0

0
1

文字

分享

0
0
1

不靠內建記憶體的空間記憶

陳俊堯
・2012/11/07 ・1573字 ・閱讀時間約 3 分鐘 ・SR值 452 ・五年級

-----廣告,請繼續往下閱讀-----

這是台灣第一部由黏菌主演的電影(咦)

十年前,當我們得自己去個没去過的地方,第一件事大概是要找本地圖看清楚位置,接著把地圖記進腦袋裡邊走邊對照,一直到抵達目標為止。現在我們做的事換成上網查 Google Map 再記進腦袋,或者上車開導航。我們在做的,是把前人對那個空間留下的記錄以地圖方式存在手邊,再依著地圖找到目標。所以如果你想要找到對的路,地圖資料庫跟儲存資料的大腦/導航機都是必要的。

演化上最早出現的單細胞微生物是怎麼找到通往食物的路的呢?我們人類在街上可以跟著香味找到香雞排臭豆腐,微生物也可以靠著食物擴散出來的味道找對方向。不過如果路上有牆,微生物有没有聰明到應該暫時不要對著香味來的方向猛撞牆,反而知道要轉向去試試別的方向,而且知道要避開自己或同伴走過但失敗的路呢?

問這個問題其實有個好玩的理由。如果你要設計個機器人能自己找到路,你得教它有個決定下一個移動方向的準則,隨機亂走還能到目的地的機會實在是太低了。地圖式的找路法一定要有前人提供的地圖資料庫,而且這個系統還要有個儲存地圖資料的高級設備,所以這招對於没人去過没地圖的地方就無可奈何了。這些技術在你需要建個能自己找路去救人的機器人時就變得重要了。有没有更簡單的找路方法呢? 演化早就幫我們提供了各種答案,只是我們得在自然界裡找到跟我們碰到同樣問題的生物,學習它們解決問題的方法就好了。微生物天天得找食物活下去,碰到障礙是心免不了的。它們怎麼找路?到底生物最原始最簡單的找路策略是什麼?

-----廣告,請繼續往下閱讀-----

研究裡用的黏菌長這樣(這是原論文裡的圖)

該讓黏菌上場了。黏菌是單細胞生物,在没東西吃餓到的時候會大家聚成一團黏呼呼的移動,變成偽多細胞動物的單細胞動物群體,你在登山步道旁倒木上看到黃黃黏黏的網狀物很可能就是它們。這種和彭于晏關穎主演過偶像電影的單細胞動物,到底怎麼搞清楚自己的覓食路線?一群來自澳洲和法國的研究人員設計了這樣的實驗:把黏菌放在一堵長得像足球球門的牆前面,在球門後面放食物,然後看黏菌能否繞過球門找到食物。請注意我們有顆構造無比複雜而且裝滿大量互相連來連去的神經元的腦,而單細胞的黏菌只能靠自己,頂多跟同伴手牽手而已。如果有什麼簡單法則可以讓黏菌找到食物,那一定能借來用在機器人的設計上面。

結果黏菌只用了一種簡單的法則就搞定這個難題:不走走過的路。黏菌凡走過必留下黏液。研究人員先弄來一組 Y 字形迷宮,先在兩條路的盡頭都放食物,再在其中一條路的的路口塗上黏液。聰明的黏菌認定有黏液就是走過的路,拒絕再走,選了没黏液的那條。這個實驗證明了黏菌會靠黏液來認路。再來研究人員讓黏菌過球門牆,黏菌會往食物香味方向直直向前,接到障礙後轉向,最後九成多的群體可以找到食物。接著研究人員把培養基表面舖滿黏液再放黏菌上去。這下黏菌傻了;因為它找不到還没試過的方向,不知道該往哪去了。舖滿黏液這招大大降低黏菌在五天內找到食物的成功率到三成多而已。

研究裡讓黏菌玩的球門牆(這是原論文裡的圖)

-----廣告,請繼續往下閱讀-----

騙倒單細胞黏菌不是重點,没啥成就感嘛。不過單細胞生物用它們不靠內建記憶體,單靠在體外做記號的方法就能讓自己和同伴留住空間資訊,單是這點就可以有效填加找到目標的機會。回頭想想我們其實也會做這種事,童話故事裡都有教認路都說可以丟東西做記號(但不要用麵包屑),辦活動走位要先在地上舞台上貼好標籤或者用粉筆標一下該站哪裡。這一招,顯然是動物在演化早期就出現,成為留下空間記憶的有效步數了。

研究原文:

Chris R. Reid, Tanya Latty, Audrey Dussutour, and Madeleine Beekman. Slime mold uses an externalized spatial “memory” to navigate in complex environments. PNAS 2012 109 (43) 17490-17494.

文章難易度
陳俊堯
109 篇文章 ・ 22 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

1

4
2

文字

分享

1
4
2
致親愛的弗瑞曼人:一封來自地球的沙蟲愛好者之信——《沙丘》(三)
YTLai_96
・2022/10/28 ・5028字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

可佩的弗瑞曼人,您好:

謝謝您展信閱讀來自地球的沙蟲愛好者的第三封信。

在前兩封可能略顯冒昧的書信又沉澱數日之後,我也已經能夠比較冷靜的看待沙蟲、以及弗瑞曼族人與沙蟲間的依存關係。如果前兩封信讓您們感到任何些許的冒犯或不敬,請容我獻上最誠摯的歉意,也請您與族人們理解這絕非我的本意。

我只是想要以一個遙遠地球的沙蟲愛好者的身份,與弗瑞曼族人們分享我對沙蟲粗略甚至略嫌可笑的觀察和推想,並且期望您與族人們在忍俊不禁的閒暇之餘,有天願意回信提供一些回饋和指導而已。

-----廣告,請繼續往下閱讀-----
地球上像我一樣的沙蟲愛好者還有很多,請看沙蟲愛好者們從生態人文記錄片中剪輯出來的沙蟲畫面。

先前兩封信,我與您和弗瑞曼族人們分享了沙蟲巨大體型如何克服各種難題的奧妙可能,也提到沙蟲或許依賴自營共生微生物而得以在荒蕪沙漠中獲得營養與能量所需。但我想最神奇的,或許還是沙蟲的生活史吧。

根據厄拉克斯星球的重要文獻「沙丘」的記載、以及弗瑞曼族人們千百年來的觀察,沙蟲只是成體,祂的幼體叫做沙鱒,體型從幾公分到一公尺多不等,生活在沙漠的地底深處。與成體沙蟲大不相同的是,沙鱒生性愛水,身上有能夠儲存大量水分的細胞(或者有些文獻指出其體表覆滿纖毛),而且喜愛群聚。當沙鱒在地底深處群聚,身體的代謝廢物與水混合並發酵後就形成了早期香料。當早期香料聚集夠多、發酵產生的氣體壓力夠大,就會把這些早期香料大規模噴發到地表,即所謂的「香料爆炸」。這些早期香料被陽光炙烤風乾,就成了珍貴的香料。

地球上其他沙蟲愛好者製作的,沙鱒與香料爆炸的解說影片。

然而,根據上述描述還有沙鱒與沙蟲的體型差異,我大膽猜測沙鱒與沙蟲之間並不是單純幼蟲與成蟲的關係,而是如同單體/聚合、單倍體/多倍體之間的世代交替關係。如前所述,沙鱒喜愛水、儲存水、而且會聚集成團,這樣的習性或許就是在召集夠多的單倍體沙鱒,只要被噴發到沙漠表面,受到炙熱陽光且乾燥環境的刺激,成團的沙鱒就會相互融合並且分化形成一隻沙蟲,如果一團沙鱒的生質量不足以撐起一隻沙蟲,說不定還得等待被已經存在的沙蟲吞食後融合進去。

在地球上,這樣運作的生物也所在多有,例如以二倍體原生質團狀態四處爬行的粘菌、或者以多個體聚合分化而成一整隻具有精細構造的僧帽水母,絕非天馬行空的無稽猜想。

-----廣告,請繼續往下閱讀-----
具有單雙倍體世代交替生活史的黏菌,我大膽的猜想沙蟲和沙鱒的關係也是這樣,沙蟲屬於二倍體且類似黏菌可移動的原生質團,沙鱒則是移動能力較差的單倍體。 圖/wikimedia
地球上的黏菌,請欣賞它解決問題的本事。
俗稱葡萄牙戰艦或僧帽水母也是水螅體群聚且分工組成的群聚體,或許沙蟲也是異曲同工。 圖/wikimedia

據我對重要文獻的了解,其中有些字句間也曾經提過沙鱒是單倍體的生物,還有沙蟲萬一死去就會放出沙鱒重啟生活史的循環。如果又加上沙蟲壽命很長、甚至可達數千歲的傳聞,那麼沙鱒與沙蟲之間以世代交替生活史不斷轉變、沙蟲乃是眾多沙鱒聚合分化而成的群聚體,還可以不斷吸收新的沙鱒團來壯大自己,就更是合理了。

當然,也只有憑藉著弗瑞曼人的仔細觀察,才能夠確認這樣的猜想是否屬實。

因此如果可能的話,下次待您與族人發現沙鱒團時,是否能夠留意它們噴發到沙漠表面後的行蹤呢?

甚至如果您能夠主動的收集沙鱒團,將它們集中在沙漠表面以圍籬侷限起來,或許就能夠好好觀察沙鱒團在沙漠表面的命運:是真的如過去以為的多數沙鱒死去並留下極少數個體休眠數年再——蛻變狂長為沙蟲?

-----廣告,請繼續往下閱讀-----

還是其實藉由多個沙鱒團分散又聚合、彼此邊界消弭並且開始分化的方式,在沙漠中組成一隻超級沙蟲體?如果有幸如我推想的,沙蟲是聚集眾多沙鱒而成、世代交替無盡轉生的群聚體,這樣能夠累積千年的不死智慧,豈不更加顯現沙蟲的神性嗎?

在沙漠裡面設置圍籬以觀察沙鱒團的行為和生活史,其實就有點像在地球上用培養皿畫菌盤養菌,只是厄拉克斯星球上的盤子比較大而已,但同樣都可以滿懷敬意啊。 圖/YouTube

關於沙鱒在地底下的生活,如果依循著我先前的假說,沙蟲的營養與能量來源是依靠體內的共生自營微生物而來、且平時吞食沙粒也只是在收集過濾這些共生自營微生物或者沙鱒團的話,那麼沙鱒在沙漠地底深處可能也是靠微生物一起共生過活,這些微生物可能是同樣在沙漠表面或沙蟲體內存活的微生物種類,只不過可能因為在地底深處缺乏氧氣和陽光,所以處於厭氧呼吸、異營(或化學自營)的代謝狀態,就等著沙鱒聚集成團被噴發到沙漠表面,再度回到太陽下轉回好氧自營的代謝狀態。

從這一點看來,以好氧自營狀態與沙蟲共生提供能量與營養、又在地底深處以厭氧異營狀態與沙鱒共生的這種微生物,整個生活史與沙蟲的生活史緊密相依,兩者很可能已經接近互利且專性的共生,難以離開彼此了。

這是我推想的沙蟲生活史(外圈)以及香料菌生活史(內圈),還有兩者之間的養分依存關係,請弗瑞曼族人們多多指教。

進一步猜想,所謂的早期香料,也許是在沙鱒體內的行厭氧呼吸的共生微生物排出的內孢子或休眠卵,這些內孢子/休眠卵靠著沙鱒排出的代謝廢物產氣以後造成香料噴發,也可以又回到陽光普照的沙漠表面,若有幸被沙蟲濾出帶到體內,就再次轉為好氧呼吸、自營代謝的狀態(這也解釋了沙蟲身上尤其嘴巴處帶有強烈香料味的緣由,因為嘴巴比起身體更深處的其他部位,理應擁有最多還未甦醒的內孢子/休眠卵);然而如果不幸被香料採集車吸起過濾,那就成了世人爭奪的珍貴香料了。

-----廣告,請繼續往下閱讀-----

考量到許多地球上的微生物內孢子本身就帶有毒性,因此香料如果實際上是微生物的內孢子/休眠卵,其毒性屬於神經毒,劑量適當時得以大幅擴展感官能力與腦部運作,劑量不對或是當沙蟲遇水死亡後共生微生物一同破裂放出的體液則具有強烈毒性,也是合情合理。

以上關於香料來源的推想,還請尊敬的弗瑞曼人能夠給予指教。

地球上微生物的內孢子生成示意圖,大膽猜想所謂的香料,或許就是與沙鱒共生時的微生物在厭氧異營狀態時產生的內孢子。圖/wikimedia
關於香料的解釋影片。

最後,我想與弗瑞曼族人們分享,地球上的動物們與沙蟲間的相似之處。

沙蟲令人敬畏的滿嘴尖牙,有些人可能以為類似地球的八目鰻牙齒分佈,但仔細看其實跟地球的鬚鯨嘴裡的鯨鬚板更有異曲同工之妙,合理推想也都扮演了濾食的角色——一如地球的鬚鯨在海中用鯨鬚過濾磷蝦和小魚,厄拉克斯星球的沙蟲在沙漠中用尖牙過濾砂礫間能夠與其共生的自營微生物、不時還有剛從地底噴出的沙鱒團、偶爾可能也順便摧毀吵鬧的香料採集車。

-----廣告,請繼續往下閱讀-----

還有,沙蟲攻擊地表入侵事物時,從地下竄出讓沙漠表面液化沸騰的景象,也相當類似座頭鯨捕食時困住魚群的氣泡網。

這樣的雷同之處,在地球的演化生物學稱作趨同演化,如果我們相信距離地球大半宇宙的沙蟲也遵循達爾文的演化論的話。

地球上的座頭鯨使用氣泡網捕食魚群。
看看沙蟲冒出表面吞食人事物的景象,不覺得跟地球上的座頭鯨用氣泡網捕食很像嗎?

還有,從沙蟲張大的嘴巴深處,我看見沙蟲的咽喉也分成三裂,和地球上具備三顎的蛭類頗為神似。沙蟲在沙漠中能夠躍出表面,那樣的移動方式也真的有點神似蛭類在水中的波浪狀游動行為,更別提沙蟲同樣能夠抬起身軀俯仰自如,很可能也擁有蛭類一樣的肌肉水骨骼系統。

乾燥的厄拉克斯星球上很可能沒有蛭類,我只能請您參考下方的影片理解蛭類的模樣與游動方式,哪一天如果有幸能夠邀請您與族人們到地球拜訪,相信您看到蛭類的實體時也會有似曾相識之感吧。

-----廣告,請繼續往下閱讀-----
地球上的蛭類,這隻吸血蛭類的波浪狀游動和咽部三裂的模樣與沙蟲不謀而合。

最後,沙蟲能夠在無垠沙漠中聽到/感受到遠方來的規律震動,也是一件似曾相識又奧妙的本領。

在地球上能夠感受基質震動的動物很多,許多水生的動物都能夠感應水波震動進而找到來源,最有名的正是吸血蛭類,它們能夠藉由感受水波找到震動的來源,於是長距離游向入水或落水的宿主以吸取血液;水中伏擊的紅娘華也能夠感應落水昆蟲的掙扎震動,從水底往水面攫住獵物飽餐一頓。

在水中如此,在鬆軟乾燥的沙漠中卻是另當別論了。

乾燥的沙漠只要受力,沙子間就會崩解散落,連帶消去了能夠傳遞出去的震動動能,這就像是裝著乾沙的沙袋受到擊打,沙團就會散開變形於是消去動能、壓力和震動一樣。

-----廣告,請繼續往下閱讀-----

因此,在地球上沙漠中潛沙伏擊的動物,無論是蜘蛛或沙蟒,大多都是依靠視覺或者觸覺、或者如絆腳索的絲線上傳來的震動,以得知獵物的到來與方位。只有少數的地底動物如非洲蝟目的金鼴,大概比較真有本事偵測從附近沙上傳來的細小震動。

根據地球這邊的研究得知,金鼴的聽骨不成比例的特大、而且也有精細巧妙的放大結構,也因此能夠偵測沙子上傳來的細小震動。而龐大的沙蟲又有什麼樣的精巧構造,讓祂得以在幾公里外偵測到人類規律走動的腳步呢?

這樣的謎團實在令人費疑猜啊。或許也只能期待哪一天,勇敢的弗瑞曼族人們從沙蟲神聖的大體和更仔細的觀察中略知一二了。

金鼴的可愛模樣。 圖/wikimedia
金鼴小小的體型,卻有不成比例的特大聽骨,可能就是演化出來偵測沙上的微小動靜。 圖/https://acousticstoday.org/wp-content/uploads/2020/06/The-Adapted-Ears-of-Big-Cats-and-Golden-Moles-Exotic-Outcomes-of-the-Evolutionary-Radiation-of-Mammals-Edward-J.-Walsh.pdf
金鼴潛沙並且偵測沙上小昆蟲的震動,與沙蟲有異曲同工之能。

尊敬的弗瑞曼族人們,衷心感謝您閱讀至此,期待有一天能夠收到來自厄拉克斯星球的回訊,更盼望有那麼一天,地球的沙蟲愛好者如我能夠與您並肩,看見族人幽藍雙眼看見的世界,穿上寶貴的蒸餾服,一同感受沙漠的不可侵犯,讓心跳隨著沙槌震動,同時體會沙蟲自遠方洶湧而來的神性震撼。

祝弗瑞曼族人們健康平安。

來自地球的沙蟲愛好者敬上

所有討論 1
YTLai_96
51 篇文章 ・ 26 位粉絲
也許永遠無法自稱學者,但總是一直努力學著

2

7
7

文字

分享

2
7
7
肉眼可見的「微生物」!科學家發現有史以來的最大細菌,平均長度大於 0.9 公分
細菌姐姐
・2022/07/25 ・2662字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

最近在《科學》(Science)期刊中刊出了一篇震驚微生物界的新發現!科學家們發現肉眼可見的超大細菌!

科學家找到了用肉眼就可以觀察到的細菌。圖/envato

從國中的生物課我們就學過,細菌是肉眼看不到的,必須透過顯微鏡才能觀察。細菌的大小,一般而言的認知是微米級(micrometer, μm),多數細菌的單一細胞直徑約為 2 微米左右。

然而,科學家們從美國紅樹(Rhizophora mangle)腐爛的葉子表面發現了一種很特殊的細菌 Candidatus Thiomargarita magnifica,它的細胞直徑平均大於 9000 微米( 0.9 公分)那麼這個「公分級(centimeter, cm)」的超巨大細菌究竟是何方神聖?

為什麼這個細菌可以這麼大?這麼大的細菌還算是微生物嗎?讓我們來一探究竟!

巨大細菌家族

其實早在 20 世紀中期就有許多巨大細菌的紀錄,例如芽孢桿菌綱 (Bacilli)中的幾種細菌、Sporospirillum屬和梭孢菌屬(Fusosporus)的細菌。然而,許多菌株在保存中遭到污染或是遺失,導致許多菌株沒辦法再取得,使得先前對於巨大細菌的研究資料非常有限。

-----廣告,請繼續往下閱讀-----

目前已知的巨大細菌家族,包含:

  • 螺旋菌門(Spirochaetes),最長菌株紀錄為 300 微米。
  • 厚壁菌門(Firmicutes)中 Epulopiscium 屬的細菌,最長菌株紀錄為 600 微米左右。
  • 藍菌門(Cyanobacteria),最長菌株紀錄為 100 微米。

除此之外,許多硫化菌也常為巨超大細菌,例如變形菌門(Proteobacteria)中的 Beggiatoa 屬與 Thiomargarita 屬,也分別有超過 200 微米與、300 微米的紀錄。

細菌雖然有很多 200、300 微米的紀錄,但能夠長到 9000 微米是首次觀察到。圖/envato

到此,你應該清楚地發現,在 Candidatus Thiomargarita magnifica 被發現以前,在已知的細菌中,幾乎沒有長度超過 1000 微米,甚至接近 10000 微米的紀錄。

為什麼巨大細菌可以這麼大?

許多巨大細菌都有一個共通點:在細胞中央有一個超大的液胞 (vacuole),這個液胞內儲存的物質目前學界推測主要是硝酸鹽(nitrate)。

-----廣告,請繼續往下閱讀-----

細菌的細胞生長往往高度依賴化學滲透作用,所以距離越遠,滲透作用越受限,因此細菌細胞沒辦法長得太大;然而,超大的液胞擋在細胞中央的話,這樣一來,化學滲透的傳導媒介的空間變小,細菌生長的限制就變小了!

既然這個新發現的超巨大細菌有辦法長得這麼大,細胞大小比一般的真核生物細胞(真核生物的細胞大小一般為 10-20 微米左右)還大,甚至還具有類似真核生物的液胞胞器(多數原核生物沒有液胞)。

那麼,這樣的細菌在演化上是否和真核生物具有某些相似之處呢?

超大液胞的巨大細菌:擁有真核生物特色的原核生物

從許多方面來看,巨大細菌確實具有許多類似真核生物的構造和特色。

-----廣告,請繼續往下閱讀-----

除了細胞中央具有超大液胞之外,有趣的是,在許多巨大細菌中經常會發現,細胞之中具有特化獨立細胞膜的胞器(organelle),這個胞器內具有遺傳物質(如 DNA)和核醣體,科學家們推斷這疑似是原始的內共生構造(putative symbiont / intracytoplasmic structures)。

穿透式電子顯微鏡下菌大細菌的細胞:細胞膜(大箭頭)外為細胞壁(星形)、每個胞器被膜區隔(小箭頭),胞器內有多個囊泡(米字)。圖/參考資料 3

在此之前,基本上未曾在細菌或古菌的細胞中發現這種類似於真核細胞才具有的,可以同時獨立儲存遺傳物質和核醣體的有膜胞器。

註:細菌是原核生物,理論上不具有獨立細胞膜的胞器。

不僅是細胞內結構類似於真核生物,這個超巨大細菌 Candidatus Thiomargarita magnifica 的基因體非常的大,大小約為 1150 萬到 1220 萬個鹼基左右。其基因體大小幾乎和屬於真核生物的酵母菌(Saccharomyces cerevisiae,基因體大小約為 1210 萬個鹼基)所差無幾。

-----廣告,請繼續往下閱讀-----

更甚者,在這株細菌上觀察到具有兩種不同的生長階段:生長期和傳播期(dispersive stage)。

生長期會慢慢長成細長類似於菌絲(filament)的形式,而傳播期間菌絲尖端(apical bud)的細胞會開始脫落以利散佈到環境之中,這樣的狀況和許多真菌傳播孢子(spore)的方式極為類似。

至於巨大細菌會不會是原核細胞演化成真核細胞過程中的過渡階段,可能還需要更多的研究進一步證實;但無庸置疑的是,巨大細菌確實擁有許多真核生物所具有的特色

這麼大的細菌,還算是微生物嗎?

什麼是微生物(microorganisms / microbes)?

-----廣告,請繼續往下閱讀-----

在很早以前的微生物定義一般而言是:需要透過顯微鏡才能觀察到的微小生物,稱之「微生物」。

隨著科學演進,定義持續在修正,廣義的微生物包含:細菌(bacteria)、古菌(archaea)、真菌(fungi)、原生生物(protists)、病毒(viruses)等的微小生物。

其中,尤其是原核生物,之所以會這麼小,有很大的原因和細胞內營養傳遞受限於化學擴散作用,如果細胞太大,那養分運送時間就相對會拖得很長,不太可能在短期內快速繁衍,因此多數原核生物的細胞都非常的小。

但是,讓科學家意想不到的是,細菌竟然演化出了克服化學擴散作用,並且在高硫化物環境下生存的方式,進而演化出超大的細菌細胞。

-----廣告,請繼續往下閱讀-----

從親緣關係上來看,這樣的巨大細菌是這些身為「微生物」的一般細菌的近親,理論上也算是「微生物」;但如果是從最早的微生物定義來看,這樣的細菌已經不再是「小到需要透過顯微鏡才能觀察到的生物」。

除了巨大細菌以外,其實,像是我們常見的麵包上的黑黴菌(bread mold,一種真菌)、或是森林裡的黏菌(slime mold,一種原生生物) 我們也都可以直接看到,但是兩者也都是普遍被認為的「微生物」。

麵包上會長一些黴菌。圖/維基百科

這麼大的細菌、真菌、和原生生物,「既可以是微生物,也不是微生物」,主要取決於定義的角度。

讀到這裡的你,也許會重新反思我們從小學習的細菌認知。

細菌依舊無所不在,但卻不一定是看不到的存在。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Levin PA. (2022). A bacterium that is not a microbe. Science 376 (6600): 1379-1380, doi: 10.1126/science.adc9387
  2. Ionescu, Danny and Bizic, Mina (July 2019). Giant Bacteria. In: eLS. John Wiley & Sons, Ltd: Chichester. doi: 10.1002/9780470015902.a0020371.pub2
  3. Volland J-M, Gonzalez-Rizzo S, Gros O, Tyml T, Ivanova N, Schulz F, Goudeau D, Elisabeth NH, Nath N, Udwary D, Malmstrom RR, Guidi-Rontani, Bolte-Kluge S, Davies KM, Jean MR, Mansot J-L, Mouncey NJ, Angert ER, Woyke T & Date SV. (2022). A centimeter-long bacterium with DNA contained in metabolically active, membrane-bound organelles.  Science 376: 1453-1458, doi: 10.1126/science.abb2634
  4. Willey, J., Sherwood, L. and Woolverton & C. (2013). Prescott’s Microbiology:9th Revised edition. London: MCGRAW HILL HIGHER EDUCATION. 
所有討論 2
細菌姐姐
2 篇文章 ・ 0 位粉絲
研究生一枚,尤其喜歡細菌和其他微生物或動植物之間的互相依靠或是激烈戰爭。 總覺得微生物和動植物的互動和人類的社會很像。期待透過科普的文字將更多人感染成細菌學和微生物學愛好者。

0

0
0

文字

分享

0
0
0
高熱量食物記憶比較好哦,科科
鳥苷三磷酸 (PanSci Promo)_96
・2020/11/29 ・1386字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 民視科學再發現 委託,泛科學企劃執行。

你也有這種特異功能嗎?當半夜肚子餓的時候,就算閉著眼睛也能找到消夜在哪裡,這種內建的超強定位系統,真的是挺罪惡的啊(嚼嚼嚼)
 
為什麼說是內建呢?這是因為人類對高熱量食物的空間記憶更準確喔,科科。

好的記憶力,才能讓我們想起食物放在哪裏!

在古早古早以前,我們的祖先過著狩獵採集的生活。
 
為了避免每次出門都找不到食物,記得哪個位置有食物就成了必備技能,而空間記憶便能在此時助我們一臂之力。
 
有許多動物都能記住擁有高熱量食物的地方,那我們是不是也有同樣的能力呢?

過著狩獵採集生活的人類祖先,幫助記住食物位置的空間記憶是生存的關鍵。圖/giphy

「食物迷宮」實驗:感官和記憶能力的大挑戰

想要知道,就來做實驗啊!

研究人員找來了五百多位參與者,而後在兩個獨立的房間設置了「食物迷宮」,將不同的食物交錯放在房間中,並讓參與者依序接觸各個食物。

在第一個房間中,參與者可以用視覺、味覺、嗅覺等等多重感官去記下八種食物,其中含有洋芋片、蘋果、小黃瓜、巧克力等等。

-----廣告,請繼續往下閱讀-----

而在第二個房間中,則是純以嗅覺為主,參與者只能從棉墊上聞到食物的氣味。

在走迷宮的過程中,研究人員還會要求參與者記下自己有多喜歡每樣食物,而走出迷宮後,他們需要在房間平面圖上標記出各種食物的所在位置。

甜鹹不重要,熱量才是王道!

實驗結果發現,人類的空間記憶偏好記得高熱量食物的所在之處。圖/Pixabay

比起純粹用鼻子,運用到各種感官更能幫助記憶,準確率高出了 243%。

但無論是只用一種感官或是多種感官,大家都更容易記住高熱量食物的位置 XD

-----廣告,請繼續往下閱讀-----

那食物是鹹是甜會有影響嗎?不會!

食物的口味,或是參與者本身的偏好,都不會直接影響記憶結果,熱量才是王道!

不小心變胖都是空間記憶惹的禍

在缺乏食物的時候,這樣的記憶方式可能有助於我們生存。 

不過,將場景轉換到現代,這樣的記憶方式卻可能帶來不少問題。

會忍不住在零食區逗留太久,都是空間記憶的錯!圖/Pexels

比如說,走進大賣場後,你會比較容易流連在洋芋片區,也會在巧克力櫃前不斷徘徊,可能一不小心就攝取太多高熱量食物,進而導致肥胖 QQ

下次如果覺得很難離開高熱量的食物專區,或許就能說是因為你的空間記憶在作怪喔 WWW

-----廣告,請繼續往下閱讀-----


參考資料

延伸閱讀