0

15
2

文字

分享

0
15
2

How to 找到可靠的抗體?做出可信賴的實驗

鳥苷三磷酸 (PanSci Promo)_96
・2021/07/21 ・3312字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本特輯由 拜爾國際股份有限公司 委託,泛科學企劃執行

  • 文/曾繁安

科學界的重大考驗:過半實驗無法重現

對科學家來説,要一探隱藏於萬物中的奧秘,無論多麽乏味無趣,把同一件事重複做個好幾遍絕對是家常便飯。研究者在相同條件下可重複自己的結果,稱為可重複性(Repeatability)。而可再現性(Reproducibility),指的是相同的實驗即使交在不同的研究團隊手中,只要根據相同前提、操作步驟一致的情況下,就能夠得出相同的結果。為了獲得可反覆驗證的實驗結果,為後續研究指引正確方向,「可再現性」是學術研究非常重要的基本原則。

Nature 一份對超過 1500 名科學家所做的問卷發現,竟有超過 70% 的研究者在試著再現他人的研究時失敗了!即使是自己的實驗,也有過半數的人無法做出相同的結果。

如何在學界激烈競爭及拔得頭籌的時間壓力下,確保實驗結果的可信度,真的很不簡單。目標是將研究成果應用在生物,包括人體上的生醫領域,在實驗的可再現性上更是不可馬虎。但生醫領域,還得面對常用實驗檢測試劑——抗體不穩定性的挑戰!

成也抗體?敗也抗體?

當病菌準備入侵人體時,我們的免疫系統也不是省油的燈,會派出可以識別這些壞家夥的抗體(antibody,又稱免疫球蛋白)來迎戰。抗體是一個 Y 形的蛋白質,其兩個分叉上具有被稱為表位(epitope,又稱抗原結合位)的化學官能基。每一種抗體的表位置可以和一種特定抗原結合,就像一把鑰匙(抗體)只能打開一把鎖(抗原)。抗體靠著表位結構的特異性來辨識外源的抗原並與之結合,阻止病原體繼續感染其他細胞,也有標記之並促發其他免疫反應來進行抵禦的功能。抗體就像人體的警察,發現通緝中的犯人後,趕快逮到拷上手銬限制行動,進一步呼喚其他警力來對抗犯罪行動。

-----廣告,請繼續往下閱讀-----

除了在免疫上扮演關鍵角色,抗體因為可以和特定抗原結合的高度特異性,而成為醫學及科研上用來偵測蛋白質表達量的有力工具,可以用於診斷、研究各種疾病的訊號和致病機轉。例如最近中研院所研發的 Covid-19 快篩試劑,便是應用了抗體和特定抗原結合的原理。

抗體的量產,是透過往實驗動物如兔子或羊身上注射抗原產生抗體,對其血液進行分離,從血清中提取而來。儘管抗體是因其高度特異性而被廣泛用於研究,然而跨國科研計劃組織 Human Protein Atlas 針對市面上的抗體產品進行檢測的報告發現,竟有一半的抗體沒有通過品質檢測,存在抗體不穩定性可能導致實驗失敗的疑慮。

實驗結果無法重現,可能是抗體出了錯?這就得談談抗體的交叉反應性(cross-reactivity)。

由於自然界中存在的蛋白質實在多得數不清,抗體的特異性再高,難以保證不會碰到與目標抗原的化學結構非常類似的另一種抗原,因此無法完全排除抗體辨認錯誤發生「開錯鎖」情況的可能性。這種抗體與非標的但相似的抗原結合(off-target binding),就稱作交叉反應性。在疾病診斷上,交叉反應性經常是假陽性結果出現的原因,受試者明明沒有受病毒感染,檢測用抗體卻出現反應。

抗體的交叉反應性,讓實驗結果的可靠性受到威脅,還真是叫科學家傷透了腦筋。抗體又不像實驗室的儀器,可以放包乖乖要它乖乖的,該如何驗證其特異性呢?

-----廣告,請繼續往下閱讀-----

HOW TO 驗證實驗結果是可靠的

為了維持實驗數據的品質及一致性,確保研究結果的可靠性,我們必須以更嚴格的方法,對抗體品質進行驗證。由一群蛋白質生物學領域專長之跨國科學家,組成的國際抗體驗證工作小組(International Working Group on Antibody Validation,IWGAC),在 Science Method 上共同發表一篇指導方針,針對如何驗證抗體的特異性、功能性及可重複性,提出了五大可實際應用的强化驗證方法。

IWGAC 團隊認為,如果要宣稱某一種抗體適合投入某項應用,研究者應該至少使用其中一種方法,作為驗證抗體的基準。這五大方法可以為抗體與標的抗原結合提供顯著證據,同時也能評估交叉反應性發生的機率高低,結合兩者去説明抗體的特異性及實驗的可靠性。

以下為强化驗證抗體的五大方法:

  1. 標記蛋白之表現(Expression of tagged protein):在標的蛋白進行標記,使其在和抗體結合時會過度表現或呈現螢光,因此可以用來驗證是否和抗體的訊號大小一致。
  2. 正交驗證(Orthogonal):利用非抗體的獨立方法對多個樣本進行驗證,例如偵測標的蛋白質體學的內標物,和抗體的訊號進行比較。
  3. 免疫捕捉法搭配質譜分析(Migration Capture MS Validation ):
  4. 獨立抗體(independent antibody) :利用兩種以上,但與同一個標的蛋白上不同位置表位結合的抗體,來進行對同一個樣品的驗證。
  5. 基因策略(genetic validation): 利用含有經由基因剃除或敲落標的基因片段的細胞或組織作為對照組,來驗證抗體的特異性。

其中,基因策略最能直接説明基因、標的蛋白及其抗體偵測的關係,是五大方法中最嚴謹的驗證原則。基因策略採用反證法,為了確認抗體和抗原之間的專一性,會在細胞株中剃除該抗原,再測試觀察抗體的反應。這就像情人間的忠貞程度考驗,如果你的情人在你不在的時候,還跟別人眉來眼去,那他的專一性可能就沒那麼好。

-----廣告,請繼續往下閱讀-----

為了創造你(抗原)不在場的情況,會利用基因減弱(gene knockdown)基因剃除(gene knockout),來降低或去除標的蛋白在細胞中的表現。

基因減弱(gene knockdown)抑制產生特定蛋白質的信使RNA, 來降低標的蛋白的出現機率,但這個狀況就像你躲在旁邊偷看情人的行為,很有可能被情人發現而失敗。而基因剃除(gene knockout)則是比基因減弱的手段來的更為徹底,它直接將表現特定蛋白質的基因片段剪去,也就是你完全離開現場。這個方法則運用了人類從細菌對抗病毒的戰略中,偷師而來的革命性技術—— CRISPR / Cas9。

過去科學家必須耗費大量時間精力,去設計可從 DNA 上截取特定基因片段的酵素,每改變標的基因,就必須重新設計一次複雜的酵素。但從細菌身上找到的 Cas9 酵素,就像一把可客製化的基因神剪,想要剪取某基因片段的話,只要訂做一條與之互補的導引 RNA 交給 Cas9,便能將標的基因片段剪下,再進行基因剃除或插入工作,大大提高過程效率。

CRISPR / Cas9 可以直接從 DNA 剪除會表達標的蛋白的基因片段,使標的蛋白完全失去來到這個世上的機會,名副其實地被 K.O.(擊倒)!如此一來,抗體絕無與基因剃除細胞株反應發生訊號的可能,可說是五大驗證方法內,嚴格中的嚴格。

拿抗體和經過基因剃除的細胞株樣品反應,理應偵測不到任何標的蛋白的表達,因此可以用來確保抗體的專一性(若有訊號,則表示存在抗體交叉反應性!)反之,使用未經處理的原型細胞株進行抗體測試時,則會出現明顯的訊號。

-----廣告,請繼續往下閱讀-----

站在科學最前沿的各種實驗,面臨的是許多未知的不確定性。因此研究者如何選擇合適可靠的驗證方法,來節省寶貴的時間與樣本,便是科研工作的一大關鍵。

想了解更多基因敲除細胞株的資訊嗎?

立即觀看:https://abclonalbio.com/video/show/84.html

拜爾國際亦提供相關技術諮詢服務!

參考資料

  1. 1,500 scientists lift the lid on reproducibility
  2. 你知道抗體研究一直存在嚴重的「重複危機」嗎?
  3. A proposal for validation of antibodies
  4. Antibody validation
  5. How CRISPR lets us edit our DNA | Jennifer Doudna
  6. 三分鐘了解免疫系統怎麼對抗外來敵軍
  7. 中研院19天破解新冠肺炎抗原檢測,解密四大生技平台!
  8. Enhanced Validation of Antibodies
  9. 人體基因編輯是在編什麼?五分鐘搞懂基因神剪 CRISPR
-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
218 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

1
1

文字

分享

2
1
1
鑑識故事系列:對花粉過敏,卻吞桃自盡?!
胡中行_96
・2022/10/13 ・1821字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

高 176 公分,重 57 公斤,身上多處刺青,雙臂有頻繁注射的疤痕。曾經是個毒蟲兼老菸槍的他,7 年前因持有並販賣毒品遭到判刑;如今,這名阿爾巴尼亞男子 30 歲了,依然被關在義大利米蘭的監獄裡。低安全等級的牢房,每間容得下兩個受刑人。最近前獄友刑期剛滿,床位尚且無人替補,所以過去二天他都獨自一人。長期低落的情緒缺乏出口,而他基於良好表現所獲得的特別待遇,也不過就是打掃飯廳的機會。[1]

他勢必得用萬無一失的方法,脫離困境:用完餐後,穿著囚衣的他靜靜地躺下。當獄方打開房門,眼前竟是一具屍體。三天後,鑑識團隊奉命驗屍。[1]

