智慧型手機的功能日趨全面,幾乎就要包辦日常生活大小事,當然也包含我們的健康。有些人拿它來記錄每天的運動狀況,也有人搭配應用程式,監測自己的心肺功能。
但這還不夠,科學家總是能想到更奇葩的需求:未來,你的手機也有機會變身「大麻檢測器」了!羅格斯大學健康暨健康政策與高齡研究所(Rutgers Institute for Health, Health Care Policy and Aging Research)研究團隊,調查大麻使用者的「嗨度」,並將其與機器學習技術做結合,試圖打造能準確判斷大麻中毒程度的日常小工具。
研究發表於《藥物與酒精依賴》(Drug and Alcohol Dependence)期刊[1]。
大麻何以讓人愉悅?
法國喜劇劇集《大麻咖啡館》(Family Business)中,年輕企業家喬瑟夫.亞贊(Joseph Hazan)乘著法國大麻合法化的順風車,決定將老父親傑哈德.亞贊(Gérard Hazan)的肉鋪改造成大麻咖啡館。雖說父親一開始很反對,但在偶像安瑞可.馬西亞斯(Enrico Macias)的循循善誘下,父親最終也體驗了呼麻的快感,並開始積極面對他們的咖啡館事業。
大麻為何能讓人快樂到放棄執著?一個叫四氫大麻酚(Tetrahydrocannabinol, THC)的傢伙扮演著關鍵角色。由於 THC 的化學結構與人體的內源性大麻「花生四烯乙醇胺」(anandamide)十分相似,它能與大麻素受體(cannabinoid receptors)結合,並啟動大腦的獎勵系統,讓我們感到身心愉悅[2]。
這不免讓人感到好奇:究竟,人們是如何攝入大麻的呢?
一般來說,大麻被攝取的途徑有二:吸食,或直接拿起來嗑(沒啦,是摻在食物裡面服用)。當人們吸食大麻時,裡頭的化學物質會從肺部進入血液,進而將它們運送到身體各處,包括大腦。但如果是用吃的,由於是透過消化系統吸受,因此大麻所帶來的影響通常會晚個 30 分鐘到 1 小時出現。
大麻中毒將導致「定向感」降低
對大麻使用者來說,它最迷人的地方大概就是使用後欣快的放鬆感受。此外,有些人也會體驗到感官放大的飄忽景象,但也有部分人認為,大麻會讓他們感到焦慮、恐懼、不信任和恐慌。雖然目前較少有因純粹吸食大麻而死亡的案例,然而,若是使用過量,便會引發大麻中毒(cannabis intoxication)[3]。
大麻中毒的人,輕則產生飢餓與嗜睡等症狀,嚴重的話,會導致認知與對人事時地物的定向感降低,甚至會出現急性精神病(acute psychosis)[4]。其他典型、可預測的症狀,還包括口乾舌燥、紅眼、短期記憶受損,以及知覺和動作的影響等5。
部分大麻中毒者,會因為大麻在精神上的影響,對外界反應時間過慢,造成工作或學校表現低落,甚至在開車、駕駛時形成干擾,最終導致交通事故與傷亡等憾事。
雖說如今有血液、尿液或唾液等測試,能針對大麻中毒進行檢測,但若要實現日常生活中的時刻監測,恐怕還是有些限制的。
過去曾有研究,以現代人形影不離的「智慧型手機」裡的感測器,來探測高風險的飲酒者,準確率高達 90%[6]。有鑑於此,羅格斯大學健康暨健康政策與高齡研究所團隊開始研究,想知道在機器學習模型的協助下,手機是否能發揮檢測「大麻中毒」的作用,即時探測那些可能因大麻中毒引發的危機。
如何檢測嗨不嗨?關鍵是「使用後的行為」
團隊首先從美國賓州匹茲堡(Pittsburgh, PA)找來 57 位年齡介在 18~25 歲的年輕人,透過自我報告,得知他們每週至少使用大麻兩次。之後,團隊透過「手機回傳調查」搭配「手機內感測器數據」等方法,每日收集受試者使用大麻的相關數據持續至多 30 天,以掌握他們在大麻中毒後的狀況。
其中,回傳調查每日三次,包含開始與結束使用大麻的時間、用量,以及主觀感受的自我評分——依據「嗨」的程度,評分標準為 1~10分,其中 10 分為「敲級嗨」。後來回傳的 451 起大麻使用事件中,平均「嗨度」為 3.77 分。
而手機則搭配應用程式,收集了 102 種手機感測器的數據,如 GPS、加速度計(accelerometer)、撥出的電話數量以及平均移動距離等。有些人聽到這裡可能坐不住了。等等⋯⋯GPS 這類定位工具與加速度計,到底能做什麼?是這樣的,GPS 可用來偵測大麻使用者陷入「自我陶醉」時的行進範圍(travel boundary),而加速度計則是用來監測他們的步態與身體活動量。
在對照受試者的回傳調查及手機數據後發現,當使用者回報他們「正嗨」時,透過 GPS 的數據分析可知,他們的移動範圍並不遠。另外,此時加速度計的資料也顯示,主觀報告大麻中毒者,雖然活動多樣性下降,但身體的活動程度卻比較劇烈。
考慮時間點的監測,精確度大提升!
