2

4
1

文字

分享

2
4
1

真的假的,世界上竟然有不需施打就能散播的疫苗?

羅夏_96
・2021/08/05 ・3408字 ・閱讀時間約 7 分鐘

在新冠肺炎的陰影之下,疫苗接種已是民眾每天都在談論的話題。不過你知道除了打針接種疫苗,也有所謂的「自我傳播疫苗」嗎?這類疫苗可以在接種給少數個體後,藉由這些個體將疫苗傳播給其他未接種的個體上Nuismer & Bull, 2020。接下來讓我們一起了解這種特殊的疫苗形式吧。

圖/Pixabay

野生動物也要打疫苗?

現在的公衛體系如此發達,要給人接種疫苗並不困難,那為何需要這種能「自我傳播」的疫苗呢?其實這種疫苗的施打對象並不是人類,而是野生動物。那為何要給野生動物施打疫苗呢,這就與「人畜共通傳染病」有關了。

許多重大傳染疾病的來源,是人畜共通傳染病,也就是可以經由動物傳染給人的傳染病。這些疾病的病原體原本只能感染動物,但隨著病原體在動物群體內不斷感染的同時,病原體也不斷在演化,最終病原體就演化出能感染人的能力。而當人與這些被感染的動物接觸後,往往就是疫情爆發的開端。從禽流感、AIDS、SARS、伊波拉到現在肆虐全球的新冠肺炎 雖然新冠肺炎是否源於野生動物仍有爭議,這些人畜共通傳染病都對人類的健康造成巨大的威脅。根據美國國際開發署U.S.Agency for International Development在 2009-2019 年間的研究顯示,有 1,000 多種可能導致人畜共通傳染病的新病毒在野生動物身上被發現。可以肯定的是,新冠肺炎絕不會是最後一個人畜共通傳染病,人類未來必定還會再遇到。

面對潛伏在野外的人畜共通傳染病的威脅,難道我們只能被動地應對嗎?其實針對這個隱憂,科學家就提出不少應對方案,而其中一個方法,就是給動物施打疫苗。只要能給動物施打疫苗,阻止病原體在動物間的傳播,就能大大降低病毒的演化與對人類的威脅了。不過講得容易,做的難〜

1 Up Life GIF by himHallows
圖/GIPHY

養殖動物我們還能逐一為其施打疫苗,但要給野生動物施打疫苗,就是非常艱鉅的任務了。過去曾有用誘捕給野生動物施打疫苗的方式,雖然這有一定的效果,但只適用能被誘捕的動物,而且這種方式很難在野生動物中達到群體免疫的效果。另外不少野生動物生活在偏遠地區,我們難以誘捕,況且就算真到了牠們的棲地,牠們可不會乖乖地捲起袖子排隊等著你施打疫苗。

-----廣告,請繼續往下閱讀-----

為了突破這些施打疫苗的限制,科學家就提出一個想法:製造一種能在野生動物之間自然擴散的自我傳播疫苗 (Self-disseminating vaccines)。而發表在 Nature Ecology & Evolution 的文章,就對自我傳播疫苗進行回顧(Nuismer & Bull, 2020)。

自我傳播疫苗的兩個類型

自我傳播疫苗主要分為兩類:可轉移疫苗 transferable vaccines傳播性疫苗transmissible vaccines,兩類疫苗都是希望藉由給少數個體施打疫苗後,讓疫苗能在野生動物群體間自然散播,以達到群體免疫的效果。不過這兩類疫苗的傳播方式並不相同,下面就分別介紹這兩類自我傳播疫苗。