死者身上無明顯外傷,呼吸道也沒有阻塞。口腔與唇黏膜輕微充血(hyperaemia);肺、肝以及腎臟鬱血(congestion);[註]而氣管與支氣管流著泛紅的黏液和血液。150 毫升的胃部內容物中,包含部份消化的帶皮植物性殘渣。此外,根據醫療紀錄,他生前患有氣喘,對花粉過敏,但平時沒有服用任何藥物。以上線索都不足以用來推論確切的死因。[1]

該名阿爾巴尼亞受刑人的口袋裡,有一張手寫的字條提到「我受夠了」、「我過敏」,還有最重要的「我吃了已知能自殺的東西」。在與獄方既有的文件比對後,確認二者筆跡相符,確實為他親筆所寫。鑑識團隊做的血清分析,也證實他的 IgE 抗體濃度偏高。這就耐人尋味了:IgE 抗體是診斷過敏反應的指標[1]既然監獄中理論上沒有花粉,除非有人偷渡進來,不然就是死者還有不為人知的過敏原?

-----廣告,請繼續往下閱讀-----

他生前最後一餐吃剩的桃子,擺在身旁。這一點和花粉過敏的病歷,給了鑑識團隊一個靈感,並決定朝此方向,縮小調查範圍:檢驗與桃子以及樺樹有關的特定 IgE 抗體。[1]

花粉食物過敏症候群患者,同時對特定花粉和食物過敏。圖/charlesdeluvio on Unsplash

花粉食物過敏症候群(pollen food allergy syndrome)是一種同時對特定花粉和食物過敏的毛病。[2]其中樺樹果實症候群(birch-fruit syndrome)的意思,不是說吃了樺樹的翅果會出事,而是對樺樹花粉以及桃子、梨子、李子、蘋果、草莓、櫻桃、杏桃和杏仁等薔薇科(Rosaceae)的果實過敏。[2-4]此症患者多半會在食用上述果實後的 5 至 15 分鐘內,出現發炎反應[3]不過,也不是每個對樺樹花粉過敏的人,都不能碰此類果實。樺樹果實症候群的盛行率,還有這兩種過敏原之間的關係,在各地差距甚大。比方說,美國有 75.9% 的樺樹花粉過敏者,吃蘋果也會產生症狀;丹麥 34%;而義大利只有 9%。[4]為了預防發作,盡量避開這些果實是最簡單的作法。但有趣的是,其實果實只要被煮過了,例如:製成果醬,患者通常便可盡情享用,不會有事[2, 3]

話說回來,如果食用者是刻意藉此自殺,那存活率就看個人造化了。花粉食物過敏症候群所造成的症狀,一般侷限在食物觸碰到的範圍,例如:嘴巴、嘴唇、舌頭和喉嚨等部位,會腫脹或搔癢。[2, 5]這些症狀大多不會維持太久,因此無需用藥治療。[2]偏偏就有那麼倒楣的少數人,光是吃顆桃子,便會腹痛、腹瀉、嘔吐、氣喘、咳嗽,還有皮膚紅疹和眼皮浮腫;更誇張的話,甚至會血壓下降,並產生致命的休克現象。[3]

最後,鑑識團隊從桃子和樺樹特定的 IgE 抗體濃度,確定這名阿爾巴尼亞囚犯應該是嚴重過敏患者。[1]他在不會被及時搶救的狀況下,成功地吞桃自盡。

-----廣告,請繼續往下閱讀-----

  

延伸閱讀

你知道你有可能對倉鼠或壁蝨過敏嗎?Alpha-gal 症候群會帶來什麼樣的過敏症狀呢?

備註

充血(hyperaemia)是發炎反應中,主動增加輸入的血液所致;而鬱血(congestion,又譯「被動充血」)則是減緩的回流,造成血液被動聚積。[6]

參考資料

  1. Tambuzzi S, Gentile G, Boracchi M, et al. (2021) ‘Postmortem diagnostics of assumed suicidal food anaphylaxis in prison: a unique case of anaphylactic death due to peach ingestion’. Forensic Science, Medicine, and Pathology, 17, pp. 449–455.
  2. Pollen Food Allergy Syndrome’. (21 MAR 2019) American College of Allergy, Asthma & Immunology.
  3. Manchester Academic Health Science Centre. (18 OCT 2006) ‘Allergy information for: Peach (Prunus persica)’. The University of Manchester.
  4. Wang J. (2013) ‘Chapter 12 Oral Allergy Syndrome’. In Metcalfe DD, Sampson HA, Simon RA, Lack G (Eds.), Food Allergy: Adverse Reactions to Foods and Food Additives. John Wiley & Sons.
  5. Kim JH, Kim SH, Park HW, et al. (2018) ‘Oral Allergy Syndrome in Birch Pollen-Sensitized Patients from a Korean University Hospital’. Journal of Korean Medical Science, 33 (33): e218.
  6. López A, Martinson SA. (2017) ‘Chapter 9 – Respiratory System, Mediastinum, and Pleurae’. Pathologic Basis of Veterinary Disease (Sixth Edition), pp. 471-560.e1.
-----廣告,請繼續往下閱讀-----
所有討論 2
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

