2

19
4

文字

分享

2
19
4

穿著人造皮革才是環保時尚人?從電影《時尚惡女:庫伊拉》看人造皮革對環境的危害

ffr_96
・2021/06/23 ・2776字 ・閱讀時間約 5 分鐘

電影中的庫伊拉,穿著厚重白色皮草,踩著紅色高跟鞋,盛氣凌人的模樣令人印象深刻。在電影《101 忠狗》中,他居然提議要收購 15 隻剛出生的小狗並做成狗皮大衣!

在如今動物保護意識高漲的社會氛圍中,許多時尚品牌都拒絕使用天然皮草作為服飾和配件的原料。除此之外,許多新聞媒體報導,飼養場裡的水獺、銀貂、兔子等動物被豢養在非常惡劣的環境。空間極為狹小,導致四肢無法正常伸展而變形、排泄物都堆積在籠子下方,惡臭無比、長期累積的恐懼讓動物們只要看見有人靠近,便會退縮到角落。

以誇張皮草著稱的迪士尼角色庫伊拉。圖/giphy.com

除此之外,殘忍的取皮過程也讓人頭皮發麻(上網 Google 就知道了,超可怕!晚上會做惡夢!),諸如此類的場景被社會大眾看見後, 便更加鼓吹天然皮草的不正當性,甚至有時尚名模為此喊出「I’d Rather Go Naked Than Wear Fur 」 的口號。逐漸地,隨著時代的推進和觀念的轉變,取而代之的是人造皮革的起飛。

雖然人造皮革的耐用性不比天然皮革,但是仍擁有許多天然皮革沒有的優點,例如:重量較輕、價格便宜、品質均一、花紋以及樣式較為多元等等,讓人造皮革逐漸的在時尚產業佔有一席之地。

人造皮革的發明減少了動物的苦楚,人類的文明也有了一大躍進,似乎解決解決了一大問題。但我們很可能忽略了人造皮革帶來的危害。

人造皮革是什麼?

人造皮革是一種「高分子材料」,在某些產品的包裝,我們會看到成分標示上寫著「聚 XXXXX」的成分,這些「聚 XXXXX」的成分都能統稱為高分子材料。

從微觀角度來看,高分子 (polymer) 是非常多個單體 (monomer) 透過化學反應,聚合在一起所形成的巨大分子。例如,葡萄糖是單體,而澱粉是高分子。葡萄糖透過化學反應形成鍵結,將葡萄糖分子串聯在一起,並形成澱粉。所以,如果把澱粉顆粒放大來看,會發現裡面聚集非常多長鍊的葡萄糖。

高分子材料的分子量可介於幾千到幾百萬,不同原料和不同分子量的高分子在機械性質(例如:硬度、彈性)或者應用範疇上會有所差異。市場上最常見的兩種人工皮革材料,是聚氨脂 (PU) 以及聚氯乙烯 (PVC) 。聚氨脂 (PU) 的機械強度高、耐磨損性佳,因此經常使用在輪胎、鞋底。而聚氯乙烯 (PVC) 由於便宜且易於加工,因此產品種類非常多,從保鮮膜、水管、玩具等等都可以藉由聚氯乙烯 (PVC) 生產而得。透過製程的設計,這兩種原料所合成的皮革,觸感和真皮最為相似,因此被廣泛使用。

用 PVC 材質製作的黑色皮褲。圖/wikimedia

在工業上,單體 (monomer) 原本是粉末的型態,必須透過一連串的化學反應,才能把單體一個一個串聯起來,把原本粉末的狀態轉變成人造皮革上的樹酯層。工人會將粉末倒入鍋爐、加入化學溶劑,並且根據最終產品的需求,例如:觸感、柔軟度、光澤等等,加入不同的添加劑,形成高分子溶液 (樹脂層凝固前的前身) ,最後再藉由自動化設備進行一連串的製程,完成皮革的製作。而這些添加物與化學溶劑,正是危害環境和人體的主要原因。

怎麼做出人造皮革?

