0

10
3

文字

分享

0
10
3

臺灣鐵器時代的「玻璃珠」從哪裡來?——彩色裝飾品見證臺灣與世界的交流

研之有物│中央研究院_96
・2021/10/04 ・5546字 ・閱讀時間約 11 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|寒波
  • 美術設計|林洵安

為什麼要研究臺灣鐵器時代玻璃珠?

古代物品的交換與流動,是考古學密切關注的主題。臺灣在新石器時代的流行物品是「玉」,到了鐵器時代,玉的風潮不再,取而代之的飾品正是「玻璃珠」。過去臺灣考古學家認為鐵器時代的玻璃珠是從東南亞進口,但沒有明確證據;中央研究院歷史語言研究所助研究員王冠文,透過嚴謹的材料科學分析,與研究團隊突破了這項瓶頸。

從材料科學出發

距今 2000 年內的鐵器時代,臺灣各地遺址出土不少玻璃珠,透過材料分析顯示,玻璃珠主要來自東南亞,甚至與更遙遠的南亞、西亞有所連結。可以說,這些彩色裝飾品見證了鐵器時代臺灣與世界的交流,也是中研院歷史語言研究所助研究員王冠文的研究主題。

與大多數考古學家不同,王冠文具有堅實的理工背景,同時也喜歡從考古發掘故事。大學就讀清華大學材料科學工程學系,碩士即出國深造投入考古學領域。一開始碩士時期研究中亞的釉,在英國雪菲爾大學讀博士時,主題就轉換到玻璃考古。

-----廣告,請繼續往下閱讀-----

回臺灣之後,王冠文延續過去所學,思考著:出土於臺灣鐵器時代的玻璃珠數量很多,可是還沒有太多研究,應該會是值得探索的題材。

王冠文從材料科學跨入考古領域,持續深化臺灣在地研究。圖│研之有物
王冠文從材料科學跨入考古領域,持續深化臺灣在地研究。圖/研之有物

來源追追追:從玉器到玻璃珠

玻璃珠對臺灣的考古學有什麼意義?首先回顧臺灣古代史,距今 4000 多年前南島族群離開臺灣,移民到東南亞並逐漸形成各地南島語族時,臺灣和東南亞之間仍然保持來往,一大明確的證據來自「玉」。澳洲國立大學考古學家洪曉純比對東南亞玉器的化學成份,發現它們來自花蓮的豐田,證實當時臺灣與東南亞跨海的長距離連結。

臺灣玉器大部份流行於新石器時代,到了更晚的鐵器時代,玉的風潮不再,取而代之的飾品正是「玻璃珠」。王冠文說,藉由考古可以得知物的交換和流動,過去臺灣考古學家認為臺灣在新石器時代向東南亞出口玉材,到了鐵器時代則改成由東南亞進口玻璃珠,但沒有明確的證據證實玻璃珠的來源,王冠文與研究團隊透過科學分析突破了這項瓶頸。

玻璃製造技術與起源

已知的考古紀錄中,最早燒製玻璃的是古埃及與美索不達米亞人,隨後南亞、東亞也出現燒製玻璃的技術。儘管大原則類似,然而各地材料與製程仍有差別,玻璃燒製技術可能為多地獨立起源。

-----廣告,請繼續往下閱讀-----

臺灣鐵器時代遺址出土的玻璃珠,幾乎都屬於「鈉鋁矽酸鹽」和「鈉鈣矽酸鹽」兩個系統,它們在製作時都使用鈉作為助熔劑,目的是降低氧化矽的熔點,減少製程難度。

兩個系統有何區別呢?王冠文說,科技考古學界習慣將鈉鋁矽酸鹽玻璃稱為「礦物鈉鋁玻璃」,因為鈉的原料來自礦物,這類玻璃最初在南亞研發,相關產品後來分布範圍很廣,東亞、東南亞、南亞、非洲東岸都能見到。公元前 4 世紀,也就是距今約 2400 年前開始,東南亞就從印度輸入礦物鈉鋁玻璃製作的飾品,但是東南亞當地的工匠是否也會生產這類玻璃,仍缺乏資料佐證。

相較於礦物鈉鋁玻璃為南亞起源,鈉鈣矽酸鹽玻璃則是西亞起源,科學分析發現鈉助熔劑來自植物灰,所以又可稱為「植物灰玻璃」,最早的植物灰玻璃可以追溯到古埃及,大約在 6~7 世紀時復現於西亞。這種玻璃製品出現在東南亞的年代稍晚,大概是 7~8 世紀之後。

臺南道爺南遺址的玻璃珠,為顏色鮮豔的中空玻璃珠。圖│王冠文
臺南道爺南遺址的玻璃珠,為顏色鮮豔的中空玻璃珠。圖/王冠文

從玻璃珠看見臺灣與世界的連結

王冠文分析的樣品,主要來自公元 1 世紀以後的臺灣玻璃珠,都是尺寸很小的中空串珠,顏色多變、色彩強烈,作為裝飾品或陪葬品。透過化學分析不同玻璃珠的材料差異,可以追溯其來源。

由於目前沒有考古證據支持臺灣在鐵器時代,和南亞或西亞有直接的交流,但考古證據顯示,當時兩類玻璃皆由南亞、西亞交易至東南亞。

-----廣告,請繼續往下閱讀-----

納入地理因素考量,王冠文認為臺灣出土的植物灰玻璃珠和礦物鈉鋁玻璃珠,可以合理推論主要來自東南亞。不論玻璃珠最初的產地在哪兒,經歷過什麼旅程,它們抵達臺灣的前一站都是東南亞某處。

也就是說,臺灣或許處於傳統認知的歐亞大陸「文明世界」之外,幾千年來卻非文化上的孤島。透過東南亞這個中繼站,臺灣和蓬勃的南海交流圈有直接來往,和距離更遠的印度洋交流圈也有間接互動,甚至可以推論,亦與遠在半個世界以外的伊斯蘭文化圈間接有所聯繫。

臺南道爺南遺址的玻璃珠,可串聯掛在頸部,做為陪葬品使用。圖│研之有物
臺南道爺南遺址的玻璃珠,可串聯掛在頸部,做為陪葬品使用。圖/研之有物

有沒有可能從中國進口玻璃珠?

臺灣從文化相近的東南亞進口玻璃珠,那是否也有從東亞大陸引進?畢竟說到玻璃製作,埃及、中東、印度之外,中國也有悠久的傳統。

王冠文說,中國密集出產「高鉛玻璃」,並且有些成品含有「高放射性成因鉛[註1]」。因此和臺灣鐵器時代前期的玻璃珠比較(包含西亞植物灰玻璃、南亞礦物鈉鋁玻璃),成份明顯不同,能清楚區別。

不過,臺灣遺址確實出土過高鉛玻璃,年代比南亞、西亞產品更晚,要等到 10 世紀。這些玻璃或許直接來自臺灣海峽的對岸,但是也可能經歷更加迂迴的路線,例如先從中國輸出到東南亞,再從東南亞引進臺灣,目前證據仍不足。

-----廣告,請繼續往下閱讀-----

當時臺灣沒有生產玻璃珠嗎?