2

5
4

文字

分享

2
5
4
Omicron 變種病毒從哪來?打疫苗有用嗎?Omicron 相關研究彙整
台灣科技媒體中心_96
・2022/01/22 ・2937字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

國內境外移入已出現變種病毒 Omicron 案例,引發國人擔憂。至去年 12 月中為止,我們僅略知 Omicron 會造成曾染疫者再次染疫的風險增加,不過,初次感染比率卻下降,而 Omicron 病毒的傳播力尚待研究證實。

另一方面,Omicron 變種病毒從去年底爆發全球疫情至今,大家最關注的就是新冠疫苗的保護力是否會因為 Omicron 病毒而失效。科學家在 2021 年底初步用施打疫苗的血清做測試,發現這些血清對 Omicron 病毒的抗體反應有下降;但台灣科技媒體中心綜整至今(2022)年陸續發布尚未同儕審核的預印本研究,發現人體由疫苗或感染病毒獲得的 T 細胞免疫反應,並沒有因為 Omicron 變種病毒而受到太大的影響,表示人體過去打疫苗或受新冠病毒感染後,仍帶有一定程度的保護力。

人們施打疫苗或受新冠病毒感染後,面對 Omicron 仍帶有一定程度的保護力。圖/envato elements

「台灣科技媒體中心」彙整 Omicron 相關科學文獻,提供國人參考,增加對最新變種病毒的認識。

Omicron 從哪來?這次變種有什麼特徵?

Omicron 變種病毒在 2021 年 11 月 26 日,由 WHO 正式命名。科學家觀察 Omicron 的序列時發現,它與之前的變種病毒相較,突變位置的數量最多。造成全球大流行的 Beta 和 Delta 病毒,改變棘蛋白功能的突變分別是 10 個和 9 個,而 Omicron 有 36 個,這是引起科學家們擔憂的最主要原因。

-----廣告,請繼續往下閱讀-----

研究發現,Omicron 病毒在南非,「再感染」的風險增加,但這並不能說明是因為 Omicron 病毒的傳播力變強。南非流行病模擬暨分析中心(SACEMA)於 12 月 2 日,發表尚未經同儕審核的研究,根據 11 月 1 日至 27 日間的數據指出,南非當地曾經感染新冠病毒者,又再感染 Omicron 病毒的風險較高。推測應是從自然感染新冠病毒獲得的免疫力,對抗 Omicron 的效果下降。該研究提醒,雖然再感染率上升,初次感染比率卻下降,研究無法回答再感染率增加的原因,也無法說明 Omicron 免疫逃脫的程度。

南非國家傳染病研究所(NICD)病毒學家潘妮.摩爾(Penny Moore)認為,南非的新冠疫苗覆蓋率較低,再感染率高,所以關鍵在於感染後的症狀與重症程度。雖然目前 Omicron 在南非案例增加快速,但在英國主要流行的變種病毒還是 Delta,因此很難從案例數字看出 Omicron 的傳播狀況。

(示意圖)圖/envato elements

Omicron 會讓疫苗失效嗎?

目前科學家是依據觀察抗體量,來判斷疫苗的作用,而其中的原理,長庚大學臨床醫學研究所教授顧正崙說明:在對抗致病性微生物的戰爭中,後天免疫系統由 B 細胞產生的抗體與 T 細胞的細胞免疫,組成兩個交叉火網。新冠疫苗可以誘發 B 細胞產生抗體,抗體主要中和病毒預防感染。

Omicron 由於在棘蛋白上有高達 30 個以上的突變,由疫苗誘發中和抗體的能力對 Omicron 的結合能力下降,這點也在大量的體外抗體中和實驗中所證實,解釋為什麼接受過疫苗的人仍會被 Omicron 感染;尤其是 AZ 疫苗這種抗體誘發抗體能力較低的疫苗,幾乎沒有辦法有效預防感染。

-----廣告,請繼續往下閱讀-----

國立陽明交通大學微生物及免疫研究所退休教授 黃麗華 也說明,相反的,T 細胞辨識的不是棘蛋白結構,而是呈現在細胞表面上的小片段蛋白質(約 10~24 個胺基酸)。棘蛋白中,約估有數十條小片段可被呈現在細胞表面,可被輔助型及殺手型 T 細胞所辨識。

Omicron 病毒在棘蛋白上雖然有 30 多個突變點,但其中可能影響T細胞功能的分別只有 28% (輔助型 T 細胞)及 14% (毒殺型 T 細胞)而已。換言之,絕大部分因疫苗引發的 T 細胞仍可充分辨識被 Omicron 病毒感染的細胞、並且將之清除。T 細胞反應沒有因 Omicron 病毒而受到太大的影響。(但若未來突變持續增加,呈現在細胞表面上的小片段蛋白質受到更多影響時,T 細胞反應有可能也會隨之降低。)

Omicron 的突變能讓抗體結合力下降,但對T細胞的辨識功能影響不大。圖/envato elements

這樣的研究也解釋了為什麼 Omicron 病毒雖然能造成接受疫苗後的人得到突破性感染,造成感染人數大幅上升,但是由於 T 細胞免疫還是能有效對抗感染,比起未接種疫苗者,這些確診者多為輕症或無症狀。

我應該接種第三劑疫苗嗎?第三劑如何挑選?

