0

0
0

文字

分享

0
0
0

打破迄今最遠星系的記錄

臺北天文館_96
・2012/11/18 ・1726字 ・閱讀時間約 3 分鐘 ・SR值 539 ・八年級

結合哈柏太空望遠鏡(Hubble Space Telescope)和史匹哲太空望遠鏡(Spitzer Space Telescope)資料後,天文學家利用天然的「太空放大鏡」發現一個新星系,距離超過現在已知的任何星系,距離地球約133億光年,相當於為在大霹靂後僅約4億2000萬年左右的時期中誕生,締造一個最遠星系新記錄,也提供天文學家一個窺視宇宙幼年期的機會。

太空望遠鏡科學研究所(Space Telescope Science Institute)Marc Postman領導的哈柏星系團重力透鏡與超新星巡天計畫(Cluster Lensing And Supernova Survey with Hubble,CLASH),經由星系團龐大質量所產生的重力場,讓星系團背後遙遠的星系被這個天然放大鏡偏折而聚光,這才讓這個遙遠而黯淡的背景星系亮到足以偵測到的地步。這就是所謂的重力透鏡( gravitational lensing)效應,是天然的太空放大鏡。

這個締造新記錄的最遠星系編號為MACS0647-JD,由於非常遙遠,而且遠比銀河系小得多,因此在觀測影像中看起只是一個黯淡的光點,好在有MACS J0647+7015星系團的重力透鏡效應幫忙,在MACS J0647+7015周圍形成數道光弧,Postman等人才能發覺它的存在。星系團MACS J0647+7015距離地球約80億光年,其龐大質量所產生的重力效應,讓背景星系MACS0647-JD的光弧比原本的亮度分別增加了8倍、7倍和2倍之多。

位在宇宙幼年期的MACS0647-JD星系是個所謂的矮星系,直徑不到600光年。天文學家先前曾針對近一點的星系所做的觀測分析,一般典型的星系在與MACS0647-JD相同年齡時,直徑一般在2,000光年左右。拿銀河系衛星星系之一的大麥哲倫星系(Large Magellanic Cloud)來比較,這個矮星系的直徑也有14,000光年之多;更遑論我們銀河系多達約150,000光年直徑的大小。由此可見,MACS0647-JD真的是個非常小的星系;Postman等人認為,MACS0647-JD很可能就是建造現代星系的基石,經由數十、數百甚至數千次這些小星系的合併,最終才能成就出像銀河系這樣的大型星系。

-----廣告,請繼續往下閱讀-----

這個巡天計畫,是利用哈柏3號廣角行星相機(Wide Field Camera 3,WFC3),配合從近紫外到近紅外的17個濾鏡進行觀測。團隊成員之一的Dan Coe於2012年2月在彙整哈柏CLASH巡天觀測17個星系團所得的數千個重力透鏡天體星表時,注意到僅有其中2個最紅的濾鏡出現MACS0647-JD,這意味這個天體很「紅」,代表要不是它所發出的光只落在紅外波段,即所謂的「紅色天體(red object)」,那麼就是個極遙遠的天體,以致於它因宇宙膨脹導致紅位移到波長極長的波段中。

從CLASH觀測,在MACS J0647+7015星系團周圍,總共偵測到8個被MACS J0647+7015星系團重力透鏡聚光的遙遠背景星系。從這些遙遠星系的光弧的亮度和位置,研究人員可藉此重建MACS J0647+7015星系團的質量分佈圖;MACS J0647+7015星系團的質量絕大部分是本質未知的暗物質(dark matter);暗物質雖不可見,但仍能從它與一般物質之間的重力交互作用而得知它們的存在。

分析結果顯示:這個星系團的質量分佈狀況,讓MACS0647-JD在MACS J0647+7015星系團周圍總共產生三道重力透鏡影像,經過數個月的系統性分析處理,排除其他可以解釋這個天體的可能成因,例如紅色恆星、棕矮星或紅色星系(red galaxies,比較古老或含塵量較多的星系)等,最終才能確認MACS0647-JD是個非常遙遠的星系,紅移值(redshift)高達11,是迄今為止觀測到紅移值最高的。