既然臺灣鐵器時代的玻璃珠來自東南亞,除了進口之外,臺灣本地是否也會自行生產?這個問題比想像中複雜,王冠文研究發現,鐵器時代的臺灣沒有燒製玻璃(glassmaking)的證據,但是有自行加工(glassworking)。

玻璃珠的考古通常更為困難,主要和玻璃製造方式有關。首先是需要採集矽砂及助熔劑原料,從無到有製造出玻璃,玻璃燒製的地點通常靠近矽砂或助熔劑來源,獲得玻璃成品或半成品之後,再送到其他地方加工。即使是玻璃成品,過了一段時間後也可能被重新熔化,加工做成新的製品,例如玻璃珠。

此外,玻璃的工坊遺跡也難以留存。目前印度仍有少數作坊以古法製造玻璃,考古學家觀察到,印度工匠的作坊只要不再使用,短短幾年後就不留痕跡。如果古代也是如此,也難怪考古學家至今為止,在南亞和東南亞仍然沒有發現明顯的玻璃工坊遺跡。

相較於另一個臺灣代表性飾品「玉」,玉本身就是礦物,成分幾乎不會改變,而且玉礦很少,追蹤來歷相對單純。玻璃是人造混合物,除了主要成份外,其餘成份可以持續變動,能製作玻璃的原料也普遍存在,不容易判斷具體的取材範圍。

-----廣告,請繼續往下閱讀-----

臺灣古代最容易接觸東南亞的是東部、南部,也是較早出土玻璃珠的地區 。玻璃珠本身無法取得定年資訊,必需依靠周圍材料。可惜臺灣很多遺址缺乏更細緻的定年結果,也就難以釐清玻璃珠的精確年代,常見「3 到 6 世紀」、「6 到 9 世紀」這類範圍很大的年代估計。

儘管有重重限制,王冠文依然盡力追尋一切線索。回答臺灣玻璃珠生產的考古問題,舊香蘭遺址是很好的研究案例。

舊香蘭遺址找答案

舊香蘭遺址位於臺東,年代介於公元前 3 到 8 世紀,總共出土約 2800 件完整玻璃珠,以及數百件玻璃廢料,也有鐵器與處理金屬的相關遺留。處理金屬與玻璃珠同樣需要高溫,意謂當時的工匠懂得高溫工藝。

由於出土大量的玻璃與廢料,學者一度推論舊香蘭曾經是玻璃的燒製場所。然而,王冠文的分析指出,當地應該只有進行過玻璃珠加工,找不到燒製的證據。

舊香蘭出土的玻璃珠幾乎都是礦物鈉鋁玻璃,完全沒有植物灰玻璃,廢料則兩者皆有。以化學組成判斷,礦物鈉鋁玻璃的原料主要是花崗岩質砂,植物灰玻璃則需要沙漠地區的鹽生、旱生植物,這些原料不易在臺灣取得,因此玻璃珠或玻璃料最可能從海外進口;而植物灰玻璃廢料的年代,應該比部分礦物鈉鋁玻璃更晚。

-----廣告,請繼續往下閱讀-----

要判斷製造的痕跡,玻璃珠製法也是關鍵。玻璃珠可分為拉製(drawn)和捲製(wound)兩大類,目標都是做出可以被串起的中空玻璃珠。捲製法相對簡單,用鐵棒捲起融化的玻璃條,冷卻後成形即可。拉製法則比較費工,製作時一位工匠使用空心長鐵棒,將熔爐中的玻璃捲成錐狀,另一位則在另一側從熔爐拉出長玻璃管,再裁切做成中空玻璃珠。製作過程,黏附在金屬工具的玻璃,冷卻剝落後,外觀也會形成易辨認的玻璃廢料。

南海交流圈的礦物鈉鋁玻璃珠,多由拉製法製成。臺灣舊香蘭遺址的完整玻璃珠成品也是拉製法,但是當地並未發現空心長鐵棒等相關遺留,也沒有典型的拉製法玻璃廢料,因此這批玻璃珠似乎並非於臺灣製造,而是直接進口而來。

玻璃工藝:捲製法。圖│研之有物(資料來源│TrollbeadsTV)
玻璃工藝:捲製法。
圖/研之有物(資料來源│TrollbeadsTV
玻璃工藝:拉製法。圖│研之有物(資料來源│CEAlexandrie)
玻璃工藝:拉製法。圖/研之有物(資料來源│CEAlexandrie

有意思的是,舊香蘭的玻璃廢料,看起來是呈現捲製法的工藝技術。這表示舊香蘭工匠懂得加工玻璃的手藝,且和當時東南亞主流技術不同,技術從何而來,仍有待探究。從玻璃廢料與玻璃珠的製程差異來看,可推論兩者有不同的淵源:即玻璃珠是進口舶來品,玻璃廢料則為本地加工的遺留,兩者很可能處於不同年代。

另一處距離舊香蘭不太遠,位於屏東的龜山遺址,年代約介於 3 到 9 世紀,出土過 123 件玻璃珠,不過沒有加工玻璃的跡象。龜山玻璃珠超過 80% 是礦物鈉鋁玻璃,其餘則是植物灰玻璃,應該都是進口產品。

-----廣告,請繼續往下閱讀-----

顏色透露出的考古訊息

顏色是玻璃珠考古的另一重點,加入不同化學成份作為「著色劑」(colouring agent),便能創造色彩多變的玻璃珠。著色劑可以在玻璃製造的初期就加入,也能加工時另外添加。

想像東南亞作坊的畫面:前一陣流行紅色珠珠,趕快製作一批;最近風潮又變成橘色,那就再加把勁,改燒製橘色玻璃,把紅色變成橘色珠珠趕流行。

臺灣不同遺址的玻璃珠顏色有別,例如有一款只有表面一層橘色的橘皮珠,只流行於北部和東北部,或許就反映當時該地區人群對橘色珠珠的偏好。鐵器時代絕大部分玻璃珠只有一種顏色,紅、橘、黃、綠、藍等色各有不同作法。目前王冠文的研究著重於礦物鈉鋁玻璃珠的著色。

鑲埋在環氧樹脂中的玻璃珠樣本,可透過掃描式電子顯微鏡分析。圖│研之有物
鑲埋在環氧樹脂中的玻璃珠樣本,可透過掃描式電子顯微鏡分析。圖/研之有物

臺灣的礦物鈉鋁玻璃珠皆由拉製法所製,大部分玻璃珠的著色步驟應該不在臺灣進行。對於臺東舊香蘭、屏東龜山、宜蘭淇武蘭、臺南道爺南和五間厝遺址的分析指出,銅是最普遍使用的著色劑原料,不同化學狀態的銅,根據氧化還原狀態的差異,可以產生紅、橘、藍等色彩;黃色玻璃的著色劑,來自人工製成的黃色顏料──鉛錫黃(水合錫酸鉛);綠色玻璃則同時帶有黃色顏料以及銅藍著色劑。

宜蘭淇武蘭遺址出土的橘皮珠,添加銅作為著色劑。圖│王冠文
宜蘭淇武蘭遺址出土的橘皮珠,添加銅作為著色劑。圖/王冠文

有趣的是,透過科學分析,發現臺灣遺址有些橘色珠的微觀結構中,同時存在氧化銅及氧化錫的結晶,但形成橘色並不一定需要錫,例如淇武蘭遺址的某些橘色珠便幾乎無錫,可是為什麼錫會出現在橘色珠內呢?