最後,他們在演算法的幫助下[7][註1],盼能瞭解上述方法,是否能區別無中毒和中毒(輕度或中度)的情形。透過各種中毒時的行為特徵,加上機器學習技術的檢核,智慧型手機就可以變成如假包換的「大麻使用監測器」啦!
為了探究這個組合的準確性,團隊企圖在不同的時間點(例如:一周中的某一天,或是某一天的幾點幾分)下做排查,找出與大麻使用行為與特定時間點的關係,以進一步確認大麻中毒的具體指標。
結果顯示,僅出動手機內的感測器偵測這群人是否使用大麻,準確度為 67 %;但若結合「個人呼麻時間點」與 GPS 和加速度計等資料,則準確度高達 90%。
用手機偵測大麻使用?得再等等⋯⋯
面對如此結果,研究團隊認為,以手機結合機器學習預測大麻中毒程度,是相當可行的。不過,未來還需要加入更多資料,以完備這項工具。
首先,由於該研究對大麻中毒的判定,主要建立在「受試者主觀判斷和自我(ㄕㄡˇ)報告」的基礎上,因此在物質使用和生理反應的識別上,不如執法部門的檢驗工具那般客觀。此外,像是大麻使用者的使用史、攝入身體的途徑、劑量,以及使用者對大麻的耐受性,都會影響他們報告身體狀況的結果。
不僅如此,像是不常使用大麻者在中毒時,他們的行為與身體反應和那些「老司機」們相比,是否有明顯差異?該研究受試者多為白人,其他人種在同劑量的條件下,會不會產生相應的數據?這裡不是要戰種族,但光是「喝酒」這件事,每個人種的反應也多少帶有一些差異,像亞洲人普遍就很難代謝酒精[8]。
以上種種,都是這個工具可能被泛用的關鍵。最後,假設這個大麻偵測小工具,有朝一日被推到應用程式的市場上,你會想下載嗎?又,我們是否能因為大麻使用者的敏感身份與風險,而逕自對他們搜集資料、加以監控?作為一旁拍手叫好等待好用產品問世的小老百姓,在引頸期盼的同時,也必須深思這樣的問題。
註解
- 註 1:該研究所使用的技術為「Light Gradient Boosting Machine」,是微軟公司以「決策數演算法」(decision tree algorithms)為基礎,於二〇一七年釋出 LightGBM 演算法,用於排序、分類和其它機器學習的任務。
參考文獻
- Sang Won Bae et al. (2021) Mobile phone sensor-based detection of subjective cannabis intoxication in young adults: A feasibility study in real-world settings. Drug and Alcohol Dependence.
- How does marijuana produce its effects? National Institute on Drug Abuse, 2020.
- What are marijuana’s effects? National Institute on Drug Abuse, 2020.
- Helen Okoye. Cannabis Intoxication DSM-5 292.89 (F12.12). Theravive.
- Marijuana intoxication. U.S. National Library of Medicine.
- Bae et al. (2018) Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions. Addictive Behaviors
- LightGBM. Wikipedia.
- Hui Li et al. (2009) Refined Geographic Distribution of the Oriental ALDH2*504Lys (nee 487Lys) Variant. Annals of Human Genetics.