可轉移疫苗

在一隻蝙蝠的毛皮塗上一些疫苗物質,當牠回到自己的棲息地,其他蝙蝠會因梳理該蝙蝠的毛皮而接觸到疫苗,藉此達到散播疫苗的目的。

可轉移疫苗示意。圖/Nature Ecology & Evolution

這個方法乍看之下傳播疫苗的效率並不高,不過根據計算,只要少數的個體攜帶可轉移疫苗,這種方式能讓足夠多的個體獲得免疫能力,從而根除病原體的。

-----廣告,請繼續往下閱讀-----

但光有理論不夠,作者另外找到格拉斯哥大學於 2017 年,在秘魯針對吸血蝙蝠群體進行的可轉移疫苗對的研究。該研究找了三個蝙蝠群體,每個群體至少都有 200 隻蝙蝠。他們在每個群體中 20 到 60 隻蝙蝠的背部塗上含螢光的生物物質,一旦其他蝙蝠沾到這些物質,牠們的毛髮也會發出螢光。一段時間後,研究團隊分析群體中發螢光的個體數量,結果顯示至少 84% 的蝙蝠都會發螢光。這個研究的結果若應用到真正的狂犬病可轉移疫苗上,有很大的機率能讓夠多的蝙蝠產生對狂犬病的免疫能力,從而可以減少狂犬病爆發的頻率、規模和持續時間Bakker et al., 2019

傳播性疫苗

此類疫苗由活的病原體經修飾弱化後製成。將疫苗施打在少數個體上,就能利用病原體本身的感染能力,在群體間造成大規模的傳播。同時病原體因經過修飾弱化,其感染後的症狀已大幅降低,不會對群體造成太多傷害。

傳播性疫苗示意。圖/Nature Ecology & Evolution

這個方法面對數量龐大的野生動物群體是理想的做法,但風險並不小。雖然是使用修飾後的弱化病原體,但一旦設計上稍有不慎,很可能會讓這個病原體在動物群體中演化成新型疾病。因此比起直接使用修飾的病原體,重組疫苗 recombinant vaccine 是更安全的選擇。

重組疫苗簡單說就是將病原體的基因放到對宿主無害的病毒中,這樣就能借助病毒將疫苗散播到群體中。如果病毒在散播過程中遺失了病原體的基因也沒關係,因為剩下的病毒載體也對宿主無害。

-----廣告,請繼續往下閱讀-----

在 1990 年代,馬德里動物健康研究中心的研究團隊,就曾測試過傳播性疫苗的效力。當時在西班牙一些小島上的野生兔子,正處在受致命出血性病毒感染的危機之中。研究團隊設計出重組疫苗,並將其散播在一個島上。一段時間後,研究團隊抽取當地兔子的血清進行分析,他們發現約一半的兔子其血清內都有能對抗出血性病毒的有效抗體,而且兔子並沒有出現其他副作用。顯示應用重組疫苗的傳播性疫苗,確實可行且有效(Torres et al., 2001)!

另外隨著分子生物技術的快速發展,現在我們已能精準設計出重組疫苗的使用期限,如此在給野生動物散播疫苗的同時,也能大幅降低病原體基因在疫苗中演化出有害突變的可能。

圖/Pixabay

使用自我散播疫苗的注意事項

雖然自我散播疫苗看起來是預防人畜共通傳染病的實用方法,但若真施行起來,仍有不少問題要克服。

首先是病原體預測的問題。前面提到美國國際開發署的研究顯示,在野外會造成人畜共通傳染病的可能病原體數量非常之多。我們要如何準確預測下一個可能引起人類大規模感染的病原體,並不容易。如果不能準確預測病原體,就無法知道該病原體的宿主——也就是野生動物群體,我們就難以設計出相對應的自我散播疫苗。

-----廣告,請繼續往下閱讀-----

不同野生動物的生活模式,會影響自我散播疫苗的使用。例如前面提到的可轉移疫苗,用在會為彼此理毛的蝙蝠或許適用,但其他動物若沒有這種親密的肢體接觸,這種方法就不適合了。因此必須先知道野生動物的生活模式,才能決定使用的疫苗種類與方式。

另外在將任何生物性物質釋放到自然前,安全與生態的考量是非常重要的。我們都不希望放出的自我散播疫苗,最終變成危害自然甚至是人類的殺手。

圖/pexel

縱使仍有許多困難要克服,但使用自我散播疫苗的吸引力日益增加中。這次肆虐全球的新冠肺炎疫情,不僅威脅人類的健康,更對社會與經濟造成難以估計的損失。如果能在事前就阻斷病毒在野生動物間的傳染,這個成本明顯比疫情大爆發對人類社會的影響更低,因此越來越多的國家和研究單位,投入大量的資金到自我散播疫苗的相關研究上。

俗話說:「危機就是轉機」。這次的新冠肺炎疫情讓人們意識到,面對潛伏於野外的人畜共通傳染病,我們不能再被動應對了。是時候主動出擊,將下一波可能造成大流行的病原體,用自我散播疫苗等方法將其隔絕!