可能的原因是,這些橘色珠當初添加銅為著色劑時,加入的是銅錫合金(青銅),所以錫不經意地一起熔入玻璃珠內。另一個可能性,是由玻璃科學的角度而言,錫有促進銅著色劑之橘色顯色功用。

古代工匠或許在不知情的狀況下,發現青銅的妙處,刻意選用青銅做為原料。而青銅是人類史上影響力最大的金屬之一,如果推論正確,玻璃珠和青銅之間的關係,將帶來新的認識。

基於材料科學的背景,王冠文目前研究題材多為高溫工藝素材,未來除了玻璃珠以外,臺灣遺址中的紅玉髓(一般人常和瑪瑙珠搞混)、青銅器等材料,也會納入研究對象。考古學研究,不僅可得知物的交換與流動,同時也能以更寬廣的視野來看待歷史與現實。

註解

  • 註 1:高放射性成因鉛指的是,鉛的形成過程是經由放射性的衰變產生,例如鉛 206、鉛 207、鉛 208。

延伸閱讀

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3617 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
近零碳建築新趨勢:從節能創意到 2050 淨零轉型
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/23 ・3701字 ・閱讀時間約 7 分鐘

本文由 建研所 委託,泛科學企劃執行。 

根據聯合國統計數據,全球每年 38% 的溫室氣體排放,並非來自道路上的交通工具,而是由「現代都市與建築」所造成的。

我們如今站在兩條路徑的十字路口。一條是依賴更多水泥建築與空調系統來抵禦夏季酷暑,然而這樣的選擇只會加劇室外大氣的惡化。另一條則是徹底改革建築、用電、設計與都市規劃,不僅尋求低碳排放的建築方式,還要找出節能降溫的解決方案,實現事半功倍的效果。

然而,我們是否真的能將建築業的碳排放歸零?

-----廣告,請繼續往下閱讀-----

建築的溫室氣體哪裡來?

在建築物 60 年的生命週期中,建材的碳足跡其實只佔 9.8%,因為建築一旦完成後,材料不會頻繁更換。相反,日常生活中的用電才是主要的碳排來源,占了 83.4%,其中大部分來自冷氣、照明和各種電器。

當然,讓大家集體關燈停用電器「躺平」來拯救地球,顯然不切實際。既然完全不消耗能源是不可能的,我們應該尋找更現實的解決方案。

現在就來看看全球七棟零碳建築之一——成大的「綠色魔法學校」,臺灣首座淨零建築,如何運用建築技術,成為當代永續建築的典範。這些技巧中,有哪些能應用到你我家中呢?

綠色魔法學校。圖 / 內政部建築研究所

為了省電要把煙囪塗黑、吸收更多太陽光?

都市裡,我們最大的挑戰之一就是夏天的高溫,水泥建築群在陽光的烘烤下,變成一個個巨大的窯爐。為了解決這個問題,綠色魔法學校在國際會議廳裝了一個煙囪,不過這不是為了讓窯爐更熱,而是用來降溫的。

-----廣告,請繼續往下閱讀-----

煙囪為什麼都都要蓋的那麼高?原來煙囪越高,上下的溫差越大。熱空氣因為密度低而向上移動,產生熱對流。溫差越大,這個熱對流就越強烈,這就是所謂的「煙囪效應」。在要幫室內降溫的情況下,我們的目的是產生更強的煙囪效應,抽走熱空氣,讓室溫下降。但這棟建築裡沒有火爐,而溫差不夠大時,這效應會變得微弱,那該怎麼辦?

綠色魔法學校提出了一個大膽的解法:在煙囪南面下半部改裝透明玻璃窗,並將煙囪內部塗成黑色,還加裝了黑色烤漆鋁板,這樣可以最大限度地吸收太陽光。每當艷陽高照,這個不插電的的「自然通風系統」就能自動啟動,創造局部的熱對流,帶動整根煙囪的熱氣向上移動,為室內降溫,達到節能效果。以熱制熱,完全反常識。

綠色魔法學校的特殊煙囪設計,玻璃引入太陽光。圖 / 泛科學攝影畫面截圖

幫室內降溫的最大原則是:通風。

實際上,不是人人家裡都有煙囪。但如果建築的高處沒有任何窗戶或通風設備,熱空氣就是會從屋頂一路往下蓄積在室內。因此,你也一定在許多工廠或民宅的屋頂看過一個不斷旋轉的小風扇,它們也是有異曲同工的效用。雖然不是高聳的煙囪,但特殊的渦輪構造,風吹過就會開始轉動,並連帶空氣排出室外。是個不用插電的通風球。

-----廣告,請繼續往下閱讀-----
綠色魔法學校館內動畫-室內通風排熱補冷。圖 / 泛科學攝影畫面截圖

綠色魔法學校的煙囪就是個效能更強的換氣機,足以讓 300 人大型會議廳的換氣次數,高達每小時 5 到 8 次,甚至能在室內颳起風速每秒 0.5 公尺的微風,是最舒適的環境。這些利用熱氣密度的差異來改善室內溫度的方法,又稱為「浮力通風」。

為了把通風貫徹到底,綠色魔法學校在建築的兩面裝設大量窗戶以及吊扇,來讓水平也能通風。這些我們習以為常的裝置,其實才是關鍵。靠吊扇的一點點電力讓自然風可以自由進出,耗費的能源,遠比冷氣還要少得多。

幫空調省電的最後一招,就是微環境控制。

綠色魔法學校透過屋頂植栽與造林改善微氣候。圖 / 綠色魔法學校

實際上魔法學校內還是找的到空調設備,並不是完全拔除不用。除了選用最高效率的主機,以及把室內循環做到最好以外,降低周遭環境溫度才能減低冷氣的負擔。要降低水泥叢林的熱島效應,需要植被與水體來做溫度調適。

在太陽照射下,水泥屋頂表面最高可以達到攝氏 70 度,如果屋頂有種植植栽,室內頂層樓板的表面溫度就可以維持在攝氏32 度以下。不用開電就先幫室內降溫。

-----廣告,請繼續往下閱讀-----

水也是關鍵的一環。一是水的比熱高,想打破水分子之間的氫鍵,需要大量的熱量,要讓一千克水的溫度升高一攝氏度,需要 4,200 焦耳的熱量,這可以避免溫度因為烈陽就快速上升。二是當溫度真的過高,水也會透過蒸發帶走熱量,讓溫度不至於向上飆。

魔法學校的屋頂花園使用水庫淤泥,研磨後燒製成的再生陶粒,裡頭混合了稻穀,結構極細,不會像有機土一樣分解消失,可以涵養水源,還不用動不動補土壤,不只降低屋頂植被的澆水次數,還能達到降溫效果。地面也採用透水鋪面,讓每一滴水都不浪費。

綠色魔法學校本名是成功大學的「孫運璿綠建築研究大樓」

2013 年被英國知名出版社羅德里其評為「世界最綠的建築」,並獲選為聯合國全球七棟零碳建築之一。

除了表彰之外,在認證上也確實取得了臺灣最高等級的「鑽石級綠建築」認證,以及美國最高級的「白金級綠建築」兩個綠建築認證。

-----廣告,請繼續往下閱讀-----

為了讓相同的成效可以陸續在全臺的所有建築上實現,臺灣在既有的綠建築標章體系上,擬定出了「建築能效評估系統 BERS」,針對關鍵的空調、照明、插座電器的用電狀況訂出明確的耗電密度指標得分。簡單來說,就是每平方公尺的面積上,每年平均的用電量。

建築能效標示。圖 / 內政部建築研究所

要打造一棟淨零建築,需要設計與材料硬體的相互配合。在日常用電這最大耗能項目上,能透過前面的淨零設計與智慧能源管理來減低能耗。而我們還沒提到的最後一塊拼圖,則是回到建築的建材本身。這部分減碳的方法有很多種,例如將傳統施作工法改為在工廠就完成模組化建材製造的「預鑄工法」,減少現場搭建鷹架、施工的步驟,達成減碳。又或是將部分建材更換為木、竹等負碳建材,甚至使用零廢棄物、能「循環使用」的建材。例如 2018 年亮相的臺中花博荷蘭館、或是 2021 年台糖在沙崙啟用的循環聚落。

建築物能夠完全不用電嗎?……電從哪裡來?

沒錯,連全球最綠的建築——綠色魔法學校,也無法做到完全不使用電力。正如前面提到的,建築的最大能源消耗來自日常使用,而這所「魔法學校」的成就,是成功將日常能源消耗降低,讓溫室氣體排放減少超過 50%。

這就是關鍵,減少一半後,剩下的部分就靠周邊的造林、太陽能和風能等綠色能源來補足。

-----廣告,請繼續往下閱讀-----

2022 年 3 月,國發會公佈了 2050 淨零排放的路徑圖,參考美國、日本、歐盟等國,制定了 2050 年達成淨零建築的目標。

這條路徑包含兩個核心目標:第一,所有建築物要在建築能效評估系統(BERS)中達到 1 級節能,甚至進一步達到「1+ 級」近零碳建築的標準,減少至少 50% 的能源消耗。第二,同步發展再生能源,讓這些近零碳建築朝淨零邁進。

淨零建築路徑。圖 / 內政部建築研究所。

這個目標比你想像的要容易實現。比如,2023 年 12 月,台達電的瑞光大樓 II 就成功取得了「1+ 級」近零碳建築認證,並符合 0 級淨零建築規範。而在 2024 年 7 月,國泰人壽在臺中烏日的商辦大樓經過改造後,也達到 0 級淨零建築標準。這些案例證明了綠色魔法學校的成功經驗可以複製,不論是新建築還是舊建築,都能達成甚至超越淨零目標。

圖 / 台達電瑞光大樓 II
圖 / 國泰人壽臺中烏日商辦大樓

為了不讓每一年的夏天都是你我餘生最涼的夏天,碳排歸零是必須要實現的目標。現在你知道,這個任務的關鍵就掌握在你我手中。就像選擇能源標章電器一樣,只要選擇符合 BERS 能效標準的建築,我們不僅能降低冷氣的依賴,也能節省電費,讓地球和你的荷包都雙贏。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
「銅戈」有哪些獨特優勢和設計奧秘?上古中國區域互動有多複雜?——專訪中研院歷史語言研究所李修平助研究員
研之有物│中央研究院_96
・2024/04/15 ・6432字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|林庭葦
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

上古中國最常見的武器是「戈」?

說到中國的兵器,你可能會想到金庸武俠小說中的倚天劍、屠龍刀。事實上,我們熟悉的劍是從歐亞草原傳入中國。早在劍成為主流兵器前,在上古中國的戰場上,廣泛使用的兵器是青銅製的「戈」。中央研究院「研之有物」專訪院內歷史語言研究所李修平助研究員,透過研究殷墟出土的「銅三角援戈」,分析這些兵器之於墓主的意義,並解開晚商社會與區域互動的謎團。

中央研究院歷史語言研究所李修平助研究員,手上揮舞著仿銅戈模型,介紹源自上古中國的尖端兵器。
圖|之有物

在中央研究院歷史語言研究所的研究室裡,李修平助研究員揮舞著一把仿銅戈模型,一邊講解、一邊模擬商代士兵的作戰情形。

銅戈這類青銅器是用銅、錫、鉛為主的礦物冶煉鑄造而成,跟非金屬材料做的兵器截然不同。第一,銅戈相當鋒利,就算沒有正中敵人要害也會造成大量失血,攻擊效率極高。第二,石器要花時間打磨,但銅戈只要有夠多模具,就能大規模量產。第三,石器斷了就斷了,但銅戈就算鈍掉,磨一磨就能再用;就算爛掉,也能重鎔再製。

「銅戈彰顯了商代的軍事和科技實力,你不覺得這類兵器超猛的嗎!」李修平讚嘆古人的智慧,娓娓道來自己對銅戈與青銅器著迷的原因:

-----廣告,請繼續往下閱讀-----

青銅器的鑄造技術就像當代的半導體,是上古中國最尖端的科技!