人造皮革主要是由三個部分組成:基底層、黏著劑以及樹脂層 (PU 以及 PVC 等)。工廠所製造的 PU 以及 PVC 是人造皮革的最外層。

左邊由上至下分別為基底層、黏著劑以及樹酯層,右邊則為製作而成的人工皮革。
圖/castingpapers.com

在製程的一開始,我們在機台上進行「塗布」,作為皮革的基底層。烘乾後,在基底層上方「上糊」,意即把高分子溶液 ( 單體粉末、化學溶劑、可塑劑 (plasticizer)、穩定劑 (stabilizer) 和黏著劑的混合溶液 ) 塗在基底層上方,形成皮革最主要的樹脂層,此時的皮革已經完成了大半。接下來,陸續進行再次「烘乾」、「印刷」以及「押花揉紋」等等程序,就完成了人造皮革。在這裡要特別注意的是,幾乎每個步驟都會產生有毒氣體以及殘留有害物質在皮革當中。

人造皮革的製作流程圖。圖/產業減廢與資源化(作者:陳有志,出版年份:2018,第 108 頁)

那些生產過程中,不可忽視的毒害

舉例來說,無論是濕式或是乾式製程,高分子溶液最常使用的溶劑是二甲基甲醯胺 (N,N Dimethylformamide, DMF)。對於大量暴露在 DMF 溶劑下的工人來說,可能會造成頭暈、嘔吐等等身體不適的症狀。而且,根據台灣及韓國的學術機構研究,在濕式合成革廠中,有超過三成的工人體內 DMF 的含量是超過法令規範,對於勞工安全造成非常大的威脅。除此之外,極性高的特性使得它難以揮發,必須用大量的清水進行清洗,造成能源的消耗以及廢水的排放,對環境的傷害不可忽視。

另外,可塑劑 ( plasticizer ) 的添加把原本 PU 和 PVC 從又脆又硬的塑膠轉變成了柔軟的皮革。常見的可塑劑有鄰苯二甲酸二 (2 – 乙基己基) 酯 (Di ( 2 – ethylhexyl ) phthalate, DEHP),許多研究都指出高劑量的 DEHP 對人體的肝臟等器官造成危害。美國衛生與健康服務部 (Department  of Health and Human Services, DHHS) 也建議 DEHP 可被歸類為人類致癌物質。

人造皮革的誕生雖然減少了動物的苦痛,卻也衍生出對人體及環境的危害問題。圖/Pexels

在 PVC 皮革中,由於單體的不穩定性,因此必須添加穩定劑 (stabilizer) 來防止皮革受到光線照射後釋出氯自由基,造成皮革的崩解。而常見的穩定劑有鉛、鋅等等的重金屬,對於環境和人體都有一定的影響。最後,當大量 PVC 皮革進入焚化爐,會產生大量 HCl 氣體和戴奧辛 (Dioxins) ,這些物質都會對呼吸道系統等產生一定的傷害。以上提到許多皮革製程對於人體以及環境的威脅,除此之外,PVC 和 PU 等高分子也屬於石化產業,在眼下,如果繼續使用石化原料做為皮革的來源,在未來的日子,當石油能源枯竭後,產業是否受到影響?

人造皮革的利與弊,該如何取捨?

雖然,科技的進步讓皮革的製作成本大幅下降,而且讓動物們免於不人道的虐待,但是,工業的製程卻讓人體和環境暴露在有害物質當中。雖然目前,工業上已推出汙染較低的的製程,但是生產工藝和設備還不夠普及,仍然無法完全取代傳統的生產模式。在高度工業化的 21 世紀,要讓生產效率、成本、利潤以及人類福祉達到平衡確實是件不容易的任務。希望在未來,工廠所採用的製程把對工人、消費者和環境的傷害降到最低,在這之前,除了企業要秉持社會責任,避免出售有害物質超標的商品,政府機關更應該為民眾嚴格把關。

參考資料:

  1. PU、PVC 對人體的威脅
  2. DEHP 應列為致癌物質

 

文章難易度
所有討論 2

1

5
0

文字

分享

1
5
0

怕熱的你可以躲在冷氣房吃冰,怕熱的高山植物該怎麽辦?

Iyusungu Su
・2021/07/26 ・2971字 ・閱讀時間約 6 分鐘

像島嶼一樣的高山

不知不覺夏天即將來臨,炎熱的天氣常常讓人受不了,只想整天躲在冷氣房中吹冷氣喝冰涼的飲料降溫,不過人類覺得熱可以往比較涼快的地方跑,想喝水就有水可以喝。植物呢?如果植物覺得熱或者口渴會發生什麼樣的事情?