-----廣告,請繼續往下閱讀-----

參考資料

  1. Nuismer, S.L., Bull, J.J. Self-disseminating vaccines to suppress zoonoses. Nat Ecol Evol 4, 1168–1173 (2020).
  2. 人畜共通傳染病
  3. Bakker KM, Rocke TE, Osorio JE, Abbott RC, Tello C, Carrera JE, Valderrama W, Shiva C, Falcon N, Streicker DG. Fluorescent biomarkers demonstrate prospects for spreadable vaccines to control disease transmission in wild bats. Nat Ecol Evol. 2019 Dec;3(12):1697-1704.
  4. Torres JM, Sánchez C, Ramírez MA, Morales M, Bárcena J, Ferrer J, Espuña E, Pagès-Manté A, Sánchez-Vizcaíno JM. First field trial of a transmissible recombinant vaccine against myxomatosis and rabbit hemorrhagic disease. Vaccine. 2001 Aug 14;19(31):4536-43.
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
羅夏_96
52 篇文章 ・ 883 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

2
0

文字

分享

0
2
0
地震之島的生存法則!921地震教育園區揭開台灣的防災祕密
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/20 ・4553字 ・閱讀時間約 9 分鐘

為什麼台灣會像坐在搖搖椅上,總是時不時地晃動?這個問題或許有些令人不安,但卻是我們生活在這片土地上的現實。根據氣象署統計,台灣每年有 40,000 次以上的地震,其中有感地震超過 1,000 次。2024年4月3日,花蓮的大地震發生後,台灣就經歷了超過 1,000 次餘震,這些數據被視覺化後形成的圖像,宛如台北101大樓般高聳穿雲,再次引發了全球對台灣地震頻繁性的關注。

地震發生後,許多外國媒體擔心半導體產業會受影響,但更讓他們稱奇的是,台灣竟然能在這麼大的地震之下,將傷害降到這麼低,並迅速恢復。不禁讓人想問,自從 25 年前的 921大地震以來,台灣經歷了哪些改變?哪些地方可能再發生大地震?如果只是遲早,我們該如何做好更萬全的準備?

要找到這些問題的答案,最合適的地點就在一座從地震遺跡中冒出的主題博物館:國立自然科學博物館的 921地震教育園區。

圖:跑道捕捉了地震的瞬間 / 圖片來源:劉志恆/青玥攝影

下一個大地震在哪、何時?先聽斷層說了什麼

1999年9月21日凌晨1點47分,台灣發生了一場規模7.3的大地震,震央在南投縣集集鎮,全台 5 萬棟房子遭震垮,罹難人數超過 2,400 人。其中,台中霧峰光復國中校區因車籠埔斷層通過,地面隆起2.6公尺,多棟校舍損毀。政府決定在此設立921地震教育園區,保留這段震撼人心的歷史,並作為防災教育的重要基地。園區內兩處地震遺跡依特性設置為「車籠埔斷層保存館」和「地震工程教育館」。

-----廣告,請繼續往下閱讀-----

車籠埔斷層保存館建於原操場位置,為了保存地表破裂及巨大抬升,所以整體設計不採用樑柱結構,而是由82根長12公尺、寬2.4公尺、重約10噸的預鑄預力混凝板組成,外觀為曲線造型,技術難度極高,屬國內外首見,並榮獲多項建築獎。而地震工程教育館保留了原光復國中受損校舍,讓民眾親眼見證地震的驚人破壞力,進一步強調建築結構與安全的重要性。毀損教室旁設有由園區與「國家地震工程研究中心」共同策劃的展示館,透過互動展示,讓參觀者親手操作,學習地震工程相關知識。

國立自然科學博物館地質學組研究員蔣正興博士表示,面積上,台灣是一個狹長的小島,卻擁有高達近4000公尺的山脈,彰顯了板塊激烈擠壓、地質活動極為活躍的背景。回顧過去一百年的地震歷史,從1906年的梅山地震、1935年的新竹-台中地震,到1999年的921大地震,都發生在台灣西部,與西部的活動斷層有密切關聯,震源位於淺層,加上人口密度較高,因此對台灣西部造成了嚴重的災情。

