Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

看新聞‧學數學-億萬富翁神奇公式?

活躍星系核_96
・2012/11/19 ・1067字 ・閱讀時間約 2 分鐘 ・SR值 512 ・六年級

-----廣告,請繼續往下閱讀-----

文 / HanChuan Zhang

前幾天在電視節目上看到一個「神奇」的公式(如下),總覺得在數學上不合理,便上網查出來源:億萬富翁神奇公式:1.4萬×(1+20%)40=1.0281億_新聞_鉅亨網

 

1.4萬×(1+20%)×40年=1.0281億

這個公式真是錯誤百出。


數學式上的錯誤

-----廣告,請繼續往下閱讀-----

我們用0.2代表20%,然後計算一下這左式「14000*1.2*40」的值。可以將「」中的內容google一下,或是直接點連結,google會幫你算出答案如下。

14 000 * 1.2 * 40 = 672 000

結果約是67萬 ,和1億有很大的落差,對吧?

因為這裡的40是指1.2的「40次方」,不是1.2的「40倍」。

算數上的錯誤

-----廣告,請繼續往下閱讀-----

那我們就用正確的算式來算算看吧。

在一般的程式中,我們用「^」表示次方。所以正確的式子應該是「14000*1.2^40」,結果如下。

14 000 * (1.2^40) = 20 576 802

結果約是2000萬,還是和1億差了很多,發生了什麼事?

因為這個公式根本不完整。

-----廣告,請繼續往下閱讀-----

真正的公式

這公式要表達的是:「每年年初存入14000元,且年投資報酬率為20%,則第40年初,也就是第39年底,就可以累積1億的財富」。用數學式表達如下。

詳細內容可以看公式的試算表(ExcelGoogle Drive)。

細心的讀者會發現,在式算表中N=40的那一列,出現了「$20,576,802」這個數字,也就是前面算出的「14000*1.2^40」這個數值。因為這個數所表示的是「用14000投資,每年投資報酬率為20%,持續了40年,第40年年底所累積的財富」。也就是從頭到尾就只投資這14000元。

-----廣告,請繼續往下閱讀-----

公式的可行性

現在我們終於了解,作者的本意並沒有錯誤,在數學上是正確的,只是在數學的表達上漏洞百出。

但問題是,這公式的可行性有多少?

一年存14000元,並不困難。但是找到年報酬率20%的投資工具,基本上是不可能的。

-----廣告,請繼續往下閱讀-----

舉個例子。媒體最喜歡拿來攻擊「過去」教師的福利「十八趴」,就是一個年報酬率18%的投資工具,從他被攻擊的程度可以知道,這是一個多「暴利」的利率。

所以想要找到20%的工具有多困難?而且要連續40年?

筆者認為,這篇主要的論點還是在於「複利」的威力,然後要大家早期投資,且持之以恆。但是用這麼聳動的標題,以及難以達成的條件,加上錯誤的數學式,就有點不可取了。

線上編輯數學式:http://www.codecogs.com/latex/eqneditor.php

-----廣告,請繼續往下閱讀-----

本文原發表於「天橋下說數的」部落格[2012-10-08]

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
預測市場?預測股票?如何讓預測有更高的準確率?——《超越直覺》
一起來
・2024/05/04 ・1635字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

我們發現在足球賽中,只要知道一個簡單的訊息(主隊過去的獲勝機率超過一半),預測力就會明顯好過隨便亂猜。如果再加上第二個簡單的訊息(勝負紀錄較佳的隊伍會略占優勢),可以再進一步提升預測力。除此之外,你可能還想收集其他訊息,像是四分衛最近的表現、球隊有沒有傷兵、明星跑衛的花邊新聞,但這些資訊對預測的幫助不大。換句話說,預測複雜系統這件事依循著「收益遞減定律」:第一個訊息很有幫助,但很快就找不到有幫助的其他訊息。

對於某些事件,我們當然會非常計較預測的準確性,像是投放線上廣告或投資高頻交易(HFT),可能一天內就要預測數百萬、數十億次,而且金額相當龐大。投入極大心力與費用、運用最精細的運算模型來開發複雜的預測方式,在那種情況下或許值得。但在其他商業領域,例如製作電影、出版書籍到發展新技術,只需要一年預測數十次、頂多數百次,而且這不過是整個決策過程中的一部分。這時,我們只要借助相對簡單的方式,就可以讓預測臻至完善。

預測時,不該只根據一人的意見就做決定——尤其是你自己的意見。雖然人們善於察覺與特定問題相關的因素,卻往往不會評估因素之間的相對重要性。譬如,預測電影的首映週末票房時,你可能會認為一些變項都是高度相關,例如製作費、宣傳費、上映廳數、試映會評價。沒錯。但我們要如何權衡「評價不優」與「額外行銷預算:一千萬美元」之間的比重?這沒有一定答案。同樣,在決定分配行銷預算的方法時,要如何判斷多少人會受到網路或雜誌廣告影響,又有多少人會從親朋好友那邊聽到產品訊息?我們也不清楚。唯一知道的是,這些因素都可能相關。

圖/envato

你可能會以為,精準判斷應該是專家的強項。但正如泰特洛克的試驗結果,專家在量化預測上的表現,其實跟普通人一樣糟糕,甚至可能更糟。然而,我們依賴專家之所以會成效不彰,不是因為專家的預測力跟一般人沒兩樣。問題在於,我們通常一次只會諮詢一位專家(否則何必找專家)。但我們應該要綜合多人的意見(無論是專家或非專家)再取平均值。至於要如何達成?這其實沒那麼重要。

-----廣告,請繼續往下閱讀-----

儘管預測市場有各種花俏的噱頭與技術,表現也比民調這類簡單方式好一點,但這種微小差異,還不如採用某種方式簡單綜合許多觀點再取平均。或者,我們也可以直接根據歷史數據,評估各項因素的相對重要性——這實際上就是統計模型在做的事。我必須再強調一次,雖然複雜模型可能會比簡單模型好一點,但兩者的差異小到幾乎沒有差別。到頭來,模型跟群眾所能達到的預測目的都一樣。第一,這兩種預測方式都要靠人為判斷,確認哪些因素與預測相關。第二,兩者皆需要估計、權衡那些因素的相對重要性。正如心理學家羅賓.道斯所言:「訣竅在於,找到要注意的變項,然後知道如何加入它們。」

只要一直使用這個訣竅,一段時間後,就會知道哪一些預測的失誤率較小,哪一些較大。舉例來說,當你要預測一個事件的結果,假如其他條件都相同,那越早做預測的失誤率就越大。不管你用什麼方法預測電影票房,在「剛開拍」時會比「上映前幾週」時要難得多。同樣,如果你想預測尚未上市的新產品銷量,那準確度可能不會高過預測已上市的產品。

你無法解決這個問題,唯一能做的只有:使用其中一種方式,或甚至結合幾種方式,就像我們研究預測市場時的方法,然後隨時觀察、記錄預測的表現。我在第 6 章開頭也提過,一般人通常不習慣追蹤自己的預測。我們做了大量預測,卻很少回頭檢視自己對了幾次。然而,留意並記錄預測成效或許才是最重要的事,唯有如此,你才能知道準確度是多少,進而知道自己預測的可信度。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

一起來
5 篇文章 ・ 2 位粉絲

0

30
1

文字

分享

0
30
1
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

2
2

文字

分享

0
2
2
數學無聊是誰的錯?數學家其實很幽默?——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/08 ・2441字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

雖然很少有學生小學畢業後還不懂乘法表,但有很多人確實不會算,如果一個人開車的速度是每小時 56 公里,開了 4 小時之後,他就開了 224 公里。要是每公克花生賣 40 美分,而 1 袋花生賣 2.2 美元,那麼,這袋花生裡就有 5.5 公克花生。假如全世界人口中有 1/4 是中國人,其餘的 1/5 是印度人,那麼,印度人在全世界的人口中就占了 3/20,或說是 15%。當然,要理解這些問題,並不像學會算 35×4=140、(2.2)/(0.4)=5.5、1/5×(1–1/4)=3/20=0.15=15% 這麼簡單。對很多小學生來說,這不是自然而然就會的東西,要靠做很多很實用、或是純屬想像的問題,才能進一步學會。

至於估計,學校裡除了教一些四捨五入之外,通常也沒有別的了。四捨五入和合理的估計與真實人生大有關係,但課堂上很少串起這樣的連結。學校不會帶著小學生估計學校砌一面牆要用掉多少塊磚、班上跑最快的人速度多快、班上同學爸爸是禿頭的比例多高、一個人的頭圍與身高之比是多少、要堆出一座高度和帝國大廈等高的塔需要幾枚 5 美分硬幣,還有他們的教室能否容納這些 5 美分硬幣。

幾乎也沒人教歸納推理,也不會用猜測相關性質和規則的角度,來研究數學現象。在小學數學課裡談到非形式邏輯(informal logic)的機率,就跟講到冰島傳說一樣高。當然,也不會有人提到難題、遊戲和謎語。我相信,這是因為很多時候,聰明的 10 歲小孩輕輕鬆鬆就能打敗老師。

數學科普作家葛登能最不遺餘力探索數學和這些遊戲之間的密切關係。他寫了很多極有吸引力的書,也在《科學美國人》撰寫專欄,而這些都是會讓高中生或大學生感到很刺激的課外讀物(前提是有人指定他們去讀的話)。此外,數學家喬治.波利亞(George Polya)的《怎樣解題》(How to Solve It)和《數學與合情判讀》(Mathematics and Plausible Reasoning),或許也屬於這一類。有一本帶有這些人的文風、但屬於較初階的有趣好書,是瑪瑞琳.伯恩斯(Marilyn Burns)所寫的《我恨數學》(The I Hate Mathematics! Book),書裡有很多啟發性的提示,帶領讀者解題與發想各種奇思異想,是小學數學課本裡罕見的內容。

-----廣告,請繼續往下閱讀-----
圖/envato

有太多教科書仍列出太多人名和術語,就算有說明解析,也很少。比方說,教科書上會說加法是一種結合律運算(associative operation),因為(a + b)+ c=a +(b + c)。但很少人會提到非結合律運算,因此,充其量來說,結合律運算的定義是畫蛇添足。不管是結合律或非結合律,你知道了這些資訊之後要怎麼應用?書上還會介紹到其他術語,但除了用粗體字印在書頁中間的小框框裡,看起來很了不起之外,也沒什麼值得提的理由。這些術語滿足了很多人認為,知識就好比一門普通植物學,每種學問都可以在體系中,找到自己的類別和位置。相比之下,把數學當成有用的工具、思維方式或是獲得樂趣的途徑,在多數小學教育課綱中都是很陌生的概念(即使教科書內容不錯也一樣)。

或許有人會認為,在小學階段,可以用電腦軟體,來幫助學生掌握基本的算數原理及相關應用(應用題、估計等等)。可惜的是,目前可用的程式通常是從教科書上擷取無趣的例行練習,轉化成電腦螢幕版本而已。我不知道有任何軟體可用整合、一致且有效的方法,來教算術與解題應用。

小學階段的數學教學品質普遍不佳,最終必會有人怪罪於老師能力不足,而且對數學沒什麼興趣、或不懂欣賞數學。我認為,這當中有一部分又要歸咎於大專院校的師資培養課程中,很少或根本不強調數學。以我自己的教學經驗來說,我教過的學生中,表現最差的是中學生,而不是大學主修數學的學生。準小學老師的數學背景也很糟,很多時候甚至根本沒有相關的數學教學經歷。

而每所小學聘用一、兩位數學專才,在學校裡每天分別到不同班級輔導(或教授)數學,或許可以解決部分問題。有時我認為,如果大學數學教授和小學老師每年可以交換個幾星期,會是個好方法。同樣的,把主修數學的大學生和研究生交到小學老師手裡,不會造成傷害(事實上,後者或許能從前者身上學到一些東西)。而三、四、五年級的小學生則可以在完全適任的老師教導下,接觸到數學謎題與遊戲,將可大大獲益。

-----廣告,請繼續往下閱讀-----
圖/envato

稍微打個岔,謎題與數學之間很有關係,而且相關性會一直延續到大學與研究階段的數學。當然,把謎題換成幽默也通。我在《數學與幽默》(Mathematics and Humor)書中試著說明,數學和幽默都是某種益智遊戲,與猜謎、解題、遊戲和悖論多有共通之處。

數學和幽默都是把概念組合、拆開再拼回來,然後從中得到樂趣。慣用的手法包括並列、歸納、迭代和倒向(比方說「aixelsyd」就是把「dyslexia」﹝閱讀障礙﹞的字序倒過來)。那麼,如果我放寬這個條件,但緊縮另一個條件會怎樣?某一個領域的概念(像是綁辮子),和另一個看來完全不同領域的概念(如某些幾何圖形的對稱性)有什麼共通點?當然,即便不是數盲,可能也不熟悉數學這個面向,因為你必須要先具備一定程度的數學概念,才可以拿來耍弄。其他像獨創性、不協調感以及精簡的表達,對於數學和幽默來說也都同樣重要。

可能有人說過,因為所受訓練之故,數學家有一種特殊的幽默感。他們往往會接受字面意義,但字面上的解讀又常和標準用法的意義不同,因此很好笑。比方說,哪種運動比賽時要蓋臉?答案是,冰上曲棍球以及痲瘋病人拳擊(按:原文「Which two sports have face-offs」,「face-off」其中一個字面意義為「蓋臉」,而這也是冰上曲棍球常用的術語,意指「爭奪球權」)。他們也很沉溺於歸謬法(reductio ad absurdum),或設定極端前提條件然後做邏輯演練,以及各式各樣的字組遊戲。

如果可以透過小學、中學或大學階段的正式數學教育,或是非正式的數學科普書籍,傳達數學有趣的面向。我認為,數盲就不會像現在這麼普遍。

-----廣告,請繼續往下閱讀-----

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。