的確,與石器、玉器或陶器相比,青銅器的製造技術更複雜,從開採礦物、冶煉金屬,乃至鎔鑄器物,整套製程都需要高超的知識體系和工藝技術。

此外,李修平更從銅戈觀察到複雜的區域互動關係。目前,學界普遍認為「戈」是中國本土發展出的兵器,源自黃河流域,並往四周流傳。而青銅鑄造則是來自歐亞草原的外來技術,傳入中國後逐漸本土化,被用來製作各式禮、兵器,也包括銅戈。

根據目前的考古發現,在被視為「晚夏時期」的二里頭文化(西元前約 1750 至 1520 年)、「早商時期」的二里岡文化(西元前約 1510 至 1300 年)就已出土少量的銅戈。到了中、晚商時期,銅戈不僅大量出現於黃河中游的小屯文化(包括「花園莊期」與「殷墟文化」,西元前約 1320 至 1050 年),更散布於上古中國境內各地。不同地區銅戈的形制變化與出土脈絡,成為考古學家研究上古中國區域互動的重要材料。

中央研究院歷史文物陳列館展出從殷商到東周時期的銅戈,從中可觀察銅戈形制的變化。到了西周中期以後,戈的形制逐漸固定,戈頭末端已普遍流行名為「胡」的延長設計,可增加鑽孔空間,方便穿繩將握柄牢牢綁在戈頭上。圖為東周的長胡戈。
圖|之有物(拍攝自中央研究院歷史語言研究所歷史文物陳列館)

考古學家如何還原文物身世?

銅戈基本構造圖解
圖|研之有物

在殷商時期,銅戈已是中國廣為使用的兵器,一支銅戈基本上具備:青銅製的「戈頭」、固定戈頭並可手執的「柲」、柲上端的「冒」,與柲下端的「鐏」。

-----廣告,請繼續往下閱讀-----

戈頭又可大致分為用來攻擊的「援」、支撐柲的「內」(常見的造型有直內、曲內、管銎),以及位於兩部位銜接處的「闌」(分為上闌、側闌、下闌)。

為了讓戈頭在作戰時不會從柲上脫落,會在「援」或「內」上設計稱為「穿」的孔洞,可穿繩將戈頭和柲綁在一起。後來更出現了合瓦形的「管銎」,是形狀如兩塊瓦片圍成的孔洞,可讓柲直接穿過戈頭固定。

銅戈的「內」常見的造型有:直內、曲內、管銎。
圖|研之有物(拍攝自中央研究院歷史語言研究所歷史文物陳列館)

在形態各異的銅戈中,李修平注意到一種形狀特殊、數量稀少的「銅三角援戈」。與一般銅戈相比,銅三角援戈的主要特徵為:援呈三角形、援末有長方形穿、無上下闌

銅三角援戈不僅造型特殊,更令人矚目的是,學者對於銅三角援戈的起源意見紛陳,目前至少包括「漢中盆地說」、「中原說」、「漢水流域說」與「涇渭三角地帶說」等不同說法。這也連帶影響其背後所反映的不同區域互動關係,形成眾說紛紜的局面。

-----廣告,請繼續往下閱讀-----
銅三角援戈基本構造圖解
圖|研之有物

根據目前的考古證據,在距今 3000 多年前的商代,銅三角援戈已見於上古中國各地,包括今日黃河流域的河南、河北、山東、山西、陝西,與長江流域的湖北、湖南與陝西南部等地。此外,殷墟所在的河南省安陽市,則出土近 20 件銅三角援戈。

為了藉由銅三角援戈此一個案,進一步探索商代複雜的區域互動關係,李修平首先分析史語所典藏的 4 件殷墟出土銅三角援戈。當中有 2 件「直內三角援戈」和 1 件「曲內管銎三角援戈」發現於洹河以西的小屯東北地(即一般所謂的「宮殿區」)。另有 1 件「直內三角援戈」發現於洹河以東的大司空村。

研究的起點,就得先從殷墟的地理位置,與文物的出土脈絡說起。

圖為 4 件銅三角援戈在殷墟的發現地
圖|中央研究院歷史語言研究所、李修平提供

殷墟是商代晚期的王都遺址,其歷史可追溯至距今 3000 多年前,位於今日中國河南省安陽市的洹河流域,佔地廣袤,遍布大大小小的遺址。

-----廣告,請繼續往下閱讀-----

史語所自 1928 至 1937 年間,陸續在殷墟進行 15 次考古發掘,在當年是首次由官方學術單位,在單一遺址中,進行長時間、大規模、系統性的考古發掘工作,奠定了中國考古學往後 90 餘年的發展。

為了尋找中國最早的文字──甲骨文,經過多年調查,史語所的考古學家前往安陽市西北部的小屯村,進行田野考古工作。由於小屯村以北發現大量的夯土台基,顯示此處曾是商代晚期的宮殿和宗廟的所在地,因而稱之為「小屯宮殿區」。此外,更在小屯宮殿區的西北方、洹河以北的侯家莊以北,發現了「西北岡王陵區」。

考古學家藉由解讀出土於殷墟的甲骨文,證實了歷史文獻上殷商王朝的存在。墓葬中更找到各式青銅製的禮、兵器,與《左傳》「國之大事,在祀與戎」的記載相符。毫無疑問,在不晚於殷商時期,「祭祀」和「戰爭」就是一個國家立足的根本。

1936 年春,史語所考古團隊在小屯村北的張家七畝地,發掘關鍵的 YH127 坑,出土 17,096 片記載殷商王室祭祀活動的甲骨。圖為工作人員正在將整塊埋有甲骨的土層挖出,準備裝箱運回南京的研究室清理。右方踞於箱上為李濟,其後穿淺色背心坐者為高去尋,其後為李景聃。
圖|中央研究院歷史語言研究所

在殷墟發掘的文物,皆有賴考古學家就其出土「脈絡」,還原身世背景。

除了觀察文物本身的形制、材質、刻紋等外在特徵之外,文物出土的地層、在遺址中的位置、周圍的其他遺存等,都是協助考古學家研究古人思想行為的關鍵。

-----廣告,請繼續往下閱讀-----

李修平舉例,一件銅器在遺址的不同地方被發掘,可能暗示它所處的不同生命週期。例如在作坊附近發掘,可能是半成品或廢料;在居住區發掘,可能是使用中的物品;在垃圾坑發掘,可能是毀棄品;在墓葬中發掘,則可能是陪葬品。

「戈」除了作為兵器,也可做禮器使用。圖為殷墟小屯宮殿區 331 號墓出土的「玉援銅內戈」,其援部是玉製,功能可能類似領導者手持的儀仗。
圖|研之有物(拍攝自中央研究院歷史語言研究所歷史文物陳列館)

從墓葬風格推算墓主身份地位?從戈的形狀看出區域互動可能性?

