎一般的病進行研究。

團隊發現 RCVS 患者的腦血管攝影中,可以看見血管一節節收縮的痕跡,收縮的狀況由小血管慢慢移到中央血管區,因此剛開始檢查時很難看見。RCVS 會引起嚴重的併發症,例如可逆性腦後方白質病變或腦水腫達 9-38%、缺血性腦梗塞達 4-54%,以及腦出血可能高達 20%,必須及早診斷。

左側是腦部血管收縮的圖,白色箭頭是血管收縮處,黑色箭頭指的是收縮後面有時伴隨血管擴張,因此血管看起來像念珠狀一節一節,右側則是恢復成正常的樣子。(圖/陳世彬提供)
左側是腦部血管收縮的圖,白色箭頭是血管收縮處,黑色箭頭指的是收縮後面有時伴隨血管擴張,因此血管看起來像念珠狀一節一節,右側則是恢復成正常的樣子。(圖/陳世彬提供) 

榮陽頭痛研究團隊是全台第一個釐清 RCVS 臨床表現、建立檢查與治療標準流程、找出併發症的團隊,並開發新影像技術協助診治和探討病生理機轉,在 RCVS 領域中的研究成果可說是世界第一。

至於血管為何會收縮呢?陳世彬坦言,目前掌握的 RCVS 病生理機制不算全面,不過全世界目前只有榮陽頭痛研究團隊有針對此病病生理機轉進行研究並發表論文,現在知道病患的交感神經容易過度活化,且產生過度的氧化壓力,因而導致血管收縮,這些現象跟病患帶有某些基因有關。此外,血液中內皮前驅細胞數量少、修復大腦血管功能較弱者,也是 RCVS 的好發患者。近期團隊透過全基因體關聯性研究,也有新的發現。陳世彬表示,RCVS 患者的基因位點分佈與其他人差異很大,而這些基因也跟血腦障壁破壞、中風、腦出血等腦血管疾病有關。 

左一為正常大腦,由左至右為腦出血、腦中風及腦水腫的樣子。(圖/陳世彬提供)
左一為正常大腦,由左至右為腦出血、腦中風及腦水腫的樣子。(圖/陳世彬提供) 

「也就是說控制 RCVS 的並不是單基因遺傳,而是很多基因都貢獻一部分,如果你的基因位點(染色體上基因所在位置)都很不好,就很像拿到一手壞牌,容易有這些病症。」陳世彬說。

目前 RCVS 的治療方式會採用腦血管專一性的「鈣離子阻斷劑」,它是一種血管擴張的藥物。陳世彬提到,有趣的是它可以馬上緩解頭痛,但無法立刻改善血管收縮的情況,病患頭痛消失的時候,反而是血管收縮最嚴重的時候,也因此需要持續服藥到血管恢復為止,目前沒有人知道為什麼,也沒有人清楚為何洗澡會引發 RCVS。

這個疾病還有許多謎,等待研究團隊努力解開呢!

大腦沒有痛覺,那偏頭痛怎麼來?

相較於 RCVS 痛到痛不欲生,偏頭痛則是受大眾忽略的疾病。

陳世彬表示,偏頭痛是病,但有時卻會被誤以為是單純的感冒或經期症候群。他在臨床就看到好多病患苦於頭痛,一個月痛超過 15 天以上,到處打針、吃藥,吃到肝腎胃都壞掉,頭痛還是好不了。根據北榮資料統計,目前嚴重的慢性偏頭痛患者大約有 1.7%,比例相當高。

陳世彬提醒,偏頭痛並不一定是單一邊的頭痛,它可以是痛在雙側或頭頂,有時是連肩頸或整個頭都會痛,發病時的症狀還有噁心、嘔吐、畏光和怕吵的症狀,有些人在發作前還會出現視覺預兆,眼前會出現閃光或盲點,而看不到前方的狀況。

視覺預兆者眼前會呈現模糊看不到前方的景象。(圖/陳世彬提供)
視覺預兆者眼前會呈現模糊看不到前方的景象。(圖/陳世彬提供) 

