0

0
0

文字

分享

0
0
0

怎樣選一支好羽球拍?重量、平衡點、與硬度

活躍星系核_96
・2012/11/20 ・1895字 ・閱讀時間約 3 分鐘 ・SR值 494 ・六年級

-----廣告,請繼續往下閱讀-----

文 / 游富宇 (A serious endorphin user)

羽球是個看似簡單又很有趣的運動,室內風雨無阻,又不用與對手作親密接觸,再加上不失一個認識異性的好機會,所以在近來羽毛球有越來越風行的趨勢,而剛入門的朋友總是會遇到「怎麼選球拍?」這個不是頂重要卻又有點惱人的問題。有人說:「球拍越輕越好」也有人說:「看你是攻擊型還是防守型,攻擊型就拿攻擊拍,防守型就拿防守拍」,到底他們在說啥?在此簡單介紹兩種最常被討論也最重要的球拍特性。

重量與平衡點:

很多時候會聽到一些球友討論誰誰誰拿幾 U 的球拍或是 85.285、90.290 等等….其實他們在說的 U 指的是重量,數字越小代表重量越重,而 85.285 的意思是這隻球拍重量是 85g,從拍子底座往上量質心是落在 285mm。球拍不是越輕越好嗎?no no no~其實是看各人的習慣性。

比較重的球拍可能就像我那體重 120kg 的同學在籃下搶籃板,光是站在原地,誰撞他誰飛走;比較輕的球拍就像只有 60kg 的我,最大的優勢就是靈巧(??)一點,左閃右躲讓自己不要被撞飛。那平衡點勒?在《少林36房》這部電影中學成下山的三德和尚在街上遇到了正在與清廷鷹犬打鬥的打鐵匠,鐵匠拿著他的大鐵鎚左鎚右揮,無奈大鐵鎚實在是太重了,只要被閃過第一擊,接下來就是被反 K,三德告訴他手拿鐵鎚的鐵質部用木柄跟他們打,結果當然是正義的一方獲勝囉!球拍呢~也一樣,平衡點越靠近拍頭揮舞起來也就更費力(但是跟鐵鎚一樣,被打到可是比較痛的)。

-----廣告,請繼續往下閱讀-----

常常聽到的攻擊拍防守拍就是與重量平衡點有關,如果重量較重、平衡點比較偏拍頭,在擊球的時候球的受力較大,適合殺球等攻擊性的球路,所以被稱之為攻擊拍。同樣的如果重量較輕、平衡點較接近握把,因為再揮動時靈活度較好適合防守,所以又稱之為防守拍。可以把揮拍想成典型的旋轉,從旋轉動能看出一點端倪。

旋轉動能 E=1/221/2mr2ω

如果重量(m)相同、拍子想要在經過相同的角度後揮的一樣快(ω相同),增加平衡點距離(r)所需要給予球拍的動能也會增加。同樣的,增加球拍重量,所需的動能也會增加。因為揮動的角度相同,所以當所需要的動能越大,要越“用力”才能揮的一樣快(角速度ω相同)。也可以想見,具有較高旋轉動能的球拍,擊出的球球速也是會比較快的!

中管硬度

想必大家都在電視上看過表演空手劈磚,下面都會有字幕:叔叔有練過,小朋友不要在家裡學。我小時候就曾經很好奇要怎麼樣才能用手把磚頭劈斷。因為太好奇了,所以對下面那段字幕視而不見。有一次就真的拿一顆磚頭來劈劈看,當然是劈不斷而且手流血痛一天還不敢講。過了許久才在電視上看到某位師父說出了訣竅:力量要集中在劈下去的那一瞬間,力量一分散就劈不開了。

-----廣告,請繼續往下閱讀-----

很多球友在打球的時候往往力量也是挺分散的,如果剛好那天心血來潮拿了一支硬中管的球拍打球,就會覺得明明就已經很用力了球還是不太願意飛,因為擊球瞬間球停留在硬中管的球拍上的時間比較短,當還在很用力揮拍時,球已經跟球拍 kiss bye 了,造成了許多力量被浪費掉。相反地,揮拍力量集中的球友拿到了軟中管的球拍,常常會覺得力量都已經發完了球卻還在跟球拍 kiss。但是這些都只是我們從手感與經驗所做出的推論,實際上究竟是怎麼一回事?

早期的研究顯示揮拍以及球與球拍接觸的過程中,球拍會有一個彎曲和復原的過程,當球拍尚未完成復原時球已離開拍面,造成了能量的浪費。在一篇題目為:「不同羽球拍勁度與平衡點對於揮拍速度及球速表現之影響」的論文中,研究者藉由高速攝影機了解球拍的物理特性中勁度(中管硬度)及平衡點是如何影響揮拍速度與球速。從實驗結果可以看出,揮拍速度與平衡點有較明顯的關係;而如果想要球速有顯著的提昇,調整平衡點可以得到比較顯著的效果,而球拍勁度需要揮拍速度達到 90km 以上才會對球速有明顯的差異。可想而知揮拍速度達到 90km 以上的高手想必會比較習慣使用硬度較大的球拍,藉由較少的能量消耗來得到較高的球速。但是在追求球速的同時也要考慮體能上的負荷,以免受傷,反而得不償失。

圖片擷取自林雅函、相子元 (2010)。不同羽球拍勁度與平衡點對於揮拍速度及球速表現之影響。

總而言之,球拍充其量不過就是打球的工具,球要打的好關鍵還是球技與打球的心情,所以不論是多貴或是別人評價多差,輕如鴻毛、重如泰山、軟 QQ、硬梆梆,只要是自己順手的球拍就是好球拍!

-----廣告,請繼續往下閱讀-----

參考資料:

Fundamentals of Physics, John Wiley & Sons Inc,20100308

林雅函、相子元 (2010)。不同羽球拍勁度與平衡點對於揮拍速度及球速表現之影響。 碩士論文,國立臺灣師範大學,台北市

文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

70
1

文字

分享

2
70
1
想站 C 位,先站定位——聽覺和身體平衡原來緊密相關!
雅文兒童聽語文教基金會_96
・2022/12/24 ・1721字 ・閱讀時間約 3 分鐘

  • 雅文兒童聽語文教基金會 研究員 林桂如
平衡感不只依靠眼睛和大腦,更與聽覺系統息息相關! 圖/Pixabay

如果平衡感好,不僅可以輕易維持單腳站立的金雞獨立姿勢,還可以像韓國防彈少年、Twice 天團的成員們一樣,迅速變換舞蹈動作,也不至於跌出鏡頭外!

只是,你知道嗎?平衡感和臉蛋無關,更不只依靠眼睛和大腦!我們的耳朵,其實是維持身體平衡息息相關的要角。許多平衡感不佳的人,最後往往發現問題出在他們的耳朵上,箇中原因便是當內耳出現問題,將可能導致平衡跟著出現異狀,例如:步履不穩、搖晃,天旋地轉的眩暈,讓人站也不「適」、坐也不「適」。

聽覺和身體平衡的關係

如欲維持良好的身體平衡,將有賴聽覺系統中前庭系統(vestibular system)將接受到外界刺激,經前庭神經將刺激信息傳入相應的腦幹內的前庭神經核和小腦,再經視覺系統(visual system)和體感覺系統(somatosensory system)傳送至腦內更高層次的中樞神經系統處理,最後以運動神經系統做出反應。

國外相關研究指出,如果聽力受損時,前庭系統功能很可能也會有損傷,以致出現協調與平衡能力上的問題,甚至阻礙聽覺障礙(以下簡稱聽障)者的動態平衡(dynamic balance)(如:跑步、踢球)、靜態平衡(static balance)(如:單足站立)和協調能力的發展1。因此,鑒於當聽力損失程度越重,其前庭功能失調的風險也越高,反映在生活中的表現可能為較晚學走、學習或從事關於平衡的活動時常受挫,故建議當個人的純音平均聽力閾值(pure tone threshold)超過 65 分貝以上者,宜進一步進行前庭功能測試2

-----廣告,請繼續往下閱讀-----

適度運動可促進平衡表現,聽覺障礙者亦然!

在諸多研究上顯示,相較正常聽力者,聽障者的靜態與動態平衡上均有明顯表現較差的情況。然而,在比較聽障運動員與正常聽力者的平衡表現時,結果卻顯示聽障運動員在動態平衡能力和正常聽力者相當,甚至更好,惟靜態平衡能力中的表現仍明顯比正常聽力者差;進一步比較一般聽障者與聽障運動員間的平衡表現,亦發現聽障運動員有較好的反應時間、移動速度及靜態平衡能力3

從上述可知,藉由後天規律、適度的運動,除了可改善平衡表現和運動能力,亦能促進心理發展和社會技能4,並預防失衡導致的意外或傷害發生,這樣的成效在聽障者身上亦可見一斑5

運動可促進個體平衡表現,達到較佳的反應時間、移動速度和動、靜態平衡能力。圖/Pixabay

面對平衡感欠佳的孩子,宜留意其聽覺狀況、整體發展與適時引導!

    平衡感與生活自主有關,平衡感不佳的孩子,很可能無法自行走路、跑步或上/下樓梯,進而影響整體學習與適應。在平衡感欠佳者的孩子中,除了存在於自身的神經、前庭、肢體動作發展因素,也可能與個體所處的後天環境中家長過度保護、提供的環境刺激過少有關。

    當遇到平衡感不佳的孩子時,除了應留意其聽力發展外,亦建議定期參考「兒童健康手冊」分齡發展檢核,或各縣市衛生局提供的「學前兒童發展檢核表」加以留意。同時,亦鼓勵家長多提供兒童早期動作發展的經驗,如:當孩子可以放手行走時,酌量減少推車乘坐或手抱的機會,此外,也可善用共融遊戲場的遊戲設施加以探索,並可透過居家平衡小遊戲,如:練習墊腳尖、維持平衡;一隻手牽扶上/下樓梯;在柔軟的物體面(如:枕頭)上站立;玩需要經常轉頭的活動來提高前庭視覺反射功能(如:走路去拿一個球並把它放回桶中)等,幫助孩子從遊戲中練習平衡感!

-----廣告,請繼續往下閱讀-----

參考文獻

  1. Chilosi, A., Comparini, A., Scusa, M., Berrettini, S., Forli, F., & Battini, R. (2010). Neurodevelopmental disorders in children with severe to profound sensorineural hearing loss: A clinical study. Developmental Medicine and Child Neurology, 52(9), 856-862.
  2. 2Castiglione, M., & Lavender, V. (2019). Identifying red flags for vestibular dysfunction in children. The Hearing Journal, 72(3), 32-35.
  3. 高賡祖、林威秀(2020)。兒童與青少年聽覺障礙者平衡能力之探究。中華體育季刊,34(4),249-258。  
  4. Vidranski, T., & Farkaš, D. (2015). Motor skills in hearing impaired children with or without cochlear implant – a systematic review. Collegium Antropologicum, 39, 173-179. 
  5. Hartman, E., Houwen, S., & Visscher, C. (2011). Motor skill performance and sports participation in deaf elementary school children. Adapted physical activity quarterly, 28(2), 132-145.
所有討論 2
雅文兒童聽語文教基金會_96
56 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

10
5

文字

分享

0
10
5
沒看過打不壞的木製球棒?最新「加工法」讓木材硬度堪比金屬!
Rock Sun
・2021/11/19 ・2152字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

如果今天你想要好好的切食物,該用什麼樣的刀呢?

大家馬上想到的,應該不外乎就是金屬或是陶瓷吧?自古以來要製作工具,這兩個材料一定是首選,直到當代貪圖方便而使用的塑膠刀叉之外,好像想找不太到其他更好的替代方案了。

但是最近,有一群研究人員打破了大眾的想法和材料科學的界線——用木頭製作的刀來取代金屬。

10 月 20 號,這一群來自馬里蘭大學的材料科學家們在期刊《Matter》上發表了一種全新的加工方法,可以把跟木材大幅強化,製作成餐刀等工具。這把刀的硬度不只跟一般的牛排刀不相上下,可以輕鬆地切開 8 分熟的牛排,還可以多次使用、洗滌、有效的回收再利用,整個產品製造過程的能源消耗也比金屬或陶瓷低非常的多,有望在未來取代這類餐具。

-----廣告,請繼續往下閱讀-----
經過最新加工方法製成的木材,所製作出的餐刀可比不鏽鋼材質的更加鋒利。圖/Pixabay

比金屬和陶瓷更環保的選擇:木材

當你環顧生活周遭需要以「堅硬」為訴求的材料,你會發現它們大部分都是人造或經過加工的,因為想製作堅硬的物品,最怕的就是整個物理結構上有裂痕、中空或缺口等等瑕疵,只要有以上任何一種,工具的耐久度就無法維持多久,然而天然材料通常都有這種缺陷,例如木頭內部會有中空導管,石頭內則會有導致它容易剝落或裂開的天然紋理。

所以物質多半都都需要經過高溫冶煉才能夠成為堅硬的材料,例如光是製造陶瓷,就需要將陶土加熱到幾千度的高溫,而在這個講求環保的時代,有時候又要考慮產品的碳足跡……不用說,從地球土壤中開採鐵礦和陶土所耗費的能源,絕對與使用天然材質相對多很多。

所以這群研究人員把腦筋動到了陪伴原始人類到現在、樸實無華的木頭身上,他們覺得人類還沒發揮木頭 100% 的能力。

一般的木材在結構上有裂痕、中空或缺口等等瑕疵,無法加工成非常堅硬的工具。圖/Pixabay

請給我木材!人類尚未 100% 發揮它

好幾千年來,人類就不斷地想在木頭身上動手腳,但是在工具和建築上,木頭的加工通常只限於蒸氣曲木和壓縮法,用這種方法處理的木頭都會有個問題,在一段時間過後,木頭本身會有些許的回彈(定型)。

-----廣告,請繼續往下閱讀-----

要知道為什麼就得先了解木頭!

木頭最主要的成分是纖維素,雖然平常可能無感,但纖維素其實有相當高的強度與密度比,表面上看起來是一個輕量又堅固的超理想材質,只看數字的話,甚至凌駕於大部分的高密度建築材料如水泥、金屬等等。但是我們目前加工木頭的方式,都無法把木材的材料潛力發揮到極致,部分是因為纖維素其實只佔了木材的 50%,除此之外還包含半纖維素、木質素等物質,這些聚合物主要是作為介質,而非提供強度,但如果將這些東西去除掉,整個木頭結構會變得容易崩壞。

所以研究團隊找到了方法,移除木頭內比較脆弱的物質,但是仍保留纖維素的結構,這個技術可以把原本木材的硬度整整強化 23 倍,並打造出比不銹鋼刀還鋒利 3 倍的餐刀。

蒸氣曲木加工法,將木材放在充滿蒸氣的箱子內彎曲,能加工出優美的弧線。圖/WIKIPEDIA

兩步驟加工:讓「普通木材」變「超硬木材」

第一步是將木頭浸泡在添加了特定化學物質的水中,並加熱到攝氏 100 度,以去除部分木質素。失去木質素的木材會變得較為柔軟、具有彈性甚至還會黏稠;以往的木材加工通常不會將這個方法用在木材上,除了如上述提到的結構問題外,還會有使用溶劑的毒性問題,但研究人員研發出了毒性較低、還能重複使用的溶劑。

-----廣告,請繼續往下閱讀-----

第二步是對木頭進行高溫加壓,去除水分並讓其材質更為緻密,確保不會有結構上的缺陷,連樹木中原本被導管佔用的空間都能夠去除。

藉由這兩個步驟,他們有辦法去除木頭原本的結構問題,而經過這樣處理後的木頭還可以裁切成想要的形狀,然後再塗抹礦物油延長壽命、也隔絕水分讓纖維素不要再吸水,以免洗滌餐具降低刀子的鋒利程度。

將木材加工為「超硬木材」的實驗步驟。圖/參考資料 1

木材應用百百種!「五金材料」的新未來?

同樣的手法可以用來製作其他工具,例如和金屬釘子一樣堅硬的木頭釘子,一樣可以釘穿 3 塊木板,但是好處是木頭釘子不會有生鏽的問題,除了釘子之外,還有很多東西可以用這種木頭材質製作,例如更耐用的木頭地板。

儘管目前這個技術的使用還只是存在於實驗室環境中,但是不可否認的是,我們還沒有發揮木頭百分之百的實力,只要這個技術成熟,加上樹木可以種植並回收的特性,在未來每個人都可以分配到的超級強化木材資源或許可以凌駕於金屬,或只是打造出打不壞的木製球棒、堅不可摧的小木屋、輕量化的木頭汽車和飛機、或者是一把堪比鋼刀的超強木刀。

-----廣告,請繼續往下閱讀-----

阿銀,你的木刀原來是這麼來的啊 ?

參考資料

2021,《Hardened wood as a renewable alternative to steel and plastic

Rock Sun
64 篇文章 ・ 939 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者