史語所典藏的 4 件殷墟出土銅三角援戈,有 3 件出自墓葬、1 件出自水井。首先,李修平從墓葬所在的位置、墓室的規模、陪葬品數量,以及是否有殉葬者,推測墓主的身分,與文物對墓主的個人意義。

舉例來說,直內三角援戈 R002108、R002109 皆出自小屯宮殿區的墓葬(這兩座墓葬的年代,均埋於「小屯宮殿區」形成之前)。雖然這兩把銅戈都做工精美、鋒利依舊,但出土墓葬的「排場」卻有所落差。

R002108 出自墓葬 M232,規模頗大,不但有殉葬者,還有眾多銅、石兵器,暗示墓主的身分地位與眾不同,生前可能有指揮作戰的能力。R002109 則出自墓葬 M270,規模較小、陪葬品也少,推測墓主在當地社群大概屬低階貴族。

-----廣告,請繼續往下閱讀-----

李修平指出,上述兩件「直內三角援戈」雖然都出自墓葬,但這兩件兵器對於它們的擁有者來說,意義可能大不相同。

對墓葬 M270 墓主來說,R002109 是他為數不多的陪葬品中相對珍貴的器物。反觀墓葬 M232 墓主,不只陪葬品豐富,胸前還放了一把比 R002108 更精美、鑲有綠松石的曲內銅戈。此外,就陪葬品放置的位置來看,M232 墓主可能重視鑲嵌綠松石銅戈,更勝於 R002108。

「直內三角援戈」R002108(上)、R002109(下)都出自墓葬,風格各具特色,但從出土脈絡推測,這兩件兵器對於它們的擁有者來說,意義可能大不相同。
圖|研之有物(拍攝自中央研究院歷史語言研究所歷史文物陳列館)

此外,李修平也透過分析出土脈絡,為大司空村發掘的「直內三角援戈」R015552 拼湊出不同身世。

R015552 的前鋒圓鈍、內上沒有可穿繩的孔洞,作戰時戈頭容易與握柄分離。因此,李修平推測,這把銅戈可能不是實用兵器,而是作為儀杖或有其他用途。

-----廣告,請繼續往下閱讀-----

此外,R015552 所在的墓葬位於殷墟的「東部工業區」,該地已發現生產各式骨器、陶器的作坊,或許也鑄造銅器,而此墓葬的位置正好位於骨器作坊的範圍。

因此,墓主的身分地位和所屬社群,可能與小屯宮殿區的政治菁英較遠,而與大司空村南地的工匠社群較近。

「直內三角援戈」R015552,發掘自大司空村墓葬,當地在商代晚期是作坊區,因而推測墓主身分應與工匠社群有關。
圖|研之有物(拍攝自中央研究院歷史語言研究所歷史文物陳列館)

另一方面,李修平也從造型特殊的「曲內管銎三角援戈」R002130,觀察到區域互動的可能性。

R002130 的出土地點特殊,位於小屯宮殿區北部的一處水井內。這座水井出土的考古遺存數量豐富、材質多元,包括占卜用的甲骨、銅渣(代表附近可能有鑄銅活動),以及至少 21 件青銅兵器與工具。李修平推測,這些青銅器物的擁有者可能是生活或服務於小屯宮殿區的人員。

為什麼說「曲內管銎三角援戈」反映出區域互動的可能性呢?

首先,在二里頭文化時期至小屯文化時期,中原地區(黃河中下游、今日中國河南省一帶)出土的銅戈,其援部大多呈長條形,外觀呈現三角形者相對較少。如前所述,援部呈三角形的銅戈,究竟源於何地,仍有進一步討論的空間。

此外,能插入握柄的管銎設計,是北方式青銅器的特色,殷墟雖然有出土管銎銅戈,但數量遠不及無管銎設計的銅戈。

最後,曲內設計是中原地區銅戈常見的造型,最早見於二里頭文化時期,但融合「三角形援」和「曲內」這兩種設計的銅戈卻非常罕見。

李修平認為,「曲內管銎三角援戈」展現了各地物質文化元素在晚商王都交融的現象,也體現了商代工匠勇於實驗各種創新的銅戈設計,致力打造出能讓戈頭和握柄緊密結合的完美兵器。

「曲內管銎三角援戈」R002130,展現各地物質文化元素在晚商王都交融的現象,也體現商代工匠勇於實驗各種創新的銅戈設計。
圖|中央研究院歷史語言研究所(擷取自李修平,〈從考古脈絡論史語所藏殷墟出土銅三角援戈〉;施汝瑛拍攝)

「研究史語所收藏的殷墟出土銅三角援戈,只是研究的起點。」李修平表示:「直到今日,殷墟的考古工作已持續進行約 100 年,不僅累積龐大的材料,更發現種類豐富的『舶來品』。此外,在上古中國境內各地,也陸續發現五花八門的外來遺存。換句話說,運用脈絡比較分析法來研究上古中國的區域互動,其實才正要起步。」

跳脫「華夏中心史觀」!區域互動有多複雜?

李修平自 2020 年起,接手史語所安陽工作室的主持工作,他試圖跳脫「華夏中心史觀」,將上古中國的區域互動關係進行更細致的梳理。
圖|研之有物

「區域互動」的研究看似有很多材料可做,但李修平坦言,如果單純相信眼前的證據,很可能會誤入陷阱。

舉例來說,假設 3000 年後,外星人來到地球考古,發現臺灣是全世界晶片製造廠最密集的地方,他們可能會以為臺灣是半導體的發源地,但其實真正的發源地在美國。光是當代社會的物質文化都能推敲出多種可能,要推斷 3000 年前殷墟文物背後的區域互動關係,就更加困難。

李修平進一步指出,在中國考古學的研究中,當墓葬中出土了外來遺存,經常採用較籠統的說法。例如,某地「影響」了某地,又或者兩地之間存在某種「關係」,但詳細原因無法具體說明。特別是進入了夏、商、周時期,「華夏中心史觀」成為詮釋區域互動的基本預設。

其中一個例子,就是被學界視為夏朝晚期的二里頭文化與周邊地區的關係:一般認為,二里頭的物質文化就像太陽般輻射四方,只要在周遭地區看到類似的物質文化,很可能就是受到二里頭的「影響」。

「但這樣的論述其實有待商榷。」李修平點出爭議:「只因為看到這邊出土的陶器跟二里頭的陶器類似,就能斷定它被二里頭「影響」嗎?物質文化流傳的動力,是文化?是政治?是經濟?還是偶然的巧合?又或者是其它多重、複雜的因素?」

有關區域之間的「互動關係」,其內涵充滿各種可能性,諸如交換、模仿、貿易、移民、戰爭或殖民等原因,真相並沒有那麼單純。

因此,自 2020 年接手史語所安陽工作室以來,李修平就試圖跳脫「華夏中心史觀」,將上古中國的區域互動關係進行更細緻的梳理。

然而,研究過程並不容易,因為做研究必須跟著材料走,而不是跟著既有的、主流的論述走。如果有新的材料出土,就要接受已有的認識很可能被挑戰、甚至推翻的可能性。

「現代社會都這麼複雜了,古代社會也有它複雜的一面。」李修平望著眼前正在進行的研究,僅管還有許多難題未解,卻擋不住他躍躍欲試的心情。

「新的考古材料持續出土,不斷更新我們對古代世界的認識。儘管如此,考古學家仍要竭澤而漁,盡力蒐羅所有材料,試圖在相對穩固的基礎上,還原古代社會的複雜性,並提出比較合理的解釋。這是我做研究的基本態度。」

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

研之有物│中央研究院_96
296 篇文章 ・ 3617 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

3
2

文字

分享

0
3
2
減碳新招:二氧化碳再利用!光觸媒材料可以把二氧化碳還原成工業化學原料?——專訪中研院原分所陳貴賢特聘研究員
研之有物│中央研究院_96
・2023/11/03 ・5793字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|簡克志
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

降低碳排還不夠,奈米材料幫你直接減少二氧化碳!

