0

0
0

文字

分享

0
0
0

I’m a Scientist, Get me out of Here! 和科學家聊聊吧!

cbug
・2011/04/20 ・643字 ・閱讀時間約 1 分鐘 ・SR值 487 ・五年級

你對科學家的印象是什麼呢?是經典科幻電影《回到未來》中那有點神經質卻又帶點喜感的布朗博士、東野圭吾筆下帥氣但在感性時刻有點死腦筋的湯川學教授,還是如 Randy Olson 在《別做那樣的科學家》中所描繪的太過理性、缺乏幽默感或拙於溝通表達的書呆子?

不論你對科學家們的印象是什麼,現在,I’m a Scientist, Get me out of Here! 提供了機會讓學生直接與科學家對談,更進一步地了解科學家們的研究或生活。和科學家聊聊吧!

IAS 有點像是科學家的 The X Factor(英國知名的選秀節目)。

一聽到 I’m a Scientist, Get me out of Here! (IAS),你可能馬上會很好奇這跟明星真人實境節目 I’m a Celebrity, Get me out of Here! 有什麼關係。說起來還真有點像,因為兩個某種程度上都可以讓你滿足對科學家或名人的好奇心。IAS 定期都會舉辦一些科學參與活動,不只讓這些中學生可以線上與真正的科學家們對談,也讓這些學生有機會可以像選秀節目中的評審老師投票選出心目中的最愛。

學生們提出過的問題五花八門,基本款的大多像是科學家們的研究領域和研究興趣,或各種科學主題,會讓人看了會心一笑(或令人噴飯)的還有像是「科學家有社交生活嗎?」「你喜歡哪種 xbox 或 PS?」等問題。有參與活動學生認為,以前總是對科學家有刻板的印象,覺得他們是無趣的怪咖,這種對談和交流的機會,讓他們發現科學家們其實並不如想像中地那麼無聊,科學家們對自己的研究非常有熱誠並享受著這樣的生活,這也激發了學生們未來從事科學相關活動的興趣。

-----廣告,請繼續往下閱讀-----
文章難易度
cbug
22 篇文章 ・ 0 位粉絲
各位先進大家好,很高興加入PanSci。希望專欄 Nutrition Buiscuits 能如其名,跟大家分享小份量卻高營養的文章。

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

12
2

文字

分享

0
12
2
開創鴉片蛇毒中醫藥研究,臺灣第一位醫學博士——杜聰明
PanSci_96
・2023/02/03 ・3714字 ・閱讀時間約 7 分鐘

  • 文/郭立媛

1954 年夏季處於炎熱高溫的南臺灣,一間禮堂內湧入了近百人,臺下有許多穿著西裝或紳士服的男士們,一個個坐姿直挺聆聽臺上講者的發言,頻頻點頭應和;多數的學生們除了忙著拭去臉上的汗水,同時也更加勤奮地用手搧風消暑,與在座貴賓、家長仔細聆聽的樣貌呈現強烈對比。

講臺上站著一位六旬老人,用著流利優雅的閩南語,對這群剛進入高雄醫學院的學生們講述著「樂學至上,研究第一」的精神信念。

這位老人就是高雄醫學院(今高雄醫學大學)的創辦人,同時也是第一位臺灣醫學博士——杜聰明。

杜聰明在日治時期就有崇高的社會地位,是當時許多臺籍學生的偶像,戰後更在醫界擁有巨大影響力,因此在他創辦高醫後,有許多學生或舊識,紛紛將子弟送來高醫就讀,這些來自醫生家庭的子弟,許多是父子兩代都師承杜聰明,成為一段杏林佳話。

1954 年高雄醫學院成立暨開學典禮會場。圖/參考資料 1

體格丙下破格錄取,臺灣第一位醫學博士

杜聰明(1893-1986),號思牧,臺北淡水人。1909 年自滬尾公學校畢業後,以榜首考取臺灣總督府醫學校,但因體格檢查被評定為丙下,險遭除名,幸有當時的代理校長長野純藏將其破格錄取。

杜聰明在醫學校期間閱讀許多科學家傳記,最敬重德國的柯霍(Robert Koch,1843-1910)和法國的巴斯德(Louis Pasteur, 1822-1895)這兩名細菌學家。或許是師法這些研究者,醫學校畢業後,杜聰明選擇從事醫學研究,他先進入總督府研究所擔任助手,次年在堀內次雄老師的引薦下,前往日本京都帝國大學醫學部深造,通過了學力測驗後進入賀屋隆吉教授的內科教室,一年後再轉到森島庫太教授的藥物學教室做研究。