中興大學獸醫病理生物學研究所所長吳弘毅 指出,Omicron 會快速流行有許多原因,例如南非疫苗覆蓋率低,各國的防疫措施不同也是影響的重要因素。而判斷 Omicron 影響疫苗效果的關鍵在於,疫苗是何時施打的,因為較早施打疫苗者產生的抗體會逐漸下降。國內病毒專家施信如 則表示,台灣現在的相對優勢是,大多數人最近已施打完第二劑,保護力較高。

-----廣告,請繼續往下閱讀-----

但兩人皆認為,提高現階段的保護力,國內最早施打疫苗的第一線人員與高齡老人,可加打第三劑作好保護、提升抗體濃度。另外,較早施打 AZ 疫苗的人,也需要盡快打第三劑。

在第三劑挑選上,施信如說明,AZ 疫苗是利用「腺病毒載體」,免疫系統再次辨認腺病毒時容易消滅疫苗載體,而減低 AZ 疫苗的效果,可能不適合作為第三劑。反過來說,原先打 mRNA 疫苗的,可以第三劑再打 AZ 疫苗,也應該考慮其他種類和品牌的疫苗,包含 Medigen(高端)與 Novavax,蛋白質疫苗也可以是很好的選擇,而不是僅限 AZ、BNT 和莫德納。

國內最早施打疫苗的第一線人員與高齡老人,可加打第三劑作好保護。圖/envato elements

此外她也提醒,疫苗施打策略應該考量全球疫苗的整體覆蓋率,富國可以一直補打第三劑疫苗,但這次 Omicron 疫情來自的非洲,相對之下較沒有量能施打第三劑,應要趕緊提升其他各國(窮國)第二劑疫苗的施打率,並持續關注這些疫苗覆蓋率低的國家的病毒變異。

吳弘毅則表示,以整體來看,未來,我們可能需要如同流行性感冒疫苗一樣,每年固定的月份同時補打新冠疫苗,讓全球的抗體或免疫能力同步。

-----廣告,請繼續往下閱讀-----

Omicron 的研究還在進行中

有關 Omicron 的突變對傳播力、各廠牌疫苗的影響,以及感染後的情況,科學證據都還在累積當中。「台灣科技媒體中心」強調,目前應有效評斷最新研究證據的可信度與推論程度,國人不宜在未有足夠證據的狀況下,急於做出對於 Omicron 病毒的評判。

施信如與吳弘毅也表示,從現在 Omicron 有限的資料來看,Omicron 是否會對台灣造成嚴重影響仍未知,必須考量台灣的疫苗覆蓋率、防疫策略以及醫療量能。同時,台灣也須嚴密監測各國 Omicron 的疫情狀況和最新研究,以協助政府進行政策判斷。至於一般民眾則需有心理準備,防疫是長期的工作,勤洗手和戴口罩仍然是最重要的防疫基本方式,如此才能盡量降低接觸病毒的量。

勤洗手和戴口罩仍然是最重要的防疫基本方式。圖/envato elements
-----廣告,請繼續往下閱讀-----
所有討論 2
台灣科技媒體中心_96
46 篇文章 ・ 328 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。

0

15
2

文字

分享

0
15
2
How to 找到可靠的抗體?做出可信賴的實驗
鳥苷三磷酸 (PanSci Promo)_96
・2021/07/21 ・3312字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本特輯由 拜爾國際股份有限公司 委託,泛科學企劃執行

  • 文/曾繁安

科學界的重大考驗:過半實驗無法重現

對科學家來説,要一探隱藏於萬物中的奧秘,無論多麽乏味無趣,把同一件事重複做個好幾遍絕對是家常便飯。研究者在相同條件下可重複自己的結果,稱為可重複性(Repeatability)。而可再現性(Reproducibility),指的是相同的實驗即使交在不同的研究團隊手中,只要根據相同前提、操作步驟一致的情況下,就能夠得出相同的結果。為了獲得可反覆驗證的實驗結果,為後續研究指引正確方向,「可再現性」是學術研究非常重要的基本原則。

Nature 一份對超過 1500 名科學家所做的問卷發現,竟有超過 70% 的研究者在試著再現他人的研究時失敗了!即使是自己的實驗,也有過半數的人無法做出相同的結果。

如何在學界激烈競爭及拔得頭籌的時間壓力下,確保實驗結果的可信度,真的很不簡單。目標是將研究成果應用在生物,包括人體上的生醫領域,在實驗的可再現性上更是不可馬虎。但生醫領域,還得面對常用實驗檢測試劑——抗體不穩定性的挑戰!

