2

25
8

文字

分享

2
25
8

馬斯克:找出最佳碳捕捉技術,你就是一億美金得主!——談談碳捕捉與碳儲存

關關
・2021/04/10 ・2427字 ・閱讀時間約 5 分鐘 ・SR值 578 ・九年級

-----廣告,請繼續往下閱讀-----

重點一次看:
1. 碳捕捉技術是指收集與封存二氧化碳的技術,目的是為減少溫室氣體之一的二氧化碳。
2. 現今對環境中碳的研究包含碳捕集方式、碳儲存方式以及碳儲存地點等。
3. 目前主要碳捕捉的技術有使用吸附劑的化學反應,如 CaO、KOH,也有使用裝置進行二氧化碳的吸收。

第一屆碳捕捉億元獎金競賽,開跑!

特斯拉公司創辦人馬斯克(Elon Musk)在二月八日宣布,將祭出一億美元(相當於 28 億新台幣)的獎金,頒給在四年內研發出最佳「碳捕捉技術」的人或團體,藉此鼓勵大家找到能有效捕捉大氣中二氧化碳的方法。

過度的溫室氣體在全球暖化扮演至關重要的角色,許多學者們投入研究如何降低產生溫室氣體的產生,而溫室氣體的成分,除了水氣,再來就是二氧化碳,因此如何收集、儲存空氣中的二氧化碳,就成為了當代重要的環境議題。

當前世界首富、SpaceX 與特斯拉公司共同創辦人馬斯克(Elon Musk)懸賞巨額獎金徵求最佳碳捕捉技術。圖/wikimedia

碳捕集與封存(Carbon capture and storage, CCS),指的是收集與儲存二氧化碳的技術,目前主要捕捉方式是使用石灰(CaO)或氫氧化鉀(KOH)與二氧化碳反應,並產生沉澱。

除了透過化學反應產生沉澱的方式之外,也有些科學家想找出可以「直接」捕捉空氣中二氧化碳的方法,就像濾網一樣,即使大氣中二氧化碳的濃度不高,我們也可以透過這些方法從大氣直接篩選出二氧化碳並儲存。

-----廣告,請繼續往下閱讀-----

以 2019 年發表在 Energy & Environmental Science 的研究為例,來自麻省理工學院(MIT)的團隊開發出一種類似電池的裝置,可以透過充、放電來捕捉二氧化碳,注入空氣時,該裝置會開始充電,利用特殊材料製成的電極來吸附空氣中的二氧化碳;反之,放電時,電池便會釋出比較純、比較濃的二氧化碳。

這些是當前已經開發出來,或是正在研究的碳捕捉方法,而馬斯克希望透過高額獎金的懸賞,鼓勵各大科學家或是科研機構可以找到其他更有效率的捕捉方式。

從燃燒過程前中後下手,展開碳捕捉行動

以往碳捕捉技術大部分都應用在哪裡呢?在現今工業中,技術的部署多著眼於「排放大量二氧化碳」的地方,也就是火力發電廠!

在火力發電廠中,現階段使用的碳捕捉方法包括以下三種:

-----廣告,請繼續往下閱讀-----
  1. 燃燒前處理(pre-combustion):是指在燃料被燃燒「前」,將含有碳的化合物氣化並反應成二氧化碳,讓我們可以比較容易分離並儲存。
  2. 燃燒後處理(post-combustion):從燃燒「後」的煙氣分離出二氧化碳,再由其他物質協助將之吸收。
  3. 富氧燃燒(oxyfuel):在燃燒的過程中,使用過量的純氧來燃燒時,燃燒產生的物質就會變得更簡單,僅會產生水氣和二氧化碳,我們只需要降溫就可以凝結並排除水氣,直接儲存剩下的二氧化碳。
現今工業中,碳捕捉技術部署多著眼於排放大量二氧化碳的工廠如火力發電廠。圖/Pixabay

碳儲存:回歸大自然也能另有他用

二氧化碳的儲存也是一大課題,除了將其作為工業上的製程原料,學者們也討論如何儲存於「大自然」中,並不希望需如同核廢料的封裝儲存,這也是對大自然傷害較少的做法之一。

目前將二氧化碳儲存於自然的方法有數種,例如將二氧化碳注入已衰竭的油田後,不但可以封存二氧化碳,也可以驅散油田中的殘餘油,提高老油田的採收率。

注入衰竭的天然氣田也是儲存的方法之一,當我們將高壓二氧化碳注入天然氣田時,由於重力作用,分子量 44 的二氧化碳會下沉,並且推擠主要成分為甲烷、分子量 16 的天然氣,使得天然氣上移,進而提高天然氣的採收率。

此外,學者發現把二氧化碳注入深部鹹水層也是一種可行的解決辦法,由於深部鹹水層是相對封閉的流體系統,當二氧化碳被注入後,可逐漸溶於鹽水中而長期儲存,而且二氧化碳可以協助驅替液體中的礦產資源,像是鋰鹽、鉀鹽等等。

-----廣告,請繼續往下閱讀-----

如果將二氧化碳注入煤層,二氧化碳可嵌入煤層中的孔洞,達到封存的效果,且煤層通常含有甲烷,因此二氧化碳也可以協助我們驅替甲烷並收集。

可惜的是,以上封存二氧化碳的做法成本都太高了,即使這些封存辦法可以增加能源的採收率,但是對對於石油、天然氣等礦產業者而言,寧願選擇其他價格更低廉的驅油的技術來提升衰竭油田的採收率,因此,在油田中使用二氧化碳驅油的技術並未被廣泛運用。

將二氧化碳注入衰竭的油田或天然氣田,也是碳儲存方法之一。圖/Pixabay

成本與效率問題仍待突破

總結以上,要拿到馬斯克的獎金並非易事,不僅要可執行,也要考慮到效率、成本的問題,在研發碳捕捉新技術的過程中,更需要需深入了解二氧化碳的物理性質、化學反應,才可以順利推演出適合的捕捉方式。

隨著溫室氣體持續被過度排放,各大企業也開始對環境改善做投資,無論是研究、贊助或是這次馬斯克舉辦的競賽,都將帶動其他人或企業對氣候變遷的關注。但或許在我們日常中節能減碳、工業製程上降低碳排放,這些根源的行動才是減緩全球暖化的最好良藥。

-----廣告,請繼續往下閱讀-----

資料來源:

  1. 【氣候變遷Q&A】(13) 什麼是碳捕捉與封存技術?碳捕集技術的主要形式?
  2. 充放電之間,也能輕鬆捕獲二氧化碳
  3. Carbon capture and storage

延伸閲讀:

  1. 離減緩氣候變遷更近一步?新技術可望讓碳捕捉成本大幅下降
  2. 好大的空氣清淨機呀—專訪工研院鈣迴路碳捕捉技術團隊
  3. 碳封存,是逆天而行的工程神話,還是順應自然的科學奇觀?
文章難易度
所有討論 2
關關
1 篇文章 ・ 2 位粉絲

0

3
1

文字

分享

0
3
1
溫室效應有救了?把二氧化碳埋進地底吧!  
鳥苷三磷酸 (PanSci Promo)_96
・2024/03/25 ・1389字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 台灣中油股份有限公司 委託,泛科學企劃執行。 

近年全球對於氣候變遷的關注日益增加,各國紛紛宣布淨零排放(Net Zero Emissions)的目標,聯手應對氣候變遷所帶來的挑戰。淨零排放是指將全球人為排放的溫室氣體量和人為移除的量相抵銷後為零。而「碳捕存再利用技術(Carbon Capture Utilization and Storage,簡稱 CCUS)」技術被視為達成淨零重要的措施之一。 

CCUS 示意圖。圖/INPEX CCS and CCUS Business Introduction Video 2022 

「碳捕存再利用技術 CCUS」是什麼? 

CCUS 技術可以有效地將二氧化碳從大氣中捕捉並封存,進而減少溫室氣體的排放。CCUS 包含捕捉、運輸、封存或再利用三個階段,也就是將二氧化碳抓下來,並且存起來或是轉換成其他有價值的化學原料。關於如何捕捉二氧化碳,可以參考我們先前拍的影片《減碳速度太慢?現在已經能主動把二氧化碳抓下來!?抓下來的二氧化碳又去了哪裡?》。 

至於捉下二氧化碳之後,該存放在哪裡呢?科學家們看上一個經過數千萬年驗證、最適合儲存的地方——地底。沒錯,地底可不只有石頭跟蜥蜴人,只要這些石頭中存在孔隙,就可以儲存氣體或液體。最常見的就是天然氣與石油。現在,我們只要將二氧化碳儲存到這些孔隙就好。 

-----廣告,請繼續往下閱讀-----

封存的地質條件也很簡單,第一,要有一層擁有良好空隙率及滲透性的「儲集層」,通常是砂岩。第二,有一層緻密、不透水且幾乎無孔隙的岩石,用來阻擋儲集層的氣體向上逸散的「蓋層」,常見的是頁岩。只要儲集層在下,蓋層在上,就是一個理想的儲存環境。 

臺灣哪裡適合地質封存? 

臺灣由東往西,從西部麓山帶、西部平原、濱海到臺灣海峽,都有深度達 10 公里的廣大沉積層,並且砂岩與頁岩交替出現,可說是良好的儲氣構造。 

至於臺灣適合封存二氧化碳的地點,有個很直接的作法,就是參考石油、天然氣的儲存場域就好,也就是所謂的「枯竭油氣層」。將開採過的天然氣或石油的空間,重新拿來儲存二氧化碳。而臺灣的油氣田,主要集中在西部的苗栗與臺南一帶,在 1959~2016 年,累計產了 500 億立方公尺的天然氣,和超過 500 萬公秉的凝結油。 

臺灣油氣田位置圖。圖/《科學發展》2017 年 6 月第 534 期
鐵砧山每年封存 10 萬噸二氧化碳(相當於通霄鎮 1/3 人口一年的二氧化碳排放量)。圖/台灣中油

而至今這些枯竭油氣田,適合來做二氧化碳的封存。例如苗栗縣通霄鎮的鐵砧山是臺灣目前陸上發現最大的油氣田,不只是封閉型背斜構造,更擁有厚實緻密的緻密蓋岩層。在原有油氣田枯竭後,從民國 77 年開始轉為天然氣儲氣窖利用原始天然氣儲層調節北部用氣的方式,已持續超過 35 年。因此中油也正規劃在鐵砧山氣田選擇合適的蓋層和鹽水層,進行小規模的二氧化碳注入,作為全國首座碳封存的示範場址。並同時進行多面向的長期監測,驗證二氧化碳封存的可行性與安全性。 

-----廣告,請繼續往下閱讀-----

更多詳細內容及國際 CCUS 案例,歡迎觀看影片解惑! 

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

3
3

文字

分享

1
3
3
改良天然氣發電技術不會產生二氧化碳?灰氫、藍氫、綠氫分別是什麼?
PanSci_96
・2024/02/11 ・5656字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

用天然氣發電可以完全沒有二氧化碳排放?這怎麼可能?

2023 年 11 月,台電和中研院共同發表去碳燃氫技術,說是經過處理的天然氣,燃燒後可以不產生二氧化碳。

誒,減碳方式百百種,就是這個聽起來最怪。但仔細研究後,好像還真有這麼一回事。這種能發電,又不產二氧化碳的巫術到底是什麼?大量使用天然氣後,又有哪些隱憂是我們可能沒注意到的?

去碳燃氫是什麼?

去碳燃氫,指的是改良現有的天然氣發電方式,將甲烷天然氣的碳去除,只留下乾淨的氫氣作為燃燒燃料。在介紹去碳燃氫之前,我們想先針對我們的主角天然氣問一個問題。

-----廣告,請繼續往下閱讀-----

最近不論台灣、美國或是許多國家,都提升了天然氣發電的比例,但天然氣發電真的有比較好嗎?

好像還真的有。

根據聯合國底下的政府間氣候變化專門委員會 IPCC 的計算報告,若使用火力發電主要使用的煙煤與亞煙煤作為燃料,並以燃燒率百分之百來計算,燃料每釋放一兆焦耳的能量,就會分別產生 94600 公斤和 96100 公斤的二氧化碳排放。

如果將燃料換成天然氣,則大約會產生 56100 公斤的二氧化碳,大約只有燃燒煤炭的六成。這是因為天然氣在化學反應中,不只有碳元素會提供能量,氫元素也會氧化成水並放出能量。

圖/pexels

除了碳排較低以外,煤炭這類固體燃料往往含有更多雜質,燃燒時又容易產生更多的懸浮顆粒例如 PM 2.5 ,或是溫室效應的另一主力氧化亞氮(N2O)。具體來說,產生同等能量下,燃燒煤炭產生的氧化亞氮是天然氣的 150 倍。

當然,也別高興這麼早,天然氣本身也是個比二氧化碳更可怕的溫室氣體,一但洩漏問題也不小。關於這點,我們放到本集最後面再來討論。

-----廣告,請繼續往下閱讀-----

燃燒天然氣還是會產生二氧化碳?

雖然比較少,但也有燃煤的六成。像是綠能一樣的零碳排發電方式,不才是我們的終極目標嗎?別擔心,為了讓產生的二氧化碳量減到最小,我們可以來改造一下甲烷。

圖/unsplash

在攝氏 700 至 1100 度的高溫下,甲烷就會和水蒸氣反應,變成一氧化碳和氫氣,稱為蒸汽甲烷重組技術。目前全球的氫氣有 9 成以上,都是用此方式製造的,也就是所謂的「灰氫」。

而產物中的一氧化碳,還可以在銅或鐵的催化下,與水蒸氣進一步進行水煤氣反應,變成二氧化碳與氫氣。最後的產物很純,只有氫氣與二氧化碳,因此此時單獨將二氧化碳分離、封存的效率也會提升不少,也就是我們在介紹碳捕捉時介紹的「燃燒前捕捉」技術。

去碳燃氫又是什麼?

圖/pexels

即便我們能將甲烷蒸氣重組,但只要原料中含有碳,那最終還是會產生二氧化碳。那麼,我們把碳去掉不就好了?去碳燃氫,就是要在第一步把甲烷分解為碳和氫氣。這樣氫氣在發電時只會產生水蒸氣,而留下來的碳黑,也就是固態的碳,可以做為其他工業原料使用,提升附加價值。

-----廣告,請繼續往下閱讀-----

在氫氣產業鏈中,我們習慣將氫氣的來源做顏色分類。例如前面提到蒸氣重組後得到的氫氣被稱為灰氫,而搭配碳捕捉技術的氫,則稱為藍氫。完全使用綠能得到的氫,例如搭配太陽能或風力發電,將水電解後得到最潔淨的氫,則稱為綠氫。而介於這兩者之間,利用去碳燃氫技術分解不是水而是甲烷所得到的氫,則稱為藍綠氫。

但先不管它叫什麼氫,重點是如果真的不會產生二氧化碳,那我們就確實多了一種潔淨能源可以選擇。這個將甲烷一分為二的技術,聽起來應該也不會太難吧?畢竟連五◯悟都可以一分為二了,甲烷應該也行吧。

甲烷如何去碳?

甲烷要怎麼變成乾淨的氫氣呢?

很簡單,加溫就好了。

圖/giphy

只要加溫到高過攝氏 700 度,甲烷就會開始「熱裂解」,鍵結開始被打斷,變成碳與氫氣。

-----廣告,請繼續往下閱讀-----

等等等等…為了發電還要耗費能源搞高溫熱裂解,划算嗎?

甲烷裂解確實是一個吸熱反應,也就是需要耗費能量來拆散原本的鍵結。根據反應式,一莫耳甲烷要吸收 74 千焦耳的熱量,才會裂解為一莫耳的碳和兩莫耳的氫氣。但是兩莫耳的氫氣燃燒後,會產生 482 千焦耳的熱量。淨能量產出是 408 焦耳。與此相對,直接燃燒甲烷產生的熱量是 891 千焦耳。

而根據現實環境與設備的情況,中研院與台電推估一公噸的天然氣直接燃燒發電,與先去碳再燃氫的方式相比,發電量分別為 7700 度和 4272 度。雖然因為不燃燒碳,發電量下降了,但也省下了燃燒後捕存的成本。

要怎麼幫甲烷去碳呢?

在近二十幾年內,科學家嘗試使用各種材料作為催化劑,來提升反應效率。最常見的方式,是將特定比例的合金,例如鎳鉍合金,加熱為熔融態。並讓甲烷通過液態的合金,與這些高溫的催化劑產生反應。實驗證實,鎳鉍合金可以在攝氏 1065 度的高溫下,轉化 95% 的甲烷。

-----廣告,請繼續往下閱讀-----

中研院在 2021 年 3 月,啟動了「 Alpha 去碳計畫」,進行去碳燃氫的設備開發。但團隊發現,盡管在理論上行得通,但實際上裝置就像是個不受控的火山一樣,熔融金屬與蒸氣挾帶著碳粒形成黏稠流體,不斷從表面冒出,需要不斷暫停實驗來將岩漿撈出去。因此,即便理論上可行,但熔融合金的催化方式,還無法提供給發電機組使用。

去碳燃氫還能有突破嗎?

有趣的是,找了好一大圈,驀然回首,那人卻在燈火闌珊處。

最後大家把目光放到了就在你旁邊,你卻不知道它正在等你的那個催化劑,碳。其實過去就有研究表明碳是一種可行的催化劑。但直到 201 3年,才有韓國團隊,嘗試把碳真的拿來做為去碳燃氫的反應催化劑。

圖/pexels

他們在高溫管柱中,裝填了直徑 30 nm 的碳粒。結果發現,在 1,443 K 的高溫下,能達到幾乎 100 % 的甲烷轉化。而且碳本身就是反應的產物之一,因此整個裝置除了碳鋼容器以外,只有碳與氫參與反應,不僅成本低廉,要回收碳黑也變得容易許多。

-----廣告,請繼續往下閱讀-----

目前這個裝置需要加緊改良的,就是當碳不斷的積蓄,碳粒顆粒變大,反應會跟著下降。如何有效清除或更換濾網與反應材料,會是能否將此設備放大至工業化規模的關鍵。

最後,我們回頭來談談,在去碳燃氫技術逐漸成熟之後,我們可能需要面對的根本問題。

天然氣是救世主,還是雙面刃?

去碳燃氫後的第一階段,還是會以天然氣為主,只混和 10 % 以下的氫氣作為發電燃料。

這是因為甲烷的燃燒速度是每秒 0.38 公尺,氫氣則為每秒 2.9 公尺,有著更劇烈的燃燒反應。因此,目前仍未有高比例氫氣的發電機組,氫氣的最高比例,通常就是 30 % 。

目前除了已成功串連,使用 10 % 氫氣的小型發電機組以外。台電預計明年完成在興達電廠,使用 5 % 氫氣的示範計畫,並逐步提升混和氫氣的比例。根據估計,光是 5 % 的氫氣,就能減少每年 7000 噸的二氧化碳排放。

-----廣告,請繼續往下閱讀-----

但隨著天然氣的使用量逐步提高,我們也應該同時留意另一個問題。

天然氣洩漏導致的溫室效應,是不可忽視的!

根據 IPCC 2021 年的報告,若以 20 年為評估,甲烷產生的溫室效應效果是二氧化碳的 82.5 倍,以 100 年為評估,效果為 29.8 倍,是僅次於二氧化碳,對於溫室效應的貢獻者第二名。這,不可不慎啊。

圖/unsplash

從石油、天然氣井的大量甲烷洩漏,加上運輸時的洩漏,如果沒有嚴格控管,我們所做的努力,很有可能就白費了。

非營利組織「環境保衛基金」曾在 2018 年發表一篇研究,發現從 2012 到 2018 年,全球的甲烷排放量增加了 60 % ,從煤炭轉天然氣帶來的好處,可能因為甲烷洩漏而下修。當然,我們必須相信,當這處漏洞被補上,它還是能作為一個可期待的發電方式。

圖/giphy

另一篇發表在《 Nature Climate Change 》的分析研究就說明,以長期來看,由煤炭轉為天然氣,確實能有效減緩溫室氣體排放。但研究也特別提醒,天然氣應作為綠能發展健全前的過渡能源,千萬別因此放慢對於其他潔淨能源的研究腳步。

去碳燃氫技術看起來如此複雜,為什麼不直接發展綠氫就好了?

確實,綠氫很香。但是,綠氫的來源是電解水,而反應裝置也不可能直接使用雜質混雜的海水,因此若要大規模發展氫能,通常需要搭配水庫或海水淡化等供水設施。另外,綠氫本來就是屬於一種儲能的形式,在台灣自己的綠能還沒有多到有剩之前,當然直接送入電網,還輪不到拿來產綠氫。

圖/unsplash

相比於綠氫,去碳燃氫針對的是降低傳統火力發電的碳排,並且只需要在現有的發電廠旁架設熱裂解設備,就可以完成改造。可以想像成是在綠能、新世代核能發展成熟前的應急策略。

當然,除了今天提到的灰氫、藍氫、綠氫。我們還有用核能產生的粉紅氫、從地底開採出來的白氫等等,都還沒介紹呢!

除了可以回去複習我們這一集的氫能大盤點之外,也可以觀看這個介紹白氫的影片,一個連比爾蓋茲都在今年宣布加碼投資的新能源。它,會是下一個能源救世主嗎?

最後,也想問問大家,你認為未來 10 年內,哪種氫能會是最有潛力的發展方向呢?

  1. 當然是綠:要押當然還是壓最乾淨的綠氫啦,自產之前先進口也行啊。
  2. 肯定投藍:搭配碳捕捉的藍氫應該會是最快成熟的氫能吧。
  3. 絕對選白:連比爾蓋茲也投資的白氫感覺很不一樣。快介紹啊!

什麼?你覺得這幾個選項的顏色好像很熟悉?別太敏感了,下好離手啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1219 篇文章 ・ 2177 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

9
5

文字

分享

0
9
5
聲音是什麼顏色、什麼味道?談聯覺與跨感官反應
雅文兒童聽語文教基金會_96
・2023/12/21 ・3162字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/陳品均|雅文基金會聽語科學研究中心 助理研究員

星期一,聽起來是什麼顏色?

先別急著回答藍色,對某些人來說,這個答案可不是受到情緒經驗的影響,而是真實的色彩反應。

星期怎麼可能聽起來有顏色?事實上,根據研究大約有 4% 左右的人[1],在某個認知或感官接收資訊刺激後,另一種感覺或認知會同步自發的出現,並且具有特定規律,此反應與刺激本身並不一定相關,這些人被稱為聯覺者,擁有像是聽到聲音時,除了聲音的反應外,同時認知到了形狀或顏色等的特徵。

舉例而言,若一位聯覺者聽見 A,除了聲音 A 以外還自動產生了它是紅色的聯覺認知,則不論是在 Apple 或 Angel 中,A 對他而言都是紅色的,不會因為 Angel 比較常以白色的型態出現,便轉換成白色的 A。在學界,聯覺的發展和原因尚在探索中,有些研究指出可能與小時候接觸抽象觀念時的發展、遺傳以及大腦神經機制有關 [2、3]

聽覺及視覺的聯覺者在聽到詞彙時,除了聲音外,同時自動產生了色彩的認知反應。(圖片來源:作者自行繪製)

隨著聯合反應的感官組成不同,聯覺者的異能經驗也五花八門

你能想像當單一感官接收某一訊息時,同時產生另一感官的不同認知是怎樣的經驗嗎?BBC 的科普節目《Horizon》其中一集< Derek Tastes of Earwax >記錄了數名聯覺者的跨感官連結經驗。其中,一名酒吧老闆兼有聽覺和味覺的聯覺,當他聽見各式各樣的詞彙時,宛如品嚐綜合風味豆,讓他飽嘗各種滋味[4]

-----廣告,請繼續往下閱讀-----
聽覺和味覺的聯覺者,聽見各種名詞之際,嘴巴就像是咀嚼著各種滋味。(圖片來源:pexels

另一名受訪者是聽覺及視覺的聯覺者,經實驗後科學家發現,若聽到數字或是月份日期時,這名受訪者的腦部除了聽覺區域外,視覺區域也會產生反應。特別的是,他本身是一名視覺障礙者。

聽覺及視覺的視障聯覺者聽到日期時,腦部視覺及聽覺區域都有反應。(圖片來源:作者自行繪製)

感官認知上特別的連結,讓聯覺者所經驗的世界像是搭載了酷炫的特效般,使他們在藝術創作及記憶上屢有出色的表現,代表人物有:知名文學《蘿莉塔》作者 Nabokov[5]、以引起聽眾共鳴聞名的音樂家 Olivier Messiaen、表現主義的經典畫家 Wassily Kandinsky 等。若想檢視自身是否為天選之人的聯覺者,除了自我覺察是否有異於常人的跨感官連結反應外,目前也有相關的測驗[6]可以參考。

你我的類聯覺」跨感官反應

若說聯覺是天生具有特別音感的人,那麼跨感官反應肯定就是音樂家們透過經驗累積產生的直覺判斷,兩者不盡相同、卻又有其類似之處。那麼,不具有聯覺的異能,我們難道只能認命當麻瓜了嗎?

別急,縱使不是聯覺者,普通人也多少會有類似聯覺的經驗,這樣的類聯覺稱作跨感官反應,往往在我們渾然不覺時,悄悄地舉辦同樂會,並影響人們的喜好、感知和行為等。

-----廣告,請繼續往下閱讀-----

先來看看研究者們發現的有趣現象,請看這兩個形狀:

圖片來源:作者自行繪製

過去曾有研究者以 bouba 及 kiki 兩個虛構詞進行實驗,九成受訪者傾向認為雲朵狀的形狀是 bouba,尖銳的形狀則被認為是 kiki,即使這些受訪者其實並不認識兩個假詞,但基於聲音和形狀的特徵,卻讓多數人做出這樣的選擇[7]

後續研究者也繼續投入各式各樣以不同語言文化環境為背景、不同年齡階層為對象的研究,有趣的是,結果顯示此現象幾乎是跨語言、跨文化、跨地域存在的,甚至在少與外界互動的部落居民,或是尚未識字的幼兒身上,也有這類從聲音特徵影響其視覺形狀感知歸類的效應 [8、9、10]。除了虛構的詞彙以外,有些研究者使用真實存在的詞彙(如:Bob 及 Kirk),來對應圓潤及尖銳的剪影或人臉,最後也有相似的結果[11、12]

一般人的經驗和認知,往往加速催化感官間的互相影響

除了語言與形狀外,我們生活中還有許多感官互相影響的例子,來試試看下面這張圖,你聽見聲音了嗎?

-----廣告,請繼續往下閱讀-----
(圖片來源:GIPHY

瑞克搖(Rickrolled)的影片在 2019 年突破了 10 億次的 youtube 觀看次數[13、14],迷因化後大量的連結及有聲影片傳播,使得曾經的觀眾在看見這張圖時根據經驗,腦海中自然出現了<Never Gonna Give You Up>的旋律。

然而,不同於聯覺,若沒有經驗累積,跨感官的反應便無法被觸發,以上圖為例,即便觀看次數如此驚人,對於未曾接觸過此影片的人而言,由於缺乏經驗和認知的累積,在看見該張圖片時,理所當然也無法產生相對的聲音反應。

將跨感官反應置入在行銷中的策略,現正流行中!

在大量接收資訊的生活中,我們不自覺地累積了許多感官經驗,成為由單一感官啟動與其他感官同步作用的引線。行銷高手們從中嗅出了商機,精明的將消費者們不由自主產生的跨感官反應也算進了商業行銷的一環。如:某知名咖啡品牌在過去曾進行一項實驗,將兩杯一樣的咖啡配以不同的音效提供給不知情的消費者。前一杯搭配液體沖入便宜咖啡杯、攪拌,模仿沖泡即溶咖啡的聲音,另一杯則在播放磨豆聲、蒸氣聲以及倒進陶瓷杯的聲響後,再次提供給消費者,結果發現在不同的聲音所營造的環境氛圍下,同樣的兩杯咖啡,人們覺得後一杯更加濃醇香,並願意為之付出更高的金額[15]

近年熱門的 ASMR 亦是味覺和聽覺的跨感官應用,若想了解更多,別錯過之前的專欄文章﹤加點「聲音調味料」,享受聽覺與味覺的極致饗宴吧!﹥。

-----廣告,請繼續往下閱讀-----

下次若覺得某張圖片有聲音、光看某部電影的宣傳海報就起雞皮疙瘩,或是外帶的咖啡沒有內用的美味,也許就是跨感官反應悄悄影響了你的感覺。最後,讓我們回到一開始的問題,星期一聽起來是什麼顏色的?不論是不是藍色的,何不試試透過 GIF 圖和親朋好友無聲地分享你震耳欲聾的情感吧! 

參考資料

  1. Simner, J., Mulvenna, C., Sagiv, N., Tsakanikos, E., Witherby, S. A., Fraser, C., Scott, K., & Ward, J. (2006). Synaesthesia: The prevalence of atypical cross-modal experiences. Perception, 35(8), 1024–1033. https://doi.org/10.1068/p5469 
  2. Bankieris, K., & Simner, J. (2015). What is the link between synaesthesia and sound symbolism? Cognition, 136, 186–195. https://doi.org/10.1016/j.cognition.2014.11.013
  3. Freeman, E. D. (2020). Hearing what you see: Distinct excitatory and disinhibitory mechanisms contribute to visually-evoked auditory sensations. Cortex, 131, 66–78. https://doi.org/10.1016/j.cortex.2020.06.014
  4. BBC. (2014, September 17). Science & Nature – Horizon. BBC.
  5. Eagleman, D. (2023, September 6). Wednesday is Indigo Blue. David Eagleman. https://eagleman.com/books/wednesday-is-indigo-blue/
  6. Eagleman, D. M., Kagan, A. D., Nelson, S. S., Sagaram, D., & Sarma, A. K. (2007). A standardized test battery for the study of Synesthesia. Journal of Neuroscience Methods, 159(1), 139–145. https://doi.org/10.1016/j.jneumeth.2006.07.012
  7. Ramachandran, V. S., & Hubbard, E. M. (2001). Synaesthesia–a window into perception, thought and language. Journal of consciousness studies, 8(12), 3-34.
  8. Ozturk, O., Krehm, M., & Vouloumanos, A. (2013). Sound symbolism in infancy: Evidence for sound–shape cross-modal correspondences in 4-month-olds. Journal of Experimental Child Psychology, 114(2), 173–186. https://doi.org/10.1016/j.jecp.2012.05.004
  9. Styles, S. J., & Gawne, L. (2017). When does Maluma/takete fail? Two key failures and a meta-analysis suggest that phonology and phonotactics matter. I-Perception, 8(4), 204166951772480. https://doi.org/10.1177/2041669517724807
  10. Ćwiek, A., Fuchs, S., Draxler, C., Asu, E. L., Dediu, D., Hiovain, K., Kawahara, S., Koutalidis, S., Krifka, M., Lippus, P., Lupyan, G., Oh, G. E., Paul, J., Petrone, C., Ridouane, R., Reiter, S., Schümchen, N., Szalontai, Á., Ünal-Logacev, Ö., Winter, B. (2021). The bouba/kiki effect is robust across cultures and writing systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1841). https://doi.org/10.1098/rstb.2020.0390
  11. Barton, D. N., & Halberstadt, J. (2017). A Social Bouba/Kiki Effect: A bias for people whose names match their faces. Psychonomic Bulletin &amp; Review, 25(3), 1013–1020. https://doi.org/10.3758/s13423-017-1304-x 
  12. Sidhu, D. M., Pexman, P. M., & Saint-Aubin, J. (2016). From the bob/kirk effect to the Benoit/éric effect: Testing the mechanism of name sound symbolism in two languages. Acta Psychologica, 169, 88–99. https://doi.org/10.1016/j.actpsy.2016.05.011
  13. BBC. (2021, July 29). Rick Astley rolls into a billion YouTube views. BBC News. https://www.bbc.com/news/technology-58011677
  14. BBC. (2018, September 10). Rick Astley on the Rickroll meme that made him an online legend. BBC Scotland. https://www.bbc.co.uk/programmes/articles/5D3ZmWf1hJmCxCc5Vn0sS64/rick-astley-on-the-rickroll-meme-that-made-him-an-online-legend
  15. Jones, R. (2021)。跨感官心理學:解鎖行為背後的知覺密碼,改變他人、提升表現的生活處方箋 (陳松筠譯)。商周出版。

討論功能關閉中。

雅文兒童聽語文教基金會_96
54 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。