1922 年 11 月 23 日《臺灣日日新報》關於杜聰明獲得臺灣首位博士的報導。圖/參考資料 2

1921 年,杜聰明以高等官的身份返臺,擔任臺灣總督府醫學校助教授,是當時第三位被任命為日本高等官的臺灣人。1922 年甫滿 30 歲的杜聰明不僅已升任教授,同年底也順利通過博士申請,成為全日本國第 955 號博士,也是首位獲得日本博士學位的外地人,更是日治時期全臺灣第一位榮獲博士學位者,頓時成為臺灣各界矚目的焦點。

在當時,要取得博士學位本身已非常困難,尤其又是醫學領域。杜聰明身為土生土長於殖民地的臺灣人,卻能得醫學博士,不僅帶給許多臺灣人希望,同時也成為日本殖民政府有力的政策宣傳工具,往後只要提到臺灣,杜聰明的名字就一再被人提起,連帶被冠上了「臺灣第一位醫學博士」的頭銜。

杜聰明於 1942 年 7 月 3 日正式敘陞一等高官,身穿敕任官禮裝,為日治時期臺灣人官位最高者。圖/參考資料 3

鴉片、蛇毒、中醫藥,研究深具臺灣在地特色

校上課的時間外,杜聰明幾乎都待在研究所內做實驗。1925 年底杜聰明出發前往歐美留學,觀摩考察世界一流的研究室,為時約兩年半,1928 年人在巴黎的杜聰明還拜訪了正在環球旅行的林獻堂父子。

自歐美留學回國後的杜聰明,重新開設藥理學教室,但此時他身邊只有兩位助手和一位醫專應屆畢業生,但杜聰明不以為意,他認為比起實驗室的規模大小,最重要的是研究者的態度,此後他便開始投入鴉片、蛇毒、中醫藥等三項深具臺灣在地特色之研究。

杜聰明(後排中)與更生院的鴉片隱患者。圖/參考資料 4

鴉片癮者是臺灣社會長久以來的問題,不知多少人為此傾家蕩產,因此杜聰明在鴉片戒癮研究方面,主張以「漸減法」治療矯正吸食鴉片和施打嗎啡患者的毒癮,並發明微量嗎啡成分定性定量檢查法,藉由尿液檢查來決定療程,這種「尿檢法」至今仍是毒品檢驗的主要方式。

在日本政府的支持下,杜聰明帶領學生在愛愛寮及臺北更生院內進行大規模的鴉片戒癮療法,以總督府所設立的臺北更生院院內人數統計,在設立後的 17 年間共矯正了鴉片煙癮者 11,498 人。1937 年 8 月,杜聰明更因鴉片戒癮研究之成就,榮獲了日本學術協會賞。

除了鴉片的問題,身處熱帶潮濕地區的臺灣,經常出沒的毒蛇也是杜聰明所關注的研究焦點。原先日人對臺灣毒蛇研究多侷限於免疫學和血清學研究的範圍,杜聰明則將研究方向轉為其所擅長的毒物學和藥理學,更將蛇毒製成的鎮痛劑進行人體實驗,後來由李鎮源繼續傳承蛇毒的研究工作。關於臺灣蛇毒之研究,杜聰明共計發表 100 多篇論文,成績豐碩。

然而,杜聰明對於傳統的中醫藥也極有興趣,他主張應該要用現代科學角度去研究分析,也曾建議統治者讓中西醫研究一元化,雖未被採納,但他在生藥及中藥的藥理研究上仍有不少成果。

1930 年代在他擔任臺北帝國大學醫學部教授時,仍嘗試向學校當局提出設立漢醫學研究機關之建議;甚至到戰後初期,也曾向當局建議在臺大醫學院第一附屬醫院增設漢藥治療科,可惜最後仍未能如願。

造就臺灣的醫學教育,至高雄創設醫學院

在杜聰明所主持的藥理學教室中,先後有 40 名醫專畢業生跟隨杜聰明研究,共發表 131 篇論文,杜聰明因此建立其學術地位。1936 年,臺北帝國大學醫學部成立後,杜聰明被延攬為醫學部教授,是當時唯一的臺灣人教授,主持藥理學研究室,先後造就了 40 餘位醫學博士。