偏頭痛的病生理機轉也相當複雜,最重要的假說是「三叉神經血管理論 」(Trigeminovascular theory)。陳世彬解釋,大腦本身沒有痛覺神經,腦膜才有痛覺神經,頭痛就是來自腦膜周圍的三叉神經末梢纖維,當這些神經纖維被活化後,會造成局部的神經性發炎,使得疼痛神經的末梢被更進一步活化,訊號傳到大腦中樞後,讓我們有疼痛的感覺。

偏頭痛的原因之一就是來自腦膜周圍的三叉神經末梢纖維被活化而帶起的連鎖反應。(圖/陳世彬提供)
偏頭痛的原因之一就是來自腦膜周圍的三叉神經末梢纖維被活化而帶起的連鎖反應。(圖/陳世彬提供) 

為何有人的三叉神經比較容易被活化呢?陳世彬表示,基因是影響偏頭痛的原因之一,父母有偏頭痛狀況,孩子也容易是偏頭痛患者。近年歐美國家大規模研究全基因體關聯性,已經找到 44 個跟偏頭痛有關的基因位點,而北榮的研究團隊則找到 4 個位點,其中兩個跟歐美發現的位點一致,另外兩個則是台灣人獨有的。

陳世彬表示,有個偏頭痛的基因位點「TRPM8」是全世界共通的,它掌管離子通道,且與冷的刺激所造成的疼痛有關,這說明天氣變化或溫度改變,如大熱天突然進到冷氣房,確實跟頭痛有關聯性。因此未來或許可以針對此離子通道設計藥物,達到事前預防的效果。

陳世彬認為,針對偏頭痛嚴重的病患,將來的目標是可以透過篩檢看哪些基因造成頭痛,然後對症預防、調整體質,減少頭痛發生的頻率,而不只是吃止痛藥來治標。

後記:醫師最幸福

即使研究卓越,陳世彬還是最喜歡當醫師,「做了很多研究不一定有結果,但把病人治好是有成就感的,所以我更喜歡臨床。」

他印象很深刻,剛升主治醫師不久,就收到一位年輕患者不明原因昏迷插管已快一兩個月,但她的 CT、MRI 都是正常的,這時科主任剛巧出國,就交給他處理。當時大家都找不出原因,他覺得病患的病程,跟之前國際神經學會時,美國研究團隊報告的一個案例很像。

「當時台北榮總沒有人診斷過這個病,我決定寫信去美國,請當初發現這個病的醫生幫忙驗患者的抗體,然後把患者血液寄到美國,後來證實是抗 NMDA 受體腦炎,一種免疫疾病(註: 此病曾被寫成小說並拍成電影《我發瘋的那段日子 Brain on fire》)。陳世彬表示,當時緊急做血漿交換,才做到一半患者就清醒了一小時,然後又持續昏迷,後來經過一段時間治療後,這位病患是與家人開心走著離開醫院。

這件事讓他非常歡欣鼓舞,更下定決心要好好做研究,嘉惠病人。儘管「研究的困難多到不知從何說起」,但他坦言突破困難後,收穫相當大。而且要不是讀博士時被教授指派做動物實驗,他也不會多了一項研究利器,能夠做流行病學以外的研究。

陳世彬曾至哈佛神經血管研究室進修,他笑說自己每天走五公里上下班,因此曬得很黑。(圖/陳世彬提供)
陳世彬曾至哈佛神經血管研究室進修,他笑說自己每天走五公里上下班,因此曬得很黑。(圖/陳世彬提供) 

陳世彬笑著說,神經科學本就是奠定在科學家無數的錯誤、突破困難之上。以往神經科學被笑說是「 know everything, do nothing 」,但在科學家的努力下,許多退化性疾病如失智症、帕金森氏症或一些罕見疾病如漸凍人、多發性硬化症等,都有一些新的治療發明,相信在可見的未來都不再是絕症了。想到這,陳世彬就覺得一切努力都是值得的。


數感宇宙探索課程,現正募資中!

文章難易度
科技大觀園_96
82 篇文章 ・ 1090 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。


2

6
3

文字

分享

2
6
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
10 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook