Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

臉書詐騙為何總是那麼低能?

活躍星系核_96
・2012/12/17 ・1848字 ・閱讀時間約 3 分鐘 ・SR值 572 ・九年級

圖片取自Facebook

文 / 吳子青 (美國普渡大學農業與生物工程系博士生)、鄭國威

在臉書上每天都會出現的「幫我收手機簡訊」詐騙或是「攝影比賽投票」詐騙,或是「購物社團強制邀請加入」詐騙,網友早已習以為常且嗤之以鼻,認為這些詐騙手法一點創意都沒有,甚至還可以反過頭來調侃這些詐騙者。但網路詐騙者真的就如同大家認為的那樣笨嗎?如果我說這其實是一種更加高明的詐騙策略呢?

對網路詐騙者來說,行動的目的在於獲得報酬,但行動同時也必須付出成本,結果可能成功或失敗。基於這些性質我們可以利用ROC (Receiver Operator Characteristic) Curve來探討網路詐騙者策略對詐騙成功與否的效益探討。微軟研究院的Cormac Herley發表的「Why do Nigerian Scammers Say They are from Nigeria?」這篇論文提供了我們探討這個問題的切入方式。以下就該論文提出的推論方式來討論。

-----廣告,請繼續往下閱讀-----

這問題的前提規則是在所有的N人當中,有M人是能被成功詐騙獲得報酬G,稱之為「易受騙者」及其他「不易受騙者」兩種。則d = M/N 稱為可「被詐騙率」或「可被詐騙密度」。除此之外,網路詐騙者對一個人下手,無論成功與否都必須付出成本C,而且網路詐騙者無法事先獲知誰是「易受騙者」。

依照被詐騙的對象及是否成功將會有下列四種狀況發生:

  • True Positive: 網路詐騙者攻擊「易受騙者」,詐騙成功獲得報酬。
  • False Positive: 網路詐騙者攻擊 「不易受騙者」,詐騙失敗。
  • False Negative: 網路詐騙者忽略攻擊「易受騙者」,損失詐騙成功的報酬(失敗)。
  • True Negative: 網路詐騙者忽略攻擊 「不易受騙者」。

分別將Tp (True Positive rate)定義為被攻擊的「易受騙者」人數除以所有「易受騙者」人數,及Fp (False Positive rate)為被攻擊的「不易受騙者」人數除以所有「不易受騙者」人數,並利用下式代表網路詐騙者對一群人進行攻擊是否能成功,或獲取多少報酬:

為了更方便探討攻擊人數對網路詐騙者的獲利與否, 我們將式(1)化成式(2)的不等式:

-----廣告,請繼續往下閱讀-----

式(2)描述了 「可被詐騙密度 d 」和網路攻擊的成本及獲利間的關係。舉例來說:「可被詐騙密度」 = 1% 代表在100人中有1人是「易受騙者」,而根據式(2),如果網路詐騙者攻擊這100人,則獲利G必須要比詐騙成本C高出100倍,網路詐騙者才能從中獲利,或者必須要將詐騙成本儘量降低至獲利的1/100。

我們藉著ROC Curve也去探討網路詐騙者的攻擊策略效益分析。如圖1所示,通常水平座標為False Positive rate而垂直座標為True Positive rate。圖上的紅色曲線上的每一點代表網路詐騙者的某一種策略,例如(0.2, 0.85)代表了詐騙者的某種攻擊策略,而此種策略能成功的騙到 85% 「易受騙者」而獲利,但同時也無效的攻擊了 「不易受騙者」中20%的人而付出額外的成本。

無論在曲線上的哪一點,都必須權衡於 True Positive 的獲益但同時承受False Positive的成本付出。最佳的策略(網路詐騙方式)座落在紅色曲線上的45度角切線的點,或稱為OOP (最佳操作點,Optimal Operating Point), 並注意OOP決定於「可被詐騙密度 d」 = M/N。當從OOP點往右方曲線移動時,雖然成功詐騙的人數稍增,但無效詐騙了「不易受騙者」的人數增加很多,在這結論下我們可以發現,要攻擊的人數並非越多越好,選擇適當的人數或對象(「易受騙者」)去進行網路詐騙所獲得的獲利更高,也因此網路詐騙者通常會擬定某些策略去篩選容易詐騙的人。

對網路詐騙者來說,轉寄信、盜用臉書帳號是成本很低,並且能同時攻擊數量相當大對象的詐騙策略,聽起來似乎是相當有效的攻擊方式,但是一開始有人上鉤,就得專人聯繫,並逐步引導至最終匯款,或其他可以盜取利益的步驟,過程很繁複、成本很高。如果一開始釣上來的人相對來說警覺性較高,很可能在中間的其他過程中就察覺詐騙或中止交易的話,那詐騙者投注的成本就浪費了。這過程其實就相對於ROC Curve圖上OOP點右方的點,雖然攻擊人數多並且能有效詐騙到不少的「易受騙者」,但增加速度遠遠不及高False positive rate無效攻擊所增加的成本。

-----廣告,請繼續往下閱讀-----

相較之下,當詐騙者選擇適當的篩選策略有效選出「易受騙者」,降低攻擊人數,雖然因此攻擊到「易受騙者」的目標較少,但False positive rate變得非常的低,只要付出有限的攻擊成本。就能相當有效地透過詐騙手段獲利。網路詐騙者用很低能、甚至重複的爛梗來騙我們,為得是找到真正低能,或是非常沒有戒心、欠缺其他社會網絡支援的人。只有這樣的人才會從一開始上鉤,乃至於到後來的許多步驟都照著詐騙者的指示或誘導去做,讓詐騙者獲得利益,減少詐騙者的成本。

所以,其實那些看似最愚笨的網路詐騙手法,其實才是真正高明的手段呢!

參考資料:
Why do Nigerian Scammers Say They are from Nigeria?
为什么诈骗短信看上去那么弱智?

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
聊八卦可以防止我們被朋友搭便車、詐騙?——《人類文明》
天下文化_96
・2024/06/17 ・1337字 ・閱讀時間約 2 分鐘

間接互惠的要件之一:聊八卦

間接互惠(indirect reciprocity)的概念認為,受益者並不是直接回報給同一位利他的施恩者,而是會把恩惠轉給其他人。A 幫助 B,B 再幫助 C,C 再幫助 D,依此類推。於是,恩惠就能在社群裡傳出去,遲早也能回到 A 身上。種下的因,總有一天能得到最後的果。

而且這還能談到下一個層次:如果有個 Z,在 A 幫助 B 時,親眼見證了這件事,發現 A 是個慷慨的好人,他也會因為想和 A 建立關係,所以願意幫助 A。於是,就算這兩個人無法符合直接互惠所需要的「後會有期」條件,也能因為整個群體的利他行為而受益。樂於助人,自己就更可能得到幫助,至於那些不想幫助別人、只想貪小便宜的人,則是可能遭到懲罰或受到排擠。像這樣的間接互惠,是人類一種格外複雜的合作形式,需要兩項其他動物都辦不到的條件。

第一項條件是,不管互動雙方的行為是慷慨是自私,除了需要有目擊者親眼看到,還必須能把這項寶貴的資訊,分享到整個群體共有的資料池。也就是說,社群成員得愛聊八卦才行。如果大家都能知道某個人不值得信任、總是只接受別人幫助卻都不回報,等到下次這個人又碰上麻煩,社群成員就不會再伸出援手。

英文有句諺語說「騙子發不了財」(cheats never prosper),但不能說完全正確:騙子常常在短時間內還是能得逞,特別是在那些規模比較大、大家彼此比較不認識的社群;只是遲早仍然會東窗事發,讓自己名聲掃地。所以,想讓間接互惠的機制不被那些只想貪小便宜的人搞垮,聊八卦就是一個關鍵的必備條件,而且無論是營火旁、或是茶水間,人類實在是哪裡都能聊。事實上,相較於其他靈長類動物是用理毛之類的活動來建立關係,人類是以閒嗑牙、聊八卦取代了這些活動。

-----廣告,請繼續往下閱讀-----
想讓間接互惠的機制不被那些只想貪小便宜的人搞垮,聊八卦就是一個關鍵的必備條件!圖/envato

像這樣把個別成員的行為,拿來在社群裡大談特談(就像是一個由閒聊建立起的社群網路),就會打造出一套名聲系統,可用來判斷適不適合試著和某個人合作。某人對待他人慷慨大方,就能建立良好的名聲;老愛占別人便宜,也就會惡名遠揚,讓人知道以後可得敬而遠之。行為友善的人,其他人在未來幫助他們的機率也會比較高,於是在天擇的機制裡就能占點上風。所以說到頭來,仍是演化塑造了人類的心理,讓我們在意自己的名聲,聊八卦就成了確保大家別心存僥倖的機制。

在一個會聊八卦的社會裡,生活的第一守則就是要小心自己做的事;或者更重要的是,要小心自己做的事給別人的觀感。於是,人類社會也就成了一個人人都在猜測別人想法的社會——須推斷別人的動機與態度,評估自己的行為在他人眼中的樣貌,好維護自己在外的名聲。我們所謂的「良心」就是這樣的產物之一:內在的這股聲音,警告我們可能有人在看,要我們想想別人可能的觀感,好讓自己免受社會的制裁。

——本文摘自《人類文明:生物機制如何塑造世界史》,2024 年 05 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
0

文字

分享

0
2
0
網路交到壞朋友?網路詐騙如何博取你的信任——《脫癮而出不迷網》
圓神出版‧書是活的_96
・2024/04/23 ・3552字 ・閱讀時間約 7 分鐘

這世代的年輕孩子,隨便一位都比我們大人更精熟網路及數位裝置的操作;但面對網路上無所不在的陷阱,腦袋並沒有因此進化得更靈光。

當你以為壞人都藏在社區附近的陰暗角落時,專家正在警告,潛藏在虛擬世界中的詐騙與剝削,才是你真正該提防的。

網路陷阱:誘騙、色情與性剝削

圖/envato

孩子是如何上鉤的?

先來聽聽宇岩的故事吧!

宇岩是個國二男生,在班上成績中上,行為大致循規蹈矩。和大部分的同學一樣,每天會上網玩一下線上遊戲。他在線上遊戲中,認識了一位網友小芸。因為幾次合作很有默契,小芸主動提議互相加 line,以方便聯繫。

-----廣告,請繼續往下閱讀-----

日後,小芸與宇岩就常在 line 上聊天,一開始是聊些與遊戲攻略有關的事,後來,聊及生活中的瑣事。小芸說,她是個高中生,功課壓力大,父母工作忙碌,不太關心她,她常覺得很寂寞。她覺得能和宇岩聊天很開心,希望宇岩當她的男朋友。

有一次,小芸問宇岩有沒有看過女生自慰,宇岩覺得不太對勁,但心中莫名興奮。後來,小芸時常提起一些性方面的話題,也開始傳一些露骨的畫面給宇岩,說是自己胸部、臀部等私密部位的照片。小芸問宇岩想看更多嗎?宇岩當然想!小芸要宇岩也傳張自己裸露生殖器官的照片過去,才要讓宇岩看更多。宇岩不疑有他,既然是男女朋友,應該沒關係,於是照辦了。

後來,小芸好幾次要求宇岩幫她買遊戲點數,但宇岩說自己身上沒那麼多錢。小芸卻生氣地抱怨宇岩一點都不在乎她,宇岩只好偷拿父母的錢。幾次之後,宇岩感到很不安,鄭重地拒絕小芸的要求,但她卻說:「別忘了,我手上有你的裸照喔!」

宇岩這才意識到,對方也許一開始,就不懷好意。事到如今只好硬著頭皮,向父母全盤說出這些事情,請父母出面解決。

-----廣告,請繼續往下閱讀-----

如果宇岩沒有向大人求助,接下來會發生什麼事呢?

那位名為小芸的高中生網友,肯定會對他糾纏不已,繼續索討更多的金錢,進而要求他交出帳號密碼、家人的個資,或者出賣朋友來「抓交替」。如果宇岩不從,就威脅公開裸照,讓他的聲譽不保,宇岩只能任對方予取予求。

網路誘騙的方式推陳出新,大多都是利用人性的好奇、貪婪或恐懼心態,取得受害者的個資或私密影像,進而抓住把柄,再藉此要脅,逼你就範。詐騙者常是亂槍打鳥,在各種有聊天功能的網路平臺上隨意搭訕,利用兒童或青少年的好奇、同情心或想結交朋友的渴望,逐漸取得信任,再讓你一步一步地走進預先設好的圈套中。

二○二○年南韓媒體披露震驚社會的「N 號房事件」,主嫌在網路上經營類似聊天室的「房間」,每個「房間」都有編號。會員付費後,依照付費多寡,可以進到不同房間裡觀看女性裸露的不雅影像。房間裡的主角有許多是兒童或青少年,影片內容包含了性侵、性虐待等不堪入目的情節,甚至有的以直播的形式供會員觀賞。

-----廣告,請繼續往下閱讀-----

這起駭人聽聞的性剝削事件,其實已經持續了數年之久,受害少女不計其數,凸顯了網路色情與誘騙氾濫的問題。究竟,這些不幸的孩子,是怎麼落入魔爪的呢?主嫌利用涉世未深的少女想快速賺錢的渴望,在網路上發布高薪兼職廣告,吸引許多有金錢需求的少女;主嫌再進一步要求他們提供個人資料或隱私裸照。如此,主嫌等於握有被害者的把柄了,便進一步要求少女錄下更多不雅影片,甚至約出來予以性侵。被害少女大多擔心自己的名譽不保,不敢不從,只能任憑主嫌擺布。事後有受害者向媒體表示,當時以為只要提供清涼照片,就能獲取大筆金錢,或者,以為只是單純的援交,沒想到,卻落到這般下場。

圖/envato

以網路做為誘騙或性剝削工具的事件在國內也時有所聞。不久之前,有位十四歲少女,在網路上認識三十一歲犯嫌。犯嫌以少女才華洋溢,想栽培她發展演藝事業為理由,哄騙少女離家,再把她囚禁於事先打造的夾層密室中。幸好警方快速偵破此案,少女得以平安返家。後來得知犯嫌專挑家境清寒的未成年少女下手,利用少女懵懂無知且一心致富的心態,誘騙上鉤。

復仇式色情

另一個值得關注的網路安全問題,是「復仇式色情」,常發生在情侶之間。

舉個常見的校園案例,小華與小明在學校社團中認識並交往,也常在校園中大方放閃。過一陣子,傳出兩人分手的消息。隔天,全校議論紛紛,原來,小華的私密影片被放到網路上瘋傳。才一個晚上,幾乎全校同學都看過這段影片,連別的學校的學生都知道這件事。

-----廣告,請繼續往下閱讀-----

後來,學校調查得知,是小明不滿小華提出分手,心有不甘,便決定在網路上公開小華之前傳來的私密影片,以及兩人親熱時的影像。他決定來個玉石俱焚,做為報復。小華因此心理嚴重受創,她的世界在一夕之間崩解。一方面,光想到不計其數的同學正看著自己的身體品頭論足,覺得快要崩潰了。後來,又聽到同學的閒言閒語:「誰叫她當初要拍這些影片?」「是她自己活該!」「她就自己犯賤呀!」之類的話語,又是二度傷害。

我們確實很少考慮到以數位形式保存的資料,不論是聲音、圖片或影片,是如此容易被複製並散播,一旦放到網路上,就全面失控了。熱戀中的情侶,愛得死去活來,恨不得把自己的一切,毫無保留地獻給對方。萬萬沒想到分手後,那些當初「愛的證明」,竟成了對方遂行報復的武器。

保護個人資訊安全

我們不希望這樣的事件再度發生,但類似事件卻層出不窮。

為了避免孩子成為下一個受害者,建議家長可以善加利用這類新聞事件,與孩子討論網路安全與自我保護的話題。你需要明確地讓孩子知道一個觀念:「網路上是沒有祕密的」,所有的隱私都有被公開的可能,不只不該把私密資料放在網路上,更不可以告知任何人,包括信任的好朋友也是。

-----廣告,請繼續往下閱讀-----

你或許可以這麼做,來保護孩子的個人資料與人身安全:

(一)如果可以的話,在孩子法定成年前,由你代為管理孩子的任何網路帳號。若孩子要新增或修改帳號內容,都需經過你的同意或由你代為操作。同時,定期為孩子更改帳戶密碼,避免遭駭。

(二)確保孩子接觸的網路內容符合年齡分級,盡可能不讓孩子接觸到風險性高或隱私控管不佳的網站。就算是一些常見的官方網站,若孩子需要輸入個人資料(姓名、身分證字號、住址、電話等)前,都需經過你的審核並同意。

(三)監督孩子的網路動態與行為。年紀較小的孩子,你需要知道他每次上網的內容,而大一點的孩子,你可以給予多一點的信任,但若察覺孩子出現任何異樣,仍該立即檢查帳戶,了解他在網路上是否惹上麻煩了。

-----廣告,請繼續往下閱讀-----

(四)要求孩子養成「登出」的習慣。不論是在家中或使用外面的公用電腦,使用完畢一定要記得「登出」。要求孩子將「下次自動登入」的選項取消勾選,並選擇不讓瀏覽器存取帳戶資訊。

(五)時常提醒孩子,謹慎提防在網路上遇到的任何人,陌生人或認識的朋友師長亦然。告訴孩子,如果與網友互動時有任何不舒服,請相信自己的直覺,立刻終止互動,並向大人求助。請讓孩子知道你會幫助他,而不會責備他。

(六)提醒孩子「天下沒有那麼好的事!」如果有什麼好運、機會或財富從天而降,宣稱能輕鬆致富或讓你飛黃騰達,通常有詐,應立刻提高警覺。

(七)若有發現任何涉及色情、誘騙或性剝削的網站,請向相關單位檢舉或通報。臺灣展翅協會長期關注兒少上網安全問題,你可以進入其建置的「Web547」網站中檢舉不法網站或不當資訊。

-----廣告,請繼續往下閱讀-----

至於,如何防範「復仇式色情」呢?

最簡單的方式,不是別把私密影像傳給對方,而是,根本不要拍下這類影像,連留著自己欣賞,都盡可能避免。再重申一次,所有以數位形式保存的內容,都能輕易被複製與流傳。不過,對方可能會因此抱怨:「不傳給我看,就是不夠愛我。」請教導孩子如何回應伴侶的情感勒索:「我認為,我們之間的愛情,不需要透過這種方式來證明。如果你愛我的話,請你尊重我。」 讓孩子知道,以尊重為前提的親密關係,才是健康的。如果對方仍死纏爛打,那麼,或許該認真考慮,是否還要繼續這段關係了。這是情感教育的一部分,而情感教育的核心,就是尊重自己與尊重他人。

——本文摘自《脫癮而出不迷網》,2022 年 1 月,圓神出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

圓神出版‧書是活的_96
13 篇文章 ・ 3 位粉絲
書是活的,他走來溫柔地貼近你,他不在意你在背後談論他,也不在意你劈腿好幾本。 這是一種愛吧。 圓神書活網 www.booklife.com.tw