而台灣東部是板塊劇烈擠壓的區域,地震震源分佈更廣。與西部相比,雖然東部地震更頻繁,但由於人口密度相對較低,災情相對較少。此外,台灣東北部和外海也是地震多發區,尤其是菲律賓海板塊往北隱沒至歐亞板塊的隱沒地震帶,至沖繩海槽向北延伸,甚至可能影響到台北下方,發生直下型地震,這種地震因震源位於城市正下方,危害特別大,加上台北市房屋非常老舊,若發生直下型地震,災情將非常嚴重。

除了台北市,蔣正興博士指出在台灣西部,我們特別需要關注的就是彰化斷層的影響,該斷層曾於1848年發生巨大錯動。此外,我們也需要留意西南部的地震風險,如 1906 年的梅山地震。此兩條活動斷層距今皆已超過 100 年沒活動了。至於東部,因為存在眾多活動斷層,當然也需要持續注意。

-----廣告,請繼續往下閱讀-----

我們之所以擔心某些斷層,是因為這些區域可能已經累積了相當多的能量,一旦達到臨界點,就會釋放,進而引發地震。地質學家通常會沿著斷層挖掘,尋找過去地震的證據,如受構造擾動沉積物的變化,然後透過定年技術來確定地震發生的時間點,估算出斷層的地震週期,然而,這些數字的計算過程非常複雜,需要綜合大量數據。

挑戰在於,有些斷層的活動時間非常久遠,要找到活動證據並不容易。例如,1906年的梅山地震,即使不算久遠,但挖掘出相關斷層的具體位置仍然困難,更不用說那些數百年才活動一次的斷層,如台北的山腳斷層,因為上頭覆蓋了大量沉積物,要找到並研究這些斷層更加困難。

儘管我們很難預測哪個斷層會再次活動,我們仍然可以預先對這些構造做風險評估,從過往地震事件中找到應變之道。而 921 地震教育園區,就是那個可以發現應變之道的地方。

圖:北棟教室毀損區 / 圖片來源:劉志恆/青玥攝影

921 後的 25 年

在園區服務已 11 年的黃英哲擔任志工輔導員,常代表園區到各地進行地震防災宣導。他細數 921 之後,台灣進行的六大改革。制定災害防救法,取代了總統緊急命令。修訂了建築法規,推動斷層帶禁限建與傳統校舍建築改建。組建災難搜救隊伍,在面對未來災害時能更加自主應對。為保存文化資產,增設了歷史建築類別,確保具有保存價值的建築物得到妥善照料。

-----廣告,請繼續往下閱讀-----

最後,則是推行防災教育。黃英哲表示,除了在學校定期進行防災演練,提升防災意識外,更建立了921地震教育園區,不僅作為教育場所,也是跨部門合作的平台,例如與交通部氣象署、災害防救辦公室、教育部等單位合作,進行全面的防災教育。園區內保留了斷層線的舊址,讓遊客能夠直觀地了解地震的破壞力,最具可看性;然而除此之外,園區也是 921 地震相關文物和資料的重要儲存地,為未來的地震研究提供了寶貴的資源。

堪稱園區元老,在園區服務將近 19 年,主要負責日語解說工作的陳婉茹認為,園區最大的特色是保存了斷層造成的地景變化,如抬升的操場和毀壞的教室場景,讓造訪的每個人直觀地感受地震的威力,尤其是對於年輕的小朋友,即使他們沒有親身經歷過,也能透過這些真實的展示認識到地震帶來的危險與影響。

陳婉茹回憶,之前有爸媽帶著小學低年級的小朋友來參觀,原本小朋友並不認真聽講,到處跑來跑去,但當他看到隆起的操場,立刻大聲說這他在課本看過,後來便聚精會神地聽完 40 分鐘的解說。

圖:陳婉茹在第一線負責解說工作 / 圖片來源:921地震教育園區

除了每看必震撼的地景,園區也透過持續更新策展,邀請大家深入地震跟防災的各個面向。策展人黃惠瑛負責展示設計、活動規劃、教具設計等工作。她提到,去年推出的搜救犬特展和今年的「921震災啓示展」與她的個人經歷息息相關。921 大地震時的她還是一名台中女中的住宿生,當時她儘管驚恐,依舊背著腿軟的學姊下樓,讓她在策劃這些展覽時充滿了反思。

-----廣告,請繼續往下閱讀-----

在地震體驗平臺的設計中,黃惠瑛強調不僅要讓觀眾了解災害的破壞力,更希望觀眾能從中學到防災知識。她與設計師合作,一樓展示區採用了時光機的概念,運用輕鬆、童趣的風格,希望遊客保持積極心態。二樓的地震體驗平臺結合六軸震動臺和影片,讓遊客真實感受921地震的情境。她強調,這次展覽的目標是全民,設計上避免了血腥和悲傷的元素,旨在讓觀眾帶著正向的感受離開,並重視防災意識。

圖:地震體驗劇場 / 圖片來源:921地震教育園區

籌備今年展覽的最大挑戰是緊迫的時間。從五月開始,九月完成,為了迅速而有效地與設計師溝通,黃惠瑛使用了AI工具如ChatGPT與生成圖像工具,來加快與設計師溝通的過程。

圖:黃惠瑛與設計師於文件中討論設計/ 圖片來源:921地震教育園區

蔣正興博士說,當初學界建議在此設立地震教育園區,其中一位重要推手是法國地質學家安朔葉。他曾在台灣指導十位台灣博士生,這些博士後來成為地質研究的中堅力量。1999年921大地震後,安朔葉教授立刻趕到台灣,認為光復國中是全球研究斷層和地震的最佳觀察點,建議必須保存。為紀念園區今年成立20週年,在斷層館的展示更新中,便特別強調安朔葉的貢獻與當時的操場圖。

此外,作為 20 週年的相關活動,今年九月也將與日本野島斷層保存館簽署合作備忘錄(MOU),強化合作並展示台日合作歷史。另一重頭戲則是向日本兵庫縣人與自然博物館主任研究員加藤茂弘致贈感謝狀,感謝他不遺餘力,長期協助園區斷層保存館的剖面展品保存工作。

-----廣告,請繼續往下閱讀-----
右圖:法國巴黎居禮大學安朔葉教授。左圖:兵庫縣立人與自然博物館主任研究員加藤茂弘
/ 圖片來源:921地震教育園區

前事不忘,後事之師

盡力保存斷層跟受創校舍,只因不想再重蹈覆徹。蔣正興博士表示,921地震發生在車籠埔斷層,其錯動形式成為全球地質研究的典範,尤其是在研究斷層帶災害方面。統計數據顯示,距離車籠埔斷層約100公尺內,住在上盤的罹難率約為1%,而下盤則約為0.6%。這說明住在斷層附近,特別是上盤,是非常危險的。由於台灣主要是逆斷層活動,這一數據清楚告訴我們,在上盤區域建設居住區應特別小心。

2018年花蓮米崙斷層地震就是一個例證。

在921地震後,政府在斷層帶兩側劃設了「地質敏感區」。因為斷層活動週期較長,全球大部分地區難以測試劃設敏感區的有效性,但台灣不同,斷層活動十分頻繁。例如 1951 年,米崙斷層造成縱谷地震,規模達 7.3,僅隔 67 年後,在 2018 年再次發生花蓮地震,這在全球是罕見的,也因此 2016 年劃設的地質敏感區,在 2018 年的地震中便發現,的確更容易發生地表破裂與建築受損,驗證了地質敏感區劃設的有效性。

圖:黃英哲表示曾來園區參訪的兒童寄來的問候信,是他認真工作的動力 / 圖片來源:921地震教育園區

在過去的20年裡,921地震教育園區不僅見證了台灣在防災教育上的進步,也承載著無數來訪者的情感與記憶。每一處地震遺跡,每一項展示,都在默默提醒我們,那段傷痛歷史並未走遠。然而,我們對抗自然的力量,並非源自恐懼,而是源自對生命的尊重與守護。當你走進這座園區,感受那因地震而隆起的操場,或是走過曾經遭受重創的教室,你會發現,這不僅僅是歷史的展示,更是我們每一個人的責任與使命。