隨著全球暖化,全世界的高山植群生態系受到非常大的威脅。其實,高山環境可以提供一些喜歡寒冷溫度的植物生長,如同一個島嶼在一片汪洋中提供一片陸地給陸生生物棲息空間一樣。相信大家都知道氣候變遷造成全球暖化,全球溫度逐漸上升,使得極圈冰山融化入海中,導致海平面上升,陸地面積將會減少,影響了陸地生物的生存空間。一樣的事情也發生在高山生態系中,且更為直接,如圖 1,假設原本年均溫 5℃ 的等溫線在海拔 3,000m 處,但因為全球暖化氣溫升高,等溫線向上移動至海拔 3,200m 處,等於適應年均溫 5℃ 以下的植物可以生活的空間就越來越被限縮了,生存也將遭遇危機。

圖 1 高山生態系受全球暖化影響,生存空間限縮。圖/作者自製

而原本是喜歡冷的高山植物居住的區域,因為溫度上升,讓原本住在海拔比較低的這些可以適應較熱溫度的物種可以往更高海拔的區域移動,整個區域喜歡熱的植物就會越來越多,稱為植群嗜熱化 (thermophilization) 現象。

高山植物的珍貴資源:水分

水分在高山上同樣是非常重要的環境因子,高山上土壤層淺薄,水分儲存不易,在高山上春季植物發育所需水分很大一部分來自於冬季融雪產生的水分,而全球暖化會導致高山上積雪量減少,進而導致高山上水分儲存減少,且高溫會導致水分蒸發量增加,可能會影響部分對水分需求比較大的物種生存。

山土壤層淺薄,水分儲存不易,高山植物發育所需水分,很大一部分來自於冬季融雪。圖/Pexels

簡而言之,在山上住著一群怕熱且需要喝水的植物,而因為全球暖化的緣故,他們一直往更高的地方找涼快的地方躲,且山上能喝到的水以及他們可以生活的地方已經越來越少了,同時他們原本生活的空間被比較不怕熱也比較不需要水的植物佔據,整個高山耐熱耐旱的植物也越來越多。

世界高山植群組成變化

世界上高山眾多,而臺灣更是一個多山之島,高於海拔 3,000m 的山就超過 200座,而在其他國家以及臺灣是否有發生高山植群逐漸朝向耐熱與耐旱的物種變化的現象呢?

不同的研究團隊在世界各地高山做了許多植群變化之研究。圖/Pexels

Gottfried et al. (2012) 在歐洲阿爾卑斯山做了相當多的研究,他們發現歐洲大陸60 座山頭樣區之植物組成在 2001 – 2008 年間嗜熱性的低海拔物種普遍顯著增加,而較高海拔的物種減少。且在歐洲大部分高山地區嗜熱化程度與溫度上升程度成正比,進而導致原生於較低海拔物種向上遷移。Hamid et al. (2020) 在喜馬拉雅山區使用嗜熱指標分析也發現隨著溫度逐漸升高,原生較低海拔物種近年於高海拔山區優勢度逐漸增加。在瑞士的研究也發現因為低溫對物種限制減弱,使山頂區域新增 15 – 21 種原生於較低海拔的物種,且原本有耐寒優勢的物種逐漸被淘汰 (Wipf et al., 2017)。

臺灣的高山植群變化是否相同?

在臺灣目前總共完成六座高海拔樣區山頭的第三次複查,資料共橫跨十年,在這十年間高山上溫度明顯上升,整體平均每年約上升約 0.045℃ (林政道等,2019)。此上升幅度較 IPCC (2020) 提出的北美西部、歐洲阿爾卑斯山和亞洲高山地區平均每年上升 0.03 ± 0.02°C 更快。在降水量變化方面,近十年年降水量低於長期平均線的年份也比較多,過去研究表示在臺灣地區春季降水量自 1990 年代起呈現下降趨勢,而梅雨季節降水量在近 50 年呈現緩慢下降,有相同趨勢,且整體水分環境是越來越乾的 (周佳,2017)。

這樣的環境變化之下,我們大部分高山樣區的植群嗜熱化程度在這十年之間有些微的提升,但皆不顯著 (林政道等,2020),意思是說我們的高山植群嗜熱化還是有發生,但是不明顯。這樣的現象與 Gigauri et al. (2016) 的研究有類似的結果,他們在 2001 – 2008 年於高加索中部高山地區也發現嗜熱化現象發生,不像歐洲其他高山地區明顯,他們推測可能有其他因素在影響高山植群的組成變化。

研究發現,台灣高山上溫度的上升幅度,比世界其他高山地區來得更快。圖/蘇昱 攝

我們改良了嗜熱指標成為 “嗜濕指標”,來討論看看在高山上喜歡濕潤環境的植物變多還是喜歡乾旱環境的植物變多,結果上我們發現在大多數山頭嗜濕指標在近十年皆呈現下降的趨勢,有半數山頭顯著下降 (林政道等,2020)。這代表著在臺灣的高山植群逐漸朝向比較喜歡較為乾燥環境的物種變化。這樣的發現也與世界其他地區有類似結果,Steinbauer et al. (2019) 在阿爾卑斯山東部發現高山植物在近20年逐漸朝向適應溫暖與乾燥環境的物種變化;Carilla et al. (2018) 在阿根廷安地斯山脈研究指出該地區高山環境中因為水分環境變乾燥使菊科及禾本科等草本物種增加,而灌木減少;Abdaladze et al. (2015)在喬治亞高山地區同樣發現因為環境趨於乾燥使灌木類與部分對於水分需求較大之植物優勢度降低;Kobiv et al. (2017)在烏克蘭高山發現如 Veronica alpinaPedicularis oederi 等較喜歡潮濕環境物種減少。