成也抗體?敗也抗體?

當病菌準備入侵人體時,我們的免疫系統也不是省油的燈,會派出可以識別這些壞家夥的抗體(antibody,又稱免疫球蛋白)來迎戰。抗體是一個 Y 形的蛋白質,其兩個分叉上具有被稱為表位(epitope,又稱抗原結合位)的化學官能基。每一種抗體的表位置可以和一種特定抗原結合,就像一把鑰匙(抗體)只能打開一把鎖(抗原)。抗體靠著表位結構的特異性來辨識外源的抗原並與之結合,阻止病原體繼續感染其他細胞,也有標記之並促發其他免疫反應來進行抵禦的功能。抗體就像人體的警察,發現通緝中的犯人後,趕快逮到拷上手銬限制行動,進一步呼喚其他警力來對抗犯罪行動。

-----廣告,請繼續往下閱讀-----

除了在免疫上扮演關鍵角色,抗體因為可以和特定抗原結合的高度特異性,而成為醫學及科研上用來偵測蛋白質表達量的有力工具,可以用於診斷、研究各種疾病的訊號和致病機轉。例如最近中研院所研發的 Covid-19 快篩試劑,便是應用了抗體和特定抗原結合的原理。

抗體的量產,是透過往實驗動物如兔子或羊身上注射抗原產生抗體,對其血液進行分離,從血清中提取而來。儘管抗體是因其高度特異性而被廣泛用於研究,然而跨國科研計劃組織 Human Protein Atlas 針對市面上的抗體產品進行檢測的報告發現,竟有一半的抗體沒有通過品質檢測,存在抗體不穩定性可能導致實驗失敗的疑慮。

實驗結果無法重現,可能是抗體出了錯?這就得談談抗體的交叉反應性(cross-reactivity)。

由於自然界中存在的蛋白質實在多得數不清,抗體的特異性再高,難以保證不會碰到與目標抗原的化學結構非常類似的另一種抗原,因此無法完全排除抗體辨認錯誤發生「開錯鎖」情況的可能性。這種抗體與非標的但相似的抗原結合(off-target binding),就稱作交叉反應性。在疾病診斷上,交叉反應性經常是假陽性結果出現的原因,受試者明明沒有受病毒感染,檢測用抗體卻出現反應。

抗體的交叉反應性,讓實驗結果的可靠性受到威脅,還真是叫科學家傷透了腦筋。抗體又不像實驗室的儀器,可以放包乖乖要它乖乖的,該如何驗證其特異性呢?

-----廣告,請繼續往下閱讀-----

HOW TO 驗證實驗結果是可靠的

為了維持實驗數據的品質及一致性,確保研究結果的可靠性,我們必須以更嚴格的方法,對抗體品質進行驗證。由一群蛋白質生物學領域專長之跨國科學家,組成的國際抗體驗證工作小組(International Working Group on Antibody Validation,IWGAC),在 Science Method 上共同發表一篇指導方針,針對如何驗證抗體的特異性、功能性及可重複性,提出了五大可實際應用的强化驗證方法。

IWGAC 團隊認為,如果要宣稱某一種抗體適合投入某項應用,研究者應該至少使用其中一種方法,作為驗證抗體的基準。這五大方法可以為抗體與標的抗原結合提供顯著證據,同時也能評估交叉反應性發生的機率高低,結合兩者去説明抗體的特異性及實驗的可靠性。

以下為强化驗證抗體的五大方法:

  1. 標記蛋白之表現(Expression of tagged protein):在標的蛋白進行標記,使其在和抗體結合時會過度表現或呈現螢光,因此可以用來驗證是否和抗體的訊號大小一致。
  2. 正交驗證(Orthogonal):利用非抗體的獨立方法對多個樣本進行驗證,例如偵測標的蛋白質體學的內標物,和抗體的訊號進行比較。
  3. 免疫捕捉法搭配質譜分析(Migration Capture MS Validation ):
  4. 獨立抗體(independent antibody) :利用兩種以上,但與同一個標的蛋白上不同位置表位結合的抗體,來進行對同一個樣品的驗證。
  5. 基因策略(genetic validation): 利用含有經由基因剃除或敲落標的基因片段的細胞或組織作為對照組,來驗證抗體的特異性。

其中,基因策略最能直接説明基因、標的蛋白及其抗體偵測的關係,是五大方法中最嚴謹的驗證原則。基因策略採用反證法,為了確認抗體和抗原之間的專一性,會在細胞株中剃除該抗原,再測試觀察抗體的反應。這就像情人間的忠貞程度考驗,如果你的情人在你不在的時候,還跟別人眉來眼去,那他的專一性可能就沒那麼好。

-----廣告,請繼續往下閱讀-----

為了創造你(抗原)不在場的情況,會利用基因減弱(gene knockdown)基因剃除(gene knockout),來降低或去除標的蛋白在細胞中的表現。

基因減弱(gene knockdown)抑制產生特定蛋白質的信使RNA, 來降低標的蛋白的出現機率,但這個狀況就像你躲在旁邊偷看情人的行為,很有可能被情人發現而失敗。而基因剃除(gene knockout)則是比基因減弱的手段來的更為徹底,它直接將表現特定蛋白質的基因片段剪去,也就是你完全離開現場。這個方法則運用了人類從細菌對抗病毒的戰略中,偷師而來的革命性技術—— CRISPR / Cas9。

過去科學家必須耗費大量時間精力,去設計可從 DNA 上截取特定基因片段的酵素,每改變標的基因,就必須重新設計一次複雜的酵素。但從細菌身上找到的 Cas9 酵素,就像一把可客製化的基因神剪,想要剪取某基因片段的話,只要訂做一條與之互補的導引 RNA 交給 Cas9,便能將標的基因片段剪下,再進行基因剃除或插入工作,大大提高過程效率。

CRISPR / Cas9 可以直接從 DNA 剪除會表達標的蛋白的基因片段,使標的蛋白完全失去來到這個世上的機會,名副其實地被 K.O.(擊倒)!如此一來,抗體絕無與基因剃除細胞株反應發生訊號的可能,可說是五大驗證方法內,嚴格中的嚴格。

拿抗體和經過基因剃除的細胞株樣品反應,理應偵測不到任何標的蛋白的表達,因此可以用來確保抗體的專一性(若有訊號,則表示存在抗體交叉反應性!)反之,使用未經處理的原型細胞株進行抗體測試時,則會出現明顯的訊號。

-----廣告,請繼續往下閱讀-----

站在科學最前沿的各種實驗,面臨的是許多未知的不確定性。因此研究者如何選擇合適可靠的驗證方法,來節省寶貴的時間與樣本,便是科研工作的一大關鍵。

想了解更多基因敲除細胞株的資訊嗎?

立即觀看:https://abclonalbio.com/video/show/84.html

拜爾國際亦提供相關技術諮詢服務!

參考資料

  1. 1,500 scientists lift the lid on reproducibility
  2. 你知道抗體研究一直存在嚴重的「重複危機」嗎?
  3. A proposal for validation of antibodies
  4. Antibody validation
  5. How CRISPR lets us edit our DNA | Jennifer Doudna
  6. 三分鐘了解免疫系統怎麼對抗外來敵軍
  7. 中研院19天破解新冠肺炎抗原檢測,解密四大生技平台!
  8. Enhanced Validation of Antibodies
  9. 人體基因編輯是在編什麼?五分鐘搞懂基因神剪 CRISPR
-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
218 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

7

8
0

文字

分享

7
8
0
「莫德納孤兒」的煩惱:第 2 劑跟第 1 劑隔太久保護力會變差嗎?
miss9_96
・2021/10/18 ・2298字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

加拿大研究發現,第 2 劑 COVID-19 疫苗隔越久、效果越棒!

七月初,許多人接種了莫德納(Moderna)疫苗。依三期試驗的設定,兩劑應間隔 4 週,但原廠遲未供貨,使許多民眾未打到第 2 劑,自嘲「莫德納孤兒」[註1]。如果隔太久,白血球會忘光嗎?會讓第 2 劑「變回第 1 劑」嗎?來看看加拿大人怎麼說!

加拿大研究:「不是孤兒,而是超人!」

先說結果,加拿大研究顯示,「間隔 7 週或更久,保護效果更強!」。

加拿大很早就預知疫苗將供不應求,故在 2021 年初,科學證據不足時,就下達延長兩劑間隔的政策,同時也收集數據、進行研究。

9 月 29 日,加拿大魁北克省和卑詩省,發佈「兩劑的不同間隔時間」和「疫苗混打」的結果(圖 1)[1-3]。兩獨立單位獲得相同的結果──「AZ、輝瑞-BNT、莫德納疫苗,都是間隔越久,效果越好」。如表 1,三種疫苗之不同間隔時間保護力(預防感染)都顯示相似的趨勢:mRNA 疫苗若延長超過 7 週,將可獲得更高的保護力AZ 疫苗也是越久越強,間隔 3~4 週的保護力僅 47%,若拉長到 16 週,保護力將衝到 92%、甚至超車兩款 mRNA 疫苗[1]

-----廣告,請繼續往下閱讀-----
圖 1:兩劑 COVID-19 疫苗間隔不同時間的保護力(預防感染)。圖/參考文獻 1, 2
AZ輝瑞-BNT莫德納
間隔 3~4 週約 47%約 72%約 83%
間隔 5~6 週約 40%約 83%約 86%
間隔 7~8 週約 64%約 89%約 91%
間隔 9~11 週約 77%約 88%約 91%
間隔 12~15 週約 72%約 87%約 89%
超過 16 週約 92%約 89%約 89%
表 1:加拿大魁北克省,各疫苗在不同間隔時間的預防感染保護力。表/參考文獻 1

而在對抗重症的能力上,也發現類似的趨勢。兩劑 mRNA 疫苗若間隔超過 7 週以上,避免重症的能力將更高(圖 2)。此證據有助緩解各國壓力,苦等疫苗的「莫德納孤兒」們,說不定將獲得最強的保護力。But, why?

圖 2:兩劑 COVID-19 疫苗間隔不同時間的保護力(抗重症住院)。圖/參考文獻 1

為什麼拉長間隔,保護力依舊棒棒?

AZ 疫苗三期試驗,意外發現「似乎隔越久,效果越好」[4]。後來,因疫情爆炸,英國和加拿大皆採取延長第 2 劑的策略,也讓科學家有機會一窺「拉長間隔後,體內抗體將如何反應」。

抗體強度提高多少?

英國科學家收集了 503 名接種輝瑞-BNT 疫苗的醫護資料,並分為兩劑「間隔 3~4 週」和「間隔 6~14 週」兩組[5]。結果發現,間隔長的醫護,體內的抗體較高。而另一支來自英國伯明罕大學的團隊,招募 80 歲以上長者接種輝瑞-BNT 疫苗,並分成「標準組(間隔 3 週)」和「實驗組(間隔 12 週)」[6]。結果發現,相較於標準組,實驗組生成的抗體強度是 3.5 倍

獨立的研究皆顯示,延長兩劑的間隔,可以生成更強的抗體,因此可能獲得更優秀的抗感染保護力

-----廣告,請繼續往下閱讀-----

其實,其他疾病的疫苗也是隔越久越好

距離第 2 針越久、效果越佳的特徵,並非 COVID-19 獨有。過往對流感疫苗和伊波拉出血熱疫苗的研究也發現,更長的第 1 針(prime)和第 2 針(boost)間隔,會誘導更強的中和抗體和細胞免疫[7, 8]。而大家熟知的 HPV 疫苗(俗稱子宮頸癌疫苗)更規定兩劑之間必須間隔至少 6 個月(兩劑型,9~14 歲)[9]

科學家尚未釐清人體內「為何要隔久一點,免疫系統才比較聰明?」的機制,同時也不知道間隔多久,才是 COVID-19 疫苗的「甜蜜點」。只能猜想,或許這群等很久的「莫德納孤兒」在打完第 2 針後,能夠獲得更強悍的超人免疫力!

保持冷靜,繼續前進。Keep Calm and Carry On.

註 1:莫德納疫苗於 10 月再次大量供給台灣,故指揮中心宣布在 7 月 16 日前接種第 1 劑者,皆可在 10 月底接種第 2 劑。間隔大約 16~18 週。

參考文獻

1. Efficacité de deux doses de vaccin contre la COVID-19 chez les adultes québécois vivant dans la communauté. Institut national de santé publique du Québec. 2021/09/29

-----廣告,請繼續往下閱讀-----

2. Two doses prevent about 95 per cent of COVID-19 hospitalizations: B.C. COVID-19 vaccine effectiveness results. BC Centre for Disease Control. 2021/09/29

3. New data suggests Canada’s ‘gamble’ on delaying, mixing and matching COVID-19 vaccines paid off. CBC News. 2021/10/09

4. Elisabeth Mahase (2021) Covid-19: Longer interval between Pfizer doses results in higher antibody levels, research finds. BMJ. DO https://doi.org/10.1136/bmj.n1875

5. Payne R., Longet S. et. al. (2021) Sustained T Cell Immunity, Protection and Boosting Using Extended Dosing Intervals of BNT162b2 mRNA Vaccine. Oxford Vaccine Group

-----廣告,請繼續往下閱讀-----

6. H Parry, R Bruton, C Stephens, K Brown, G Amirthalingam, B Hallis, A Otter, J Zuo, P Moss (2021) Extended interval BNT162b2 vaccination enhances peak antibody generation in older people. MedRxiv. DOI: https://doi.org/10.1101/2021.05.15.21257017

7. Georgi Shukarev, Benoit Callendret, Kerstin Luhn, Macaya Douoguih & the EBOVAC1 consortium (2017) A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks. Human Vaccines & Immunotherapeutics. https://doi.org/10.1080/21645515.2017.1264755

8. Julie E. Ledgerwood, Kathryn Zephir, et. al. (2013) Prime-Boost Interval Matters: A Randomized Phase 1 Study to Identify the Minimum Interval Necessary to Observe the H5 DNA Influenza Vaccine Priming Effect. The Journal of Infectious Diseases. https://doi.org/10.1093/infdis/jit180

9. Peter MB English (2021) The UK approach to COVID-19 vaccination: why was it so different? Drugs Context. DOI: 10.7573/dic.2021-4-5

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 7
miss9_96
170 篇文章 ・ 1077 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9