-----廣告,請繼續往下閱讀-----

來吧,今年九月,走進921地震教育園區,一起在這裡找尋對未來的啓示,為台灣的下一代共同築起一個更堅固、更安全的家園。

圖:今年九月,走進921地震教育園區 / 圖片來源:劉志恆/青玥攝影

延伸閱讀:
高風險? 家踩「斷層帶、地質敏感區」買房留意
「我摸到台灣的心臟!」法國地質學家安朔葉讓「池上斷層」揚名國際
百年驚奇-霧峰九二一地震教育園區|天下雜誌

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
208 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
多重宇宙真的存在?艾弗雷特三世(Hugh Everett III)的多世界詮釋
PanSci_96
・2024/07/28 ・2651字 ・閱讀時間約 5 分鐘

在前一篇我們聊到,為了反駁量子力學的機率詮釋和疊加態的說法,薛丁格提出著名的思想實驗:「薛丁格的貓」。既然貓在現實中不可能既生又死,所以量子理論一定有不夠完備的地方。

延伸閱讀:物理學四大神獸「薛丁格的貓」,其實是在嘲諷量子力學?物理學家對波函數機率詮釋的爭辯

然而,真的是這樣嗎?有沒有既符合量子理論又能解釋這個實驗的說法呢?

測量問題:量子系統的確定性

在量子力學中,量子系統的狀態在被測量前是不可確定的,所有可能狀態以機率的形式共存,這時系統處於所有狀態的疊加態。只有當我們進行測量時,系統才會變成某個特定狀態。

-----廣告,請繼續往下閱讀-----

例如,原子裡的電子並沒有一個確定的位置,它可能出現在任意地方,像波一樣散佈於空間中。當你測量它,它有一定機率出現在某處。愛因斯坦曾問:「是不是只有當你在看它的時候,月亮才在那兒呢?」對他而言,月亮不管有沒有人在看,都懸掛在天上,他認為量子系統應該也是如此,總是有個確定的狀態,只是我們還沒搞清楚而已。

而薛丁格在與愛因斯坦討論後提出「薛丁格的貓」思想實驗。薛丁格利用貓不可能處於既生又死的疊加態來質疑量子理論,雖然引起了話題,但並未成功反駁量子理論。

量子力學的理解不斷累積,我們知道了許多愛因斯坦和薛丁格當時不知道的事情,因此在某種程度上,回應他們的質疑已經不再是問題。

多世界詮釋:分岔的宇宙

1957 年,美國普林斯頓大學的博士生艾弗雷特三世(Hugh Everett III)提出了一個大膽的想法。他認為,宇宙的一切可以由單一個宇宙波函數(universal wave function)來描述,遵循量子力學的波動方程式。當我們進行測量時,例如檢查「薛丁格的貓」實驗結果,不同的子系統(如貓、毒藥瓶和測量者)會在交互作用下彼此連動,呈現出兩組狀態:貓死亡、毒藥瓶打破、測量者看到貓死亡,或貓活著、毒藥瓶沒破、測量者看到貓活著。

-----廣告,請繼續往下閱讀-----
艾弗雷特三世(Hugh Everett III)提出的多世界詮釋,之後成為許多科幻題材的靈感來源。圖/wikimedia

延伸閱讀:首創平行世界理論,艾弗雷特三世誕辰|科學史上的今天:11/11

測量會讓宇宙波函數分岔出兩個不同的分支,或說兩個平行世界。在其中一個宇宙,貓會活著;另一個宇宙,貓則會死亡。兩個宇宙都真實存在,沒有貓既死又活的事情。

在艾弗雷特的詮釋中,宇宙波函數隨著時間演化,就像一株大樹,每當有測量發生,就會分出不同的枝幹。每個枝幹代表一個獨立的平行世界或平行歷史,這就是著名的多世界詮釋(many-worlds interpretation)。歷史上每次的測量或選擇都會分裂出不同的世界,產生超級龐大的平行世界數量,彼此之間無法溝通或交換資訊。

雖然我們在這個世界買樂透沒中獎,但在另一個平行世界裡,我們可能是中頭獎的大富翁。多世界詮釋的優點是,它與量子理論沒有矛盾,能解決薛丁格的貓等悖論。

然而,儘管有人曾提出過驗證多世界詮釋的方式,現今的科技無法做到。艾弗雷特的博士論文沒有受到學界的多大關注,他之後改從事與物理研究無關的工作。直到1970年代,多世界詮釋才開始受到注意,並在艾弗雷特於1982年去世後,變得越來越受歡迎,甚至被科幻作品挪用。

-----廣告,請繼續往下閱讀-----

量子去相干:量子特性的喪失

量子去相干(quantum decoherence)是另一種解決方法。在雙狹縫干涉實驗中,同一波源的波從兩個狹縫出來並產生干涉條紋,代表它們存在相干性(相互干涉的性質)。若對其中一道狹縫的光波進行干擾,相干性會消失,干涉條紋不會出現,這就是去相干。

在量子力學裡,微觀粒子具有波的特性,也會發生相互干涉。波函數隨外在環境存在許多不同可能狀態,彼此相干。在電子的雙狹縫實驗中,電子以波的形式通過兩個狹縫,接著彼此干涉,形成干涉條紋。當我們測量電子的路徑,就會讓系統不同可能狀態的相干性消失,這就是量子去相干。

只要一個量子系統沒有完全孤立,與外界有交互作用,就算是干擾。想像將熱水和冷水倒在一起,熱水分子和冷水分子會互相作用,交換熱能和動量,最終達到平衡——一杯溫水。原本的每個熱水分子和冷水分子可以視為孤立系統,但當它們互相作用,改變狀態,就必須將整杯水視為整體。

量子系統的測量就像這個例子,測量者和量子系統之間的交互作用會導致量子系統與外界交換資訊,無法再用原本的波函數描述,最終逐漸喪失量子特性。

-----廣告,請繼續往下閱讀-----

現實中的量子去相干

在電子的雙狹縫干涉實驗中,若要知道電子通過雙狹縫時的確切位置和路徑,就必須偵測它,與之產生交互作用,導致量子去相干,干涉條紋消失。量子去相干的概念下,測量是一種交互作用,會引起量子去相干現象。隨著交互作用程度不同,量子系統會逐漸失去量子特性。

在現實世界中,所有量子系統都不可能完全孤立,與外界互動後,時間久了必然去相干。現實生活中的所有物體,雖然由量子系統組成,但當原子構築成更大的結構,會因彼此的交互作用喪失量子特性。因此,愛因斯坦問的「是不是只有當你在看它的時候,月亮才在那兒呢?」我們可以回答:「並不是這樣。」因為月亮已經不是量子系統。

薛丁格的貓不可能存在?

在「薛丁格的貓」實驗中,當作為量子系統的不穩定原子核被偵測到衰變後,交互作用就完成了,量子系統的狀態就確定了,貓也就死定了。此外,貓自身因量子去相干的關係,不會是量子系統,不可能同時處於生和死的狀態。

目前量子相關科技,如量子電腦、量子通訊等,在研發上遇到的困難,部分來自於量子去相干現象。量子電腦使用的量子位元必須保持在隔絕於外界、不受干擾的環境中,才能維持在量子態。一旦有風吹草動,量子位元可能出錯。隨著量子位元數目變多,要同時維持全部的量子態也變得更加困難,這些就是當前技術需要克服的挑戰了。

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1243 篇文章 ・ 2379 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
1

文字

分享

0
1
1
物理學四大神獸「薛丁格的貓」,其實是在嘲諷量子力學?物理學家對波函數機率詮釋的爭辯
PanSci_96
・2024/07/27 ・2152字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

在上一篇,我們探討了德布羅意提出物質波的概念,指出微觀粒子如電子也具有波的特性,這一點已被實驗所證實。

延伸閱讀:量子革命的開端——物質波的發現

然而,故事並未因此結束。隨著相關研究的深入,物理學家對物質波的啟示展開了激烈辯論。一些在量子力學發展初期做出卓越貢獻的物理學家並不認同量子理論的主流觀點,甚至提出了薛丁格的貓這一思想實驗,愛因斯坦也曾言道:「上帝不會擲骰子。」

究竟,發生了什麼事情呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從確定性到不確定性

在 20 世紀以前,古典物理學基於決定論,認為掌握某一時刻系統中所有物體的狀態,就能根據物理定律預測系統未來的演變。比如,當一顆蘋果從樹上掉下,我們可以根據物理法則計算出它掉到地面的時間和速度。

-----廣告,請繼續往下閱讀-----

然而,量子力學的觀點則不同,認為量子系統的行為無法完全確定,只能用機率描述。這一觀點源自德布羅意提出的物質波概念。

1926 年,奧地利物理學家薛丁格發表了薛丁格方程式,用來描述物質波的波函數。他成功地用該方程式解釋了氫原子的光譜能量,開啟了量子力學的新篇章。然而,波函數的物理意義一度難以被理解。

幾個月後,德國物理學家玻恩提出了波函數的機率詮釋,認為波函數與量子系統的狀態機率有關。當我們測量量子系統時,系統可能呈現不同狀態,其機率由波函數決定。這一觀點對當時的物理學界造成了巨大衝擊。

決定論的終結?波函數的機率詮釋與衝擊

玻恩的機率詮釋表明量子系統在測量後呈現的狀態無法事先確定,只能了解系統可能狀態的機率大小。這種理解框架革命性地挑戰了決定論的世界觀,部分物理學家因此感到不滿。德布羅意和薛丁格對此持保留態度,而愛因斯坦則認為量子力學還不夠完備,堅信「上帝不會擲骰子」。

-----廣告,請繼續往下閱讀-----

儘管有反對聲音,量子力學的機率詮釋在經過多次驗證後成為主流觀點。量子系統在測量前的狀態是未確定的,所有可能狀態以疊加形式同時存在,而測量後才會呈現其中一種。這一觀點對傳統的決定論提出了挑戰。

根據量子力學的主流說法,量子系統的狀態在測量之前是未確定的,所有可能狀態以疊加形式同時存在,測量後才會呈現其中一種。這就像在抽卡時,不同的卡都有一定機率會出現,但具體出現哪一張卡,要等抽取後才知道。

此外,在量子系統中,有些物理量無法同時精確測量,例如粒子的位置和動量,這稱為不確定性原理。對愛因斯坦等支持決定論的科學家來說,無法確切預測和精確測量物理系統狀態的量子理論是不夠完備的。他們認為在量子力學背後,應該還有一些隱藏的變量,導致我們無法完整預測和測量量子系統。

1935年,愛因斯坦在與薛丁格的通信中,提出一個想法來質疑量子理論的疊加態概念:想像一桶品質不穩定的火藥,經過一段時間後,可能會爆炸,也可能不會爆炸,那麼這桶火藥豈不是處於爆炸與未爆炸之間的疊加狀態?

-----廣告,請繼續往下閱讀-----

受到愛因斯坦的啟發,薛丁格進一步提出了「薛丁格的貓」思想實驗:把一隻貓放進鐵製房間,裡面有測量輻射的偵測器和少量放射性物質。放射性物質衰變是隨機的,處於衰變與未衰變的疊加態。如果放射性物質衰變,偵測器會觸發機關釋放毒氣,貓就會死亡;如果沒有衰變,貓則活著。整個系統的波函數處於貓活著和貓死亡的疊加狀態。

薛丁格提出了著名的思想實驗「薛丁格的貓」,反駁量子力學的疊加態說法。圖/Envato

這一思想實驗引發了人們對量子理論的深刻思考。薛丁格提出這個實驗,是為了強調量子疊加態的荒謬性,反對量子理論的測量詮釋。對愛因斯坦和薛丁格來說,物理真實應該是確定的,而不是機率和疊加的。

世界是決定論還是機率論?

薛丁格的貓思想實驗提出後,引發了更多的討論和質疑。例如:既然量子系統的狀態要測量之後才會確定,那麼貓的死活是要我們打開房間觀察後才會知道嗎?還是說,貓自己本身就可以是一個測量者呢?需要有一個生命意識去測量它嗎?到底,貓的死活是在什麼時候確定的呢?

儘管目前學界對測量問題還不算有一致公認的答案,但我們對量子力學的認知,已經比薛丁格那個時候增加許多,所以愛因斯坦和薛丁格對量子力學的質疑,以及薛丁格的貓引發的疑竇,我們已有能力給出大致確定但不完全塵埃落定的答覆。

-----廣告,請繼續往下閱讀-----

在下一集,我們將繼續探討這些問題,「上帝真的不玩骰子嗎?」

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1243 篇文章 ・ 2379 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。