受到宇宙膨脹而使原本發出的紫外光被紅移到紅外波段,因此這些研究學者決定利用在紅外波段相當靈敏的史匹哲太空望遠鏡來做後續觀測。如果這個天體本質就是紅色天體,發出的光本來就集中在紅外波段,那麼它在史匹哲的影像中應該會相當明亮;相對地,如果這個天體在紅外波段也是勉強能偵測到,顯示它是個非常遙遠的天體。這些研究學者計畫利用史匹哲進行更深入的觀測,希冀能藉此估計出這個星系的的年齡和含塵量。

-----廣告,請繼續往下閱讀-----

然而,MACS0647-JD星系可能太遠,遠到現今世上沒有任何望遠鏡和儀器能確認其距離。Coe等人是根據這個遙遠星系的獨特顏色和以前的研究所知,以外差方式估算出MACS0647-JD星系的大概距離,且哈柏影像中的3個重力透鏡影像都符合這個距離估算。

MACS0647-JD這個最遠星系新冠軍,是CLASH巡天計畫發現的第2個遙遠星系;CLASH巡天計畫在今年初時,發現一個約在大霹靂後4億9000萬年的遙遠星系,盤據了最遠星系冠軍位置之後,終被僅早它7000萬年的MACS0647-JD星系給踢下冠軍寶座。CLASH巡天計畫預定要觀測25個大質量星系團,目前已完成其中20個星系團的觀測工作。這個研究團隊預期未來還會在宇宙幼年期裡發現更多矮星系;如果在宇宙幼年期裡,矮星系數量繁多,那麼它們很可能就是讓氫霧被再游離(re-ionization),使宇宙變得透明的功臣。

資料來源:NASA Observatories Find Most Distant Galaxy Candidate. NASA [November 15, 2012]

轉載自 網路天文館

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

7
0

文字

分享

0
7
0
韋伯太空望遠鏡運作滿週年,它看到了什麼?
PanSci_96
・2023/09/02 ・3306字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

古老星系中發現有機分子?我們離第三類接觸還有多遠?

韋伯正式展開拍攝任務已經屆滿週年,最近也傳回來許多過去難以拍攝到的照片。六月初,天文學家在《自然》期刊上發表了這張照片,在藍色核心外,環繞著一圈橘黃色的光環。

這是一個星系規模的甜甜圈?這是一個傳送門?還是外星文明的戴森環?

——都不是!其實,這是一個含有有機物多環芳香烴的古老星系,其名為 SPT0418-47。因為名字很長,以下我們就簡稱為 SPT0418 吧!

-----廣告,請繼續往下閱讀-----

這個觀測結果有什麼特殊意義?這代表我們發現外星生命了嗎?

SPT0418 是怎麼被拍到的?扭曲時空的重力透鏡!

一年前,在韋伯望遠鏡傳回第一組令人震撼的照片時,我們製作了兩期節目來介紹韋伯望遠鏡,和它在天文觀測史上跨時代的重要意義。在那之後,也有不少泛糰敲碗,希望我們可以再繼續介紹韋伯望遠鏡的後續發展。

這次在週年前夕公開的這張 SPT0418 照片,是一張標標準準因為重力透鏡而形成的美麗照片。「重力透鏡 Gravitational Lensing」這個概念,相信有在關注天文物理的泛糰們,應該都有聽過。愛因斯坦的廣義相對論告訴我們,星系與星系團的龐大質量會扭曲它們周圍的時空,就像一面星系尺度的超級放大鏡一樣,可以在光線通過時改變它們的走向,從而扭曲背景星系的影像。而如果背景星系與前方的前景星系剛好前後對齊的話,重力透鏡效應還能將背景星系扭曲成美麗的環型,這個環型被稱為「愛因斯坦環 Einstein Ring」。

背景星系從黑洞後面經過時的重力透鏡效應模擬影像。圖/Wikimedia

乍聽之下,重力透鏡會扭曲背景星系影像,好像會干擾觀察,是個缺點。但實際上重力透鏡在扭曲影像的同時,也會聚焦背景星系發出的光,從而讓背景星系變得更加明亮而容易觀測,讓天文學家可以看到更遠或更暗的天體。因此雖然扭曲的影像會增加分析上的麻煩,但天文學家其實非常喜歡觀測這些受重力透鏡效應影響的天體們。甚至會專門安排觀測計畫,拍攝這些受重力透鏡效應影響的區域。這次的主角 SPT0418,正是韋伯太空望遠鏡針對重力透鏡效應開展的「TEMPLATES 」觀測計畫的其中一個觀察對象。