1945 年日本戰敗投降,杜聰明負責接收臺北帝國大學醫學院及附屬醫院、熱帶醫學研究所、赤十字會醫院,順利完成接收工作。之後,獲任命為臺灣大學醫學院院長兼附屬醫院院長,以及熱帶醫學研究所所長。

1947 年爆發二二八事件,杜聰明在友人通知下,幸運地迴避風險,同時也保住臺大醫學院的實驗教室與多數儀器,但在此之後,對於政治的熱情逐漸降溫,將全數心力都放在醫學教育上。

經歷臺大校園及臺大醫院一系列的人事變化、制度改革後,他仍積極爭取設立牙醫學系和藥學系,至 1953 年 8 月,臺灣大學終於通過設置牙醫學系和藥學系案,但也因此得罪校方行政部門,最終杜聰明遭校方強制解聘,只能黯然離開醫學院院長職務。

杜聰明離開臺大後,1954 年 7 月在南臺灣創辦了高雄醫學院,來實踐他的醫學教育理想。

首屆招收了 61 名醫學系學生,師資則多由杜聰明從臺大力邀而來。1963 至 1966 年間,因人事及財政問題而爆發「高醫風波」,導致杜聰明於 1966 年 10 月辭職。但此時高雄醫學院已頗具規模,為國內醫學教育重鎮。

而當時的臺灣省政府為了解決當時原住民部落存在著「無醫村」的問題,轉而向杜聰明尋求協助。鑑於許多醫科畢業生多不肯前往山地服務,在省府的委託之下,1958、1959 年杜聰明協助在高雄醫學院特設公費的「山地醫師醫學專修科」,專門招收原住民青年,經過四年的醫學教育後,必須到山地部落的衛生所服務滿十年,藉此來解決山地原住民醫療缺乏的問題。後來省政府考量地處海島的澎湖縣也是醫療資源不足,因此在原住民青年外,另外增加 4 個澎湖縣的學生名額。

杜聰明(右四)與第一屆山地醫師專科班的畢業生合影。圖/ 參考資料 5

堅定於研究與教育,深刻影響臺灣醫學史

杜聰明有感於身體瘦小,自醫學校時代開始,每日早晨勤於鍛鍊身體,數十年如一日,平時也喜好游泳,在擔任高雄醫學院院長期間,每週前往西子灣游泳健身。

家人記憶中的他,白天待在學校的實驗室,回家後也總是在讀書、研究,是真正全心投入研究的典範。杜聰明也勤於寫作,除了大量發表相關研究成果,他也詳細記錄自己的各類演講稿、出國考察見聞;自 30 歲起,更努力練習書法,每天都要練字至少四張,藉以修心養性,至今許多後輩、學生都仍保留他的墨寶。

杜聰明善用時間勤練書法,每天練字成為終生的嗜好。圖/參考資料 6

綜觀杜聰明的一生,在面對不同的統治政權,都能堅定地扮演好醫學研究實踐者和醫學教育推動者的角色,不僅在鴉片戒癮、蛇毒和中醫藥理三方面有開創性的研究成果,戰後更積極推動臺灣的醫學教育發展,培育出許多優秀的醫學界人士。

杜聰明畢生投入醫學研究和教育的卓越成果,堪稱為近代臺灣醫學史上影響最深刻的人物。

參考資料

  1. 杜祖健提供,轉引自:楊玉齡,《一代醫人杜聰明》,臺北:天下遠見,2002,頁 262。
  2. 〈新醫學博士 杜聰明氏〉,《臺灣日日新報》,1922 年 11 月 23 日,日刊版 07。
  3. 杜淑純口述,曾秋美、尤美琪訪問整理,《杜聰明與我:杜淑純女士訪談錄》,新北:國史館,2005,頁 8。
  4. 原載於《杜聰明先生榮哀錄》,轉引自:楊玉齡,《一代醫人杜聰明》,臺北:天下遠見,2002,頁 137。
  5. 原載於《中外畫報》雜誌,振聲攝。轉引自:楊玉齡,《一代醫人杜聰明》,臺北:天下遠見,2002,頁 302。
  6. 杜祖健提供,轉引自:楊玉齡,《一代醫人杜聰明》,臺北:天下遠見,2002,頁 165。
PanSci_96
1238 篇文章 ・ 2373 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。