氣候變遷問題日益嚴重,2023 年 9 月成為全球有史以來最熱的月份,臺灣夏天飆破 38 ℃ 的頻率逐漸增加。為了避免地表升溫超過工業化前水準的 +1.5 ℃,世界各國訂出 2050 年淨零排放的目標,設法減少大氣中的溫室氣體。減碳解方除了低碳電力之外,直接減少二氧化碳也是一條路徑。中央研究院「研之有物」專訪院內原子與分子科學研究所陳貴賢特聘研究員,他的研究專長是奈米能源材料,我們將介紹一種複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),在太陽光照射下,此材料表面發生的氧化還原反應,會將二氧化碳還原成有用的工業化學原料!

為了避免全球升溫超過工業化前水準的 +1.5 ℃,我們需要減少碳排放與開發負碳技術,並盡量在 2050 年左右達到全球溫室氣體淨零排放量的目標。所謂的「工業化前水準」是指 1850-1900 年的平均溫度。
圖|iStock

地球「保冷」計畫——減碳是關鍵

我們每天排放多少二氧化碳?根據 Our World in Data 的人均二氧化碳排放數據,2021 年全球每人排放的二氧化碳為 4.69 噸,而燃燒 1 公升的汽油大概會產生 2.3 公斤的二氧化碳。換算一下,每人每天排放二氧化碳約為 12.8 公斤,相當於每人每天消耗 5.6 公升的汽油!

根據聯合國政府間氣候變化專門委員會(IPCC)的特別報告「全球暖化 1.5 ℃」,人類活動排放的溫室氣體,已經讓地球表面平均溫度上升了 1 ℃。若以人類目前經濟模式發展下去,碳排放量可預期將不斷上升,大量溫室氣體將讓暖化現象與極端天氣事件更加劇。

氣候科學家警示,地球表面平均溫度需控制在 +1.5 ℃ 以內 註 1,否則將有不可逆的後果,例如生物多樣性大幅度降低的風險。因此,世界各國有了 2050 年淨零排放的共同目標,並不是說都不排碳了,而是要設法讓溫室氣體的碳排放量和碳減少量相互抵消,達到「淨零」的目標。

-----廣告,請繼續往下閱讀-----

要達到淨零的目標,除了尋找與開發減碳電力之外,直接減少二氧化碳也是一個方法。想像一下,如果可以像植物一樣,只要照太陽光,就把二氧化碳變成有價值的碳氫化合物,聽起來不錯吧?但是二氧化碳做為燃燒後的產物已相當穩定,要如何以人工方式讓二氧化碳再次參與反應?

我們可運用「陽光」與「光催化材料」(又稱光觸媒,photocatalyst),不僅可以減碳,還能產生有價值的碳氫化合物,是一種「一舉兩得」的方法!

光觸媒(光催化)材料是什麼?

在談到光催化材料之前,先複習一下「催化劑」這個概念,催化劑不參與化學反應,但是它讓原先不可能的化學反應變得可行!陳貴賢分享,這就像過去從臺北到宜蘭需要翻過雪山,經過九彎十八拐的北宜公路;但如今有了「雪山隧道」之後,就大大降低臺北到宜蘭的時間與難度。「雪山隧道」就是臺北通往宜蘭的催化劑。

除此之外,催化劑也可以說是推進人類歷史發展的重要角色!在過去,農作物施肥只有天然氮肥可以使用,產量有限。而肥料意味著糧食增加與生產力增加,《巫師與先知》這本書就提到位於秘魯的鳥糞島嶼成為各家跨國公司必爭之地。另一方面,波斯人也在各地建造供鳥類休息的高塔,用來收集當肥料用的鳥糞。

-----廣告,請繼續往下閱讀-----

到了近代,陳貴賢提到在 20 世紀初,德國科學家哈伯(Fritz Haber)透過催化劑,在高溫高壓的條件下,以鐵粉做為催化劑,讓氮氣和氫氣轉換成氨。這讓人工固氮成為可能,人類不用再依賴緩慢的生物固氮反應就可以合成化學氮肥,農作物產量也大幅提昇。

本文主角「光催化材料」,顧名思義就是協助光化學反應的催化劑,但光催化材料與一般催化劑不同的地方在於,其化學反應通常發生在固態的表面環境,目標反應物、光子和電子都有參與反應。

比起光催化材料,你可能更常聽到它的同義詞「光觸媒」,例如某某產品宣稱具有「奈米光觸媒消毒」的功能,其實就是照射足夠的光,讓材料表面的氧化還原反應把細菌分解。而之所以光觸媒需要做到奈米尺寸,這是因為奈米小顆粒可以改變物質的電子能量結構,且大幅增加反應的表面積,讓光催化反應更有效率。

陳貴賢:「一個高表面積的奈米粉末,它的表面積可能是薄膜的一萬倍,甚至於十萬倍。」

給你電子,還你原形!光催化材料上的氧化還原反應是怎麼發生的?

光催化材料之所以能夠減少二氧化碳,是因為照光後材料表面發生「氧化還原反應」,氧化反應會失去電子,還原反應會得到電子。陳貴賢與團隊開發的複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),可以讓二氧化碳還原成甲醇(CH3OH)和乙醛(CH3CHO),這兩種產物都是工業常用的化學原料。反應式如下:

-----廣告,請繼續往下閱讀-----

要持續減少二氧化碳,就要持續發生上述還原反應,持續供給電子。不過,我們要怎麼讓電子快速又順利的補充到材料表面?這裡就開始涉及到半導體的核心問題:電子與電洞的產生、分離和傳輸

陳貴賢與團隊開發的複合光催化材料:ZnS/ZIS,是結合兩種奈米半導體材料,透過水熱法合成,將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,形成 0D-2D 結構的 ZnS/ZIS 複合物,就像製作巧克力豆餅乾,不過要複雜得多。

陳貴賢團隊將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,就好像做巧克力豆餅乾一樣,形成複合的異質半導體,做為光催化材料用途。左圖是示意圖,右圖是電子顯微鏡下的照片,Zn:In 比例為 1:0.46。
圖|研之有物(資料來源|Nano Energy

既然 ZnS/ZIS 是半導體,當受到光照之後,原來的價帶(valence band)電子會被光激發成導帶(conduction band)電子,原本價帶電子佔據的位置則留下一個空位,就是電洞。電子和電洞的遷移,就是半導體形成電流的原因,因此電子和電洞都稱為「載子」(charge carrier)

還記得上面的還原反應嗎?