在臺灣,高山水分環境對於高山植物的影響或許大於溫度,但也不是說溫度上升不重要,除了嗜熱化的現象還是有發生之外,溫度升高也會導致水分蒸發與蒸散更加快速,進而使環境更加乾燥,也會影響需要較多水分植物的生長。

圖/蘇昱 攝

我們在家中吹冷氣享受涼爽空間的同時,也盡量要做好節能減碳的工作,增加對於環境的友善表現。近年登山風氣興起,在欣賞美麗的高山美景時也千萬別忘了遵守無痕山林的原則,除了足跡什麼都不留下,除了相片與回憶,什麼都不帶走,大家一同來守護我們美麗的山林。

參考資料

  1. 林政道、劉以誠、郭礎嘉、賴宇傑、李丁在、蘇昱 (2019) 臺灣高海拔山區草原生態系調查與監測 (1/3)。行政院農業委員會林務局 108 年度科技計畫研究報告。108 農科 – 10.7.1 – 務 -e5。
  2. 林政道、劉以誠、郭礎嘉 (2020) 臺灣高海拔山區草原生態系調查與監測 (2/3)。行政院農業委員會林務局 109 年度科技計畫研究報告。
  3. 周佳、李明安、許晃雄、洪志誠、盧孟明、陳正達、鄭兆尊 (2017) 臺灣氣候變遷科學報告 2017-物理現象與機制。國家災害防救科技中心。
  4. Abdaladze, O., G. Nakhutsrishvili, K. Batsatsashvili, K. Gigauri, T. Jolokhava, G. Mikeladze (2015) Sensitive Alpine Plant Communities to the Global Environmental Changes (Kazbegi Region, the Central Great Caucasus). American Journal of Environmental Protection 4(3-1):93–100.
  5. Carilla, J., S. Halloy, S. Cuello, A. Grau, A. Malizia, F. Cuesta (2018) Vegetation trends over eleven years on mountain summits in NW Argentina. Ecology and Evolution 8(23):11554–11567.
  6. Gigauri, K., M. Akhalkatsi, O. Abdaladze, G. Nakhutsrishvili (2016) Alpine plant distribution and thermic vegetation indicator on GLORIA summits in the Central Greater Caucasus. Pakistan Journal of Botany 48(5) 1893–1902.
  7. Gottfried, M., H. Pauli, A. Futschik, M. Akhalkatsi, P. Barancok, J. L. B. Alonso, G. Coldea, J. Dick, B. Erschbamer, M. R. F. Calzado, G. Kazakis, J. Krajci, P. Larsson, M. Mallaun, O. Michelsen, D. Moiseev, P. Moiseev, U. Molau, A. Merzouki, L. Nagy, G. Nakhutsrishvili, B. Pedersen, G. Pelino, M. Puscas, G. Rossi, A. Stanisci, J. P. Theurillat, M. Tomaselli, L. Villar, P. Vittoz, I. Vogiatzakis, G. Grabherr (2012) Continent-wide response of mountain vegetation to climate change. Nature Climate Change 2:111–115.
  8. Hamid, M., A. A. Khuroo, A. H. Malik, R. Ahmad, C. P. Singh, J. Dolezal, S. M. Haq (2020) Early Evidence of Shifts in Alpine Summit Vegetation: A Case Study From Kashmir Himalaya. Frontiers in Plant Science 11:1–16.
  9. IPCC (2020) Special Report on the Ocean and Cryosphere in a Changing Climate. Available at: https://www.ipcc.ch/srocc/. Accessed: 16 August 2020.
  10. Kobiv, Y. (2017) Response of rare alpine plant species to climate change in the Ukrainian Carpathians. Folia Geobotanica 52:217–226.
  11. Steinbauer, K., A. Lamprecht, P. Semenchuk, M. Winkler, H. Pauli (2019) Dieback and expansions: species‐specifc responses during 20 yearsof amplifed warming in the high Alps. Alpine Botany 130: 1–11.
  12. Wipf, S., C. Rixen (2017) Long-term changes in summit plant diversity in the Swiss National Park. K. Bauch (Ed.), 6th symposium for research in protected areas (pp. 741–744). Mittersill, Austria: Salzburger Nationalparkfonds.

 

所有討論 1
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策