-----廣告,請繼續往下閱讀-----

SPT0418 是一個位於時鐘座(Horologium)方向,距離地球約 123 億光年遠的古老星系。最早在南極望遠鏡(SPT)的觀測資料中被發現,並在後續以阿塔卡瑪大型毫米及次毫米波陣列 ALMA 進行的觀測中,確認了它是一個富含大量塵埃,而且正在以每年約 350 個太陽質量的超高速率生成恆星的星系。

在我們與 SPT0418 之間,還存在著一個前景星系。正是這個前景星系的質量扭曲了周圍的時空,像一片巨大的放大鏡一樣將背後的 SPT0418 扭成了漂亮的愛因斯坦環。

當觀察者、前景星系和背景星系在同一直線上時,就可以透過重力透鏡效應觀測到愛因斯坦環。圖/PanSci YouTube

在這張經過調色的照片中,中間的藍色部分就是前景星系,旁邊的橘色環則是因為重力透鏡而扭曲的 SPT0418 。得益於這個重力透鏡,SPT0418 的影像被增亮了三十倍以上,非常適合讓天文學家一窺早期宇宙中星系的狀態,因此被選為韋伯的觀測目標。

韋伯望遠鏡藉由重力透鏡效應拍攝到的扭曲的古老星系 SPT0418-47。圖/J. Spilker/S. Doyle, NASA, ESA, CSA

那麼,這次的觀測又有什麼重要意義呢?

-----廣告,請繼續往下閱讀-----

多環芳香烴是什麼?看見它代表什麼意義?

這次的拍攝結果不能完全說是意外,因為在這個研究中,韋伯的目標非常明確,就是要尋找古老星系中的多環芳香烴。

在天文學上,多環芳香烴通常指兩個以上的苯環所組成的有機化合物的統稱,人們一般以它的簡稱「PAH」來稱呼它。

發現有機分子,難道這代表有生命存在於古老星系中嗎?其實不能這麼快下定論。

因為 PAH 廣泛存在於各式各樣的星系中,與其他由碳和矽組成的塵埃顆粒,同屬於星際塵埃的一部分。甚至在彗星、小行星、隕石中,都能發現各式各樣的 PAH。目前認為,宇宙中可能有超過 20% 的碳原子,都是以 PAH 的方式存在,只是環數不盡相同。

-----廣告,請繼續往下閱讀-----
圖中右側的黑色暗帶為星際塵埃。圖/NASA, ESA, and the LEGUS team

所以,雖然科學家認為,宇宙中的生命誕生,可能與這些這些遍布其中的有機分子有關。但發現 PAH,不能直接與發現生命劃上等號。

過去數十年的天文觀測結果也顯示,PAH 確實廣泛存在於星系之中,但是天文學家對於這些分子究竟如何形成?又是什麼時候形成的?目前還沒有共識。因此迫切需要更多觀測,例如這次的目標 SPT0418 是個距離我們非常遙遠的古老星系,對於研究宇宙早期星系以及 PAH 的起源就很有幫助。

觀察 PAH 的困難及韋伯望遠鏡的重大突破

然而,要觀察 PAH 卻不太容易。原因是這些 PAH 發出的光,波長主要都集中在幾微米到十幾微米的近紅外與中紅外線波段。這個波段的光線受到大氣層的吸收非常嚴重,幾乎無法從地面觀測,因此過去我們很難取得相關數據。想要尋找 PAH 的蹤跡,勢必得使用紅外線太空望遠鏡才行。

這時,就是韋伯大展身手的時候了。比起同樣專注於紅外光譜的前輩史匹哲太空望遠鏡,韋伯的鏡片直徑大了超過七倍,集光面積更是大了將近六十倍,這不僅讓韋伯能夠拍攝遠比史匹哲更清晰的影像,更可以在更短的時間內拍攝到更暗的目標。

-----廣告,請繼續往下閱讀-----

得益於韋伯強大的觀測能力,在這個研究中它僅僅對著 SPT0418 曝光了不到一個小時的時間,就在 3.3 微米的波段找到了清晰的 PAH 發射譜線,確認了PAH的存在的同時,也打破了觀測到最遠的 PAH 訊號的紀錄。

此外天文學家也發現,韋伯所拍攝到的 SPT0418 與前幾年使用 ALMA 觀測到的影像並不全然相同。

由於觀測波段不同,不同的望遠鏡拍攝同一天體的亮部分布會產生差異。圖/PanSci Youtube

由於韋伯拍攝的是 PAH 發出的近紅外光,而 ALMA 拍攝到的則是毫米尺寸的大顆粒塵埃所發出的遠紅外線,因此這可能代表 SPT0418 這個星系的不同部分,有著不同的塵埃組成。為甚麼會這樣呢?天文學家目前也沒有肯定的答案,需要更多的觀測來進一步釐清。

任務還在繼續!TEMPLATES 計畫持續追蹤 PAH 足跡

韋伯對 SPT0418 拍攝的照片,不僅打破了人類探測過離太陽系最遠的 PAH 訊號紀錄,更展示了在重力透鏡加韋伯的攜手合作下,能大幅拓展人類觀測遙遠星系的能力。除了 SPT0418 之外,天文學家還預計觀測另外三個被重力透鏡放大的星系,尋找並研究其中 PAH 的足跡,以解開星系與星際塵埃的演化之謎。

-----廣告,請繼續往下閱讀-----
韋伯望遠鏡的「TEMPLATES 」計畫預計觀測四個被重力透鏡效應放大的天體。圖/JWST ERS Program TEMPLATES

雖然還有許多未解之謎,但韋伯傳回來的每張相片,都能讓我們能更了解這個宇宙一點點。最後想問問大家,韋伯望遠鏡正式展開拍攝工作屆滿一年,你最喜歡,或最希望我們繼續來講解的照片是哪一張呢?

  1. 土星、天王星和海王星的行星環高清照
  2. 大爆炸後 3.2 億年就誕生的的古老星系
  3. 即將蛻變為超新星的恆星照
  4. 更多你覺得美麗的照片,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

0

5
2

文字

分享

0
5
2
來自137 億年前的訊息!透過重力波,一窺「宇宙誕生」的真相──《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》
台灣東販
・2022/08/09 ・4055字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

重力波不只能提供星體的資訊!

說到重力波,一般人可能會想到黑洞、中子星、超新星這三個引發話題的星體。不過,只有在這些星體事件發生的「瞬間」,才會產生重力波,就像宇宙中的一場秀一樣。而當重力波通過後,就無法再偵測到這些資訊。

discoveries GIF
圖/GIPHY

譬如,LIGO 在 2015 年 9 月捕捉到的就是「來自 13 億光年外星體的重力波」。不過,和宇宙年齡相比,這其實是相對較年輕的星體事件。

我們有沒有辦法捕捉到很久很久以前,宇宙剛誕生時產生的重力波,也就是暴脹時期產生的重力波呢?

為什麼宇宙正在急速膨脹?

138 億年前,宇宙在超高溫、超高壓下,以「火球」的樣貌誕生,這就是所謂的「大霹靂」。在這之後,隨著宇宙的急速膨脹,溫度與密度逐漸下降,然後演變現在的樣貌。

這就是大霹靂宇宙論,也是目前多數學者支持的標準宇宙論。

-----廣告,請繼續往下閱讀-----

那麼,為什麼會產生「火球宇宙」這個超高溫、超高壓的世界呢?為什麼宇宙不是一直保持原樣(不是保持相同大小),而是會急速膨脹呢?目前有一個較被接受的說法,那就是前面提過許多次的「暴脹理論

在這個理論中,宇宙初期並沒有任何物質或光,而是一個充滿能量的真空。透過這些真空能量,宇宙用比光速還快的速度,呈指數函數膨脹。

而在暴脹時期結束後,這些真空能量轉變成了光(火球),於是產生了超高溫、超高壓的宇宙,這就是所謂的大霹靂。

目前科學界的研究和觀測結果大多支持大霹靂學說。圖/NASA

不過,如果空間中存在許多能量的話,應該會存在像重力這樣使空間收縮的力才對。為什麼空間會以超越光速的速度迅速膨脹,進入暴脹時期呢?

-----廣告,請繼續往下閱讀-----

學者們用「暴脹子場」這種量子場中的真空能量,說明暴脹時期。

暴脹子場是個未證實存在的純量場。就目前而言,它的存在仍處於假說階段。

目前已知的純量場,譬如 2012 年時,由瑞士日內瓦的歐洲核子研究組織 CERN 在 LHC 實驗中發現並發表,由希格斯玻色子產生的希格斯場。研究者們也因此而獲得 2013 年諾貝爾物理學獎,各位應該還記憶猶新。

137億歲的宇宙,至今仍然不斷膨脹

暴脹子場與希格斯場在質量與粒子的結合力上,都有著很大的差異。暴脹子場的真空中,會產生長時間的負壓。而這個負壓會造成宇宙加速膨脹。

這點與目前的暗能量機制十分類似。有人猜想暗能量可能是未發現的純量場。與暴脹時期相同,目前的宇宙中可能存在著未知純量場的真空能量,就像暗能量般,佔了全宇宙能量的 70%。

-----廣告,請繼續往下閱讀-----

宇宙中佔了 30% 能量之物質,與佔了 0.1% 的光會產生引力,但比不過真空能量所產生的斥力,所以目前宇宙正在加速膨脹。

宇宙仍在不斷的擴大。圖/NASA

順帶一提,即使物質與光的能量佔宇宙的 100%,宇宙也只是減速膨脹而已,並不會收縮回去。因為膨脹初期的速度過快,所以宇宙只會持續膨脹下去。

宇宙誕生的第一步——「原始重力波」

暴脹時期結束後,空間能量會迅速轉變成物質能量,使宇宙轉變成超高溫、超高壓、充滿輻射的狀態。這就是大霹靂「火球」。暴脹理論說明了幾點。

首先是前面提到的「膨脹速度超越光速的宇宙」

-----廣告,請繼續往下閱讀-----

這造成了我們現在看到的(宇宙視界內的)宇宙溫度擁有各向同性,在 10 萬分之 1 的精度下,為絕對溫度 2.723K(約 3K 的宇宙微波背景輻射(CMB))。

在大霹靂學說中,宇宙微波背景輻射是宇宙誕生時所遺留下來的熱輻射。圖/ESA

第二,這個急速膨脹,使宇宙的形狀在幾何學上變得相當平坦,就像膨脹的氣球一樣。

再者,暴脹子場的量子擾動,是宇宙初期物質擾動的來源,也就是3K宇宙微波背景輻射所觀測到的溫度擾動。暴脹子場也含有量子的擾動。這些小小的擾動在短時間內暴脹過程中,急速膨脹,延伸至宇宙視界的彼端,造成現今宇宙中不同區域的密度差異,這也是形成星系的種子

CMB 觀測到的「溫度擾動」,正是暴脹時期產生之暴脹子場的量子擾動。

-----廣告,請繼續往下閱讀-----

另外,在重力波方面,暴脹時期不僅會產生前述密度(溫度)的擾動,也會產生「時空擾動」。急速膨脹的過程中,真空會一直變化,成對產生重力子,這與黑洞周圍產生霍金幅射的機制類似。

學者們認為這種重力波現今仍存在,稱其為「原始重力波」。因為整個宇宙都存在這種重力波,所以也叫做背景重力波。若能檢出這種背景重力波,不只能成為暴脹理論的證據,也會是宇宙起源相關研究的一大步。

原始重力波就像是背景雜訊一樣,在宇宙四處飄蕩

黑洞雙星的合併會產生重力波,不過當重力波通過地球,被 LIGO 觀測到時,該事件便已結束。不只是黑洞,中子星雙星的合併、超新星爆發也一樣。

不過,暴脹時期產生的重力波並非如此。當時整個宇宙充滿了重力波。不過這種重力波就像白噪音般的存在,很難分析這種波的狀態,所以也叫做背景重力波。若依波的種類來分,可以將其算在駐波。如何找到這種駐波,是我們現在的課題。

-----廣告,請繼續往下閱讀-----
重力波可以分成兩種,來自近期星體活動的重力波,以及來自宇宙誕生的背景重力波。圖/台灣東販

與光波不同,重力波的偏振方式可以分成十字形(+)與交叉形(×)2 種,如下圖所示。十字形的偏振會往縱向與橫向伸縮、交叉形偏振則會往斜向伸縮,如其名所示。這兩種波疊合後,會變成圖中右方的樣子,往外傳播。

隨著時間的經過,來自黑洞的重力波會持續前進;但暴脹時期產生的重力波為「背景重力波」,是一種駐波,就像噪音一樣充滿在整個宇宙中。如果能發現這種波,就能證明暴脹理論。

重力波由十字形、交叉型兩種偏振方式所組成。圖/台灣東販

宇宙之窗:暴脹子場是什麼?

暴脹時期產生的「暴脹子場」究竟是什麼樣的東西呢?

重複一次,暴脹子場被認為是某種未知、很重的純量場,其質量上限在 1013GeV 以下。目前這個低能量宇宙中,已經不存在暴脹子場。即使透過粒子對撞,產生目前可達到的最高能量(數 10TeV,相當於數 10 京度的溫度),也沒辦法產生這種場。

-----廣告,請繼續往下閱讀-----

每種基本粒子都有著伴隨其出現的「量子場」。

譬如希格斯場會伴隨著希格斯玻色子出現。就希格斯場這種純量場而言,其存在機率最高的期望值稱做場值(真空值),是希格斯玻色子的位置。而場值周圍存在所謂的量子擾動。這種量子擾動只有在微觀尺度下有意義。

在我們生活的巨觀尺度下,幾乎察覺不到任何量子擾動,所以我們平常的生活並不會意識到它們。

我們周圍有許多電路會用到二極體。在微觀尺度下看這些電路,會看到粒子般的電子周圍有量子擾動,這種量子擾動對二極體來說相當重要。

在這種量子擾動下,電流只能沿著電路中可跳躍量子擾動的方向流動,二極體才有如此特別的性質,可見量子論也是現代科技中的重要理論。

所以說,考慮初期宇宙中暴脹子場的量子擾動,可以知道當宇宙還很小時,暴脹並非在宇宙中的各個地方同時間發生。宇宙中各個地方開始暴脹與結束暴脹的時間都不一樣。

量子擾動除了會造成時間擾動,在某些條件下,我們也可以在巨觀視界下感受到密度和溫度的擾動。圖/台灣東販

量子擾動會造成時間擾動,不過在暴脹這種急速膨脹後,會轉變成超越視界的古典擾動,所以我們會在巨觀視界下觀察到,各個地方都有著不同的密度。這就是所謂的「密度擾動」或「溫度擾動」。

總而言之,最初產生量子擾動後,隨著空間的急速膨脹而迅速延伸,轉變成了空間性的密度擾動。

備註

  • 暴脹理論與大霹靂的名稱

1981 年,佐藤勝彥在大統一模型的框架下,提出真空相變會造成宇宙呈指數函數膨脹的理論。同年,古斯也發表了同樣的想法。自宇宙誕生的瞬間起(依大統一理論,約為 10−38 秒後~10−36 秒後)宇宙會以超越光速的速度,呈指數函數膨脹,然後轉變成大霹靂的「火球」宇宙。

1980 年時,為修正愛因斯坦的重力觀點,學者們提出了以指數函數膨脹中的宇宙。

而在 20 世紀初,多數學者認為「宇宙永遠不會改變」(宇宙穩態論),沒有開始,沒有結束,大小也永遠不會改變。不過宇宙穩態論的擁護者霍伊爾(Fred Hoyle)曾在某個廣播節目中說「宇宙的開始?那是大霹靂的觀點(the ‘big bang’ idea)」,於是「大霹靂」這個名稱就定了下來。

當時連愛因斯坦都相信宇宙穩態論,否定膨脹宇宙。不過在觀測結果陸續出爐後,哈伯(Edwin Hubble)、勒梅特(Georges Lemaître)等人成功說服了愛因斯坦接受宇宙正在膨脹。

——本文摘自《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》,2022 年 6 月,台灣東販,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。