-----廣告,請繼續往下閱讀-----

對光催化材料來說,為了在光照環境下把二氧化碳還原成乙醛和甲醇,必須獲得穩定的電子來源,材料內部要迅速補充電子到表面,因此:

照光產生的電荷載子數量越多越好;產生的電子和電洞要傾向分離,分得越遠越好;電子和電洞越快移動到表面參與反應越好。

載子輸送要快速穩定,首先照光產生的載子要多,就有更多電子和電洞參與反應。分離載子是為了避免復合,照光產生的電子和電洞很容易復合,一旦復合,等同於減少載子。再來是載子越快移動到表面越好,可以讓每次的氧化還原反應都是最佳效率。

尋找最有效的光催化材料

陳貴賢團隊總共做了 4 種不同比例的 ZnS/ZIS 光催化材料,依照 Zn:In 比例 1:0.12、1:0.26、1:0.46 和 1:0.99,分別標記為 ZnS/ZIS-1、ZnS/ZIS-2、ZnS/ZIS-3 和 ZnS/ZIS-4。其中,ZnS/ZIS-3 的光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇(如下圖)。

水熱法製備的 ZnS/ZIS-3 光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇。最右邊是將 ZnS 和 ZIS 簡單物理混合的對照組,沒有介面效應的輔助,催化效果不佳。
圖|研之有物(資料來源|Nano Energy

為了驗證光催化材料產生有效載子的效率,陳貴賢團隊計算了 ZnS/ZIS-3 的總 AEQ 值(apparent quantum efficiency),用來評估「照到光催化材料上的每顆光子數量,產生了多少實際參與催化反應的電子數」。測量之後,ZnS/ZIS-3 的 AEQ 值為 0.8%,量子效率比單獨的 ZnS 材料提高了將近 200 倍!

-----廣告,請繼續往下閱讀-----

這也是為什麼陳貴賢團隊要使用兩種不同的材料結合,因為單一半導體材料照光產生的電子和電洞有很高的復合機率,選擇兩種不同的半導體材料組合,讓兩種材料形成特殊的「能量階梯」就可以有效分離電子和電洞,並且把電子送到它該去的材料表面。

此外,使用兩種半導體材料的好處還有「二次激發電子到更高能階」,以符合光催化反應的能量門檻,自由電子掙脫 ZnS 的束縛之後,繼續往 ZIS 跑,光的能量會繼續把電子往上送到更高能級的材料表面,還原二氧化碳的反應在此發生。

Z 字形跑比較快!控制材料之間的微應變提升氧化還原效率

關於光催化材料的二次激發,陳貴賢提到:「材料低能階,然後光子進來後,把電子激發到高能階去做反應,太陽能電池也是這樣。但是呢,有時候沒那麼剛好,例如激發後的能階不夠高,雖然激發上去了,但電子沒有辦法跟二氧化碳做反應。那我把兩個材料拼在一起,電子上去以後又下來,然後再吸收第二個光子上去,那就變得很高了,高了以後它的反應效率就提升很多。」

如果我們把光催化材料的二次激發過程畫成示意圖,如下圖所示,電子在 ZnS 束縛區受到第一次光子的激發,變成自由電子,接著經過設計完善的材料介面,先降到較低的 ZIS 束縛區,受到第二次光子的激發,再次變成自由電子,跑到光催化材料的表面,和二氧化碳發生還原反應,將二氧化碳變成可再利用的乙醛和甲醇。

-----廣告,請繼續往下閱讀-----

看看電子走過的路,如果向左歪著頭看,是不是就是一個 Z 字呢?科學家把這個過程稱為「直接 Z 方案」(Direct Z-scheme)。「直接」的意思是,電子從 ZnS 跑到 ZIS 的過程,不需要再經過一個中間地帶,降低電子和電洞復合的機會。

為了將二氧化碳轉換成可用化學原料,電子在材料內部能階走 Z 字路徑,過程中受到光的二次激發,最後到達材料表面。電子參與還原反應,將二氧化碳變成乙醛和甲醇。電洞參與氧化反應,將水變成氧氣。
圖|研之有物(資料來源|Nano Energy

為什麼陳貴賢團隊設計的「直接 Z 方案」光催化材料,電子可以不需要中間的「轉接站」,直接轉移到另一個材料上呢?這裡也有一個巧思:不同材料之間的「微應變」

不同材料的晶體排列規律是不一樣的,當兩種材料接在一起時,接面處會發生「晶格不匹配」,也就是兩種材料的原子會互相卡到、晶格微微變形。但是,如果我們可以控制微應變(Strain)的程度,就可以控制兩種材料「能量階梯」的相對位置,微應變可以讓材料接面自動帶有「轉接站」的功能,進而形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。

總之,陳貴賢團隊開發的這套材料組合,是有微應變誘導的直接 Z 方案光催化材料,可做為未來量產光催化材料的研發設計參考,同時也是減碳的解方之一。

-----廣告,請繼續往下閱讀-----
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy

綠能趨勢——光催化材料未來可期

陳貴賢表示,目前表面科學和材料是中研院原分所的主要研究領域,他的實驗室選擇能源材料作為研究主軸,有太陽能電池和熱電材料,同時團隊也專注研究可還原二氧化碳的光催化材料,以及與燃料電池相關的催化劑。

陳貴賢看好將來能源材料的發展,因為在 2050 淨零排放之前,有愈來愈多企業紛紛加入「RE100 倡議」的行列,企業必須承諾最晚於 2030 年前使用 100% 再生能源。最著名案例是科技巨頭蘋果Google 和微軟等公司都已宣布其全球供應鏈將符合 RE100 的要求。其中,台積電為蘋果主要供應商,2020 年也加入 RE100,目前為臺灣再生能源的主要買家

可以預見,將來風能、太陽能與燃料電池的相關材料有其市場需求,而能夠減少二氧化碳的光催化材料,也將成為全球減碳的利器。陳貴賢提到,當前光催化材料還在基礎研究階段,目前的人工光合作用效率約 1%,接近大自然效率,而團隊希望提升到至少 5% 到 10% 以上,方能有其實用價值。

陳貴賢進一步強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值,不僅轉化後的燃料可以賣錢,處置二氧化碳原料亦可以收取負碳費用,是一種前所未有的概念。

陳貴賢強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值。
圖|研之有物

註解

  1. 根據 IPCC 的資料,如果要將全球暖化幅度控制在 +1.5 °C 以內,必須在 2050 年左右達到二氧化碳的淨零排放目標,同時也要大幅度降低非二氧化碳的溫室氣體排放,特別是甲烷。
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3617 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook