0

0
0

文字

分享

0
0
0

一拍個不見陽光的流浪星球

臺北天文館_96
・2012/08/05 ・2159字 ・閱讀時間約 4 分鐘 ・SR值 593 ・九年級

-----廣告,請繼續往下閱讀-----

什麼是「一拍個」?就是「一兆個」乘以一千倍啦。

2012年3月Universe Today這個網站媒體第一次報導了銀河系裡有著「如天文數字」般數量龐大的流浪行星。這項最新研究獲得批露後,這些孤單的星球,「不見天日」地漫遊在星際空間中,且沒日沒夜地恆定唱著「浪人之歌」…此情此景在視覺上教人匪夷所思,而在星際間竟漂流著這麼多孤獨的星球,實在也太令人跌破眼鏡,所以國外許多天文愛好者大加關注,在天文界中相關的討論方興未艾。

因此,以下將繼續介紹3位在天文領域裡深受景仰的國際知名科學家所研究估計的關於流浪行星的計算結果。如果估計結果和數字皆正確無誤,意味著銀河系裡的行星數量,不只是比恆星「多」而已 – 是多很多 – 在我們的銀河系裡,平均每一顆恆星都擁有著高達10萬顆這種流浪型的行星,換言之,小自冥王星起算,大到超過木星以上,大大小小攏總加起來,這些漂流星球的總數量,約達「千兆」之譜!(官方說法,這個單位叫做「拍」,以口語且較易懂的說法就是: “1”後面跟著15個”0”, quadrillion)。這些流浪行星所組成的世界,數量竟如此龐大,它們到底都是從哪兒來的?

最近卡弗里基金會(Kavli)邀集其他幾位正在進行流浪行星相關研究的天文學者,齊聚一堂進行討論。這些知名學者包括卡弗里天文物理及宇宙學粒子研究所(KIPAC)所長, Roger D. Blandford, 他同時也是史丹福大學的教授,哈佛大學的Dimitar D. Sasselov教授(NASA克卜勒計畫的共同主持人之一), 以及KIPAC副研究員 Louis E. Strigari,此外,還有SLAC 美國國家加速實驗室成員也參與討論 ,所討論的內容是:這些流浪星球世界究竟可能會像什麼樣子?它們是怎麼形成的呢?

-----廣告,請繼續往下閱讀-----

其中一種流浪行星的可能來源是,它們本來就是從各自的「太陽系」中被「踢」出來的。

大多數恆星形成於星群中,許多恆星四周都有氣體和塵埃所組成的原行星盤,行星誕生於原行星盤中,流浪行星也是。至於他們是在什麼樣的情況下?如何被踢出來?這可以有好幾種方式。研究人員說,這些形成於極早時期的恆星系統,大多擁有很多顆質量很小,差不多為冥王星等級的行星,所以,在恆星之間,發生「彼此互換小質量行星」的這種動作,頻率很高,應該是個不難想見的場景。

至於「行星形成於恆星盤以外地區」的這種可能性,雖並未遭完全排除 – 若是在這種條件下形成的流浪行星,其質量大小將設有最低門檻,在理論計算中發現,形成這種流浪星球的最低質量,應不小於木星等級;所以研究人員大多認為,木星質量可作為一個參考標準,如果行星質量小於「木星標準」的門檻,它將沒有機會能自行獨立並存在於一個發展中的恆星系統以外。

這些小行星到底由什麼組成?

-----廣告,請繼續往下閱讀-----

Sasselov教授表示,行星在沒有一顆的恆星來為它供應熱能和能量的這個條件下,「我們假設這些星球上應該是相當寒冷,且不適於生命發展。」不過他也指出,情況未必永遠不樂觀。流浪行星的內部熱源應可充當生命初始乍現所需的能量…至少能量必需充足,保持它們得以生存得下去。

想像一下,譬如以地球來說,要是地球從今天開始進行一場「無太陽的流浪之旅」,可以想見的是,地球上的生命並不會因而畫上終結號。這並非推論,是有實例可證明的,地球上已找到為數相當龐大的微生物、兩種線蟲,它們完全靠來自地球內殼核心的熱而存活的。這是100%千真萬確的事實。

KIPAC所長暨史丹福大學教授Roger Blandford也提出他的看法認為:「小型的流浪行星可能有一張高壓、高密度的保溫毯,這張毯子就覆蓋在行星的表面上」,毯子可能組成物質包括氫分子大氣或結冰的表面層,這些都能保存相當多的熱能,經由這種方法便可保持具傳導性的液態水,藉液態水而得以創造或維持生命。

星際間有這麼多行星維持著生命存在的可能性,如果它們果然如此穿梭來去銀河系當中,是否有可能,它們其實也幫助生物在銀河系中的恆星系統間彼此互通有無呢?其實,像這樣「播種論」的說法,並非近來所新創建的天文辭條;早在西元前400多年,就有古希臘哲學家Anaxagoras論述過這種可能性。假設流浪行星以每2,500萬年一次的頻率,能夠拜訪、經過內太陽系,這些流浪行星從地球上帶走一些生命和生物,並夾而帶之、傳播至銀河系其他地區的可能性,我們該認為它是高或低呢?Blandford表示:可樂觀以對。

-----廣告,請繼續往下閱讀-----

Blandford並指出:在銀河系以內的範圍,生命能以直接、隨機或甚至是惡意的方式傳佈,這是在20世紀便已有許多著名科學家加以研究論證過的;在21世紀的今天,現代天文學能夠繼續加以著墨發揮的部分,事實上更在於,進一步提供清楚的證據去證明許多星系之間如何互撞並散佈物質至星系際空間中。基本上,不單只是在星系內,即使是在「從A星系到B星系間」這種層次的生命持續播種的說法,學者也持肯定支持態度。

簡單講,流浪行星不僅只限於銀河系。如果有足夠的推動力,它可以被一個星系完全地推向另一個星系去。

誠如我們所知的,多數星系之間的碰撞都導致大量物質丟進星際太空中。而只要與恆星或黑洞相遇一次,就足以從中獲取一顆行星的彈出和離開一個星系所需的逃逸速度。

地球生命可能向外星球甚至外星系播種,這不僅是個歷史悠久的臆測,同時也是一個其來有自、有相當合理性的概念,以科學研究的能力來說,將它付諸研究實踐的可行性正在日益增加。(Lauren 譯)

-----廣告,請繼續往下閱讀-----

相關討論內容及參考資料請見:NOMADS OF THE GALAXY的其中一段落,以及Wickramasinghe NC et al (2012). Life-bearing primordial planets in the solar vicinity. Astrophysics and Space Science; DOI 10.1007/s10509-012-1092-8

資料來源:中研院天文網[2012.07.24]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
冰與水之歌:零度以下不結冰,魔鬼藏在密度裡!
linjunJR_96
・2020/11/05 ・1932字 ・閱讀時間約 4 分鐘 ・SR值 537 ・八年級

在座各位地球人肯定對「水」一點不陌生。不論是液態水還是固態冰,在生活中都隨處可見。但如果你以為我們已經完全了解水和冰的構成與變化,那你可就錯了,因為它可是超乎想像的複雜。

冰也會七十二變?常見的物質竟然有這麼多型態!

學校裡教過的三相圖將水區分成固、液、氣三種相(Phase)。不過除了這種簡單的分類,固態的冰在不同的壓力與溫度條件下其實還有許多不同面貌。

小時候學過水的三相固體、液體、氣體,除此之外,其實固態冰還有其他型態。圖/Pexels

一般條件下,自然結凍的水只會呈現六角結晶或立方結晶,兩種晶體結構合稱為「冰一」(Ice I)。你可能有些好奇:既然有一,那或許會有二(咦)

沒錯!目前已知的冰共有二十幾種型態,比 iPhone 的型號還多!只是除了冰一之外,其他的型態都極為少見。

-----廣告,請繼續往下閱讀-----

所謂少見是有多少見呢?

一直到 2017 年時,科學家才首次在實驗室中合成出冰七(Ice VII),這種稀有的結晶形態通常只有在彗星或系外行星上才見得到,因為它需要超大的壓力(例如:兩個含冰量豐富的小行星體對撞),才有可能形成。

實驗室中高壓環境下合成的冰七 。圖/實驗團隊(A. E. Gleason)提供

相隔一年後,另一組研究團隊利用 X 光繞射技術,在世界各地的鑽石中發現冰七的蹤影

為什麼鑽石中會有冰七?推測原因是由於當初在地底時,有少量水分被困在高溫高壓的鑽石礦脈中,而後這些水分隨著鑽石一同被挖掘到地表,雖然溫度下降到普通室溫,但堅固的鑽石內卻仍然維持著高壓。如此獨一無二的條件,讓冰七得以自然生成。

-----廣告,請繼續往下閱讀-----

零度以下也不結冰?神秘的過冷水!

光是固態冰就有這麼多花樣了,水結冰的過程同樣也是科學家有興趣的主題。在 Science 期刊上最新的研究發現,過冷水其實是由兩種結構不同的形態混搭而成。

一般的情況下,零度以下的水需要一些雜質或擾動來「啟動」結晶的過程,才能凝固成冰。在缺乏這些條件時,水可以在零度以下仍維持液態,也就是所謂的「過冷」。

關於過冷水的理論模型可說是眾說紛紜,因為這種狀態十分不穩定,輕微的干擾就會讓過冷水全部結晶,讓實驗學家十分頭痛。另外,也很難單從實驗中觀察並判斷過冷水不結晶到底是不是因為還未達到熱平衡。

過冷水的狀態不穩定,稍微干擾就會全部結晶,也讓實驗學家十分頭疼。圖/giphy

以往的相關研究通常只能依賴分子模擬,不過最近在實驗上有了最新突破。

-----廣告,請繼續往下閱讀-----

美國西北太平洋國家實驗室的研究人員準備了一片僅有 15 奈米厚的薄冰,接著利用短暫的雷射脈衝,極速加熱一小塊區域,使其轉為液態過冷水,直到它很快地降溫並重新結晶。

整個過程只有短短幾十奈秒,不過,這個突破已經足夠讓我們使用紅外線光譜來測量過冷水的分子結構。

結果發現,早在結晶開始的短短的幾十奈秒之間,過冷水就找到了它最舒服的平衡狀態;這個狀態還是由兩種結構不同的液體型態所組成,分為高密度與低密度結構,密度分別約為 0.9 和 1.1 g/cm3

實驗發現,過冷水中高密度水所佔的比例,會隨著溫度降低逐漸減少。也就是說,過冷水能在低於攝氏零度的環境下維持液態,很有可能是兩種不同密度的水比例不同所造成的。

-----廣告,請繼續往下閱讀-----

其實,這種特殊的二元性質也能在一般常溫的液態水中看到,分為四面體和非四面體結構。不過這類的現象在過冷水是首次被發現,也為水在低溫時的行為提供重要的實驗數據。關於水的各種理論模型,我們終於得以區分何者較接近真實。

參考資料

  1. Water structure and science
  2. Gleason, A. E., Bolme, C. A., Galtier, E., Lee, H. J., Granados, E., Dolan, D. H., … & Swift, D. (2017). Compression freezing kinetics of water to ice VII. Physical Review Letters119(2), 025701.
  3. Tschauner, O., Huang, S., Greenberg, E., Prakapenka, V. B., Ma, C., Rossman, G. R., … & Tait, K. (2018). Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle. Science359(6380), 1136-1139.
  4. Kringle, L., Thornley, W. A., Kay, B. D., & Kimmel, G. A. (2020). Reversible structural transformations in supercooled liquid water from 135 to 245 K. Science369(6510), 1490-1492.
  5. Shi, R., & Tanaka, H. (2020). Direct evidence in the scattering function for the coexistence of two types of local structures in liquid water. Journal of the American Chemical Society142(6), 2868-2875.
linjunJR_96
33 篇文章 ・ 837 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

0
0

文字

分享

0
0
0
NASA:證實火星有流動的液態鹽水
歐柏昇
・2015/09/29 ・1903字 ・閱讀時間約 3 分鐘 ・SR值 469 ・五年級

  • 編譯 / 歐柏昇

Credits: NASA/JPL/University of Arizona
Credits: NASA/JPL/University of Arizona

美國國家航空暨太空總署( National Aeronautics and Space Administration, NASA)火星偵察軌道器(Mars Reconnaissance Orbiter, MRO)的新發現,提供目前最強烈的證據,顯示今日的火星有間歇流動的液態水。

在這顆紅色行星表面,具有神秘條紋的山坡上,研究人員利用MRO上面的成像光譜儀,偵測到含水礦物的特徵。這些淺黑的條紋,看起來會隨著時間推移而流動。條紋在溫暖的季節時變黑,而沿著陡坡往下流動;且在較冷的季節則顏色褪去。當溫度高過華氏-10度(攝氏-23度),就會在火星上好幾個地點出現;較冷的時候則消失。

NASA科學任務理事會副主任及太空人約翰.格倫斯菲爾德(John Grunsfeld)說:「我們對於火星的探索都是『跟隨著水』,來尋找宇宙中的生命,而現在我們有了令人信服的科學,證實我們長久料想的事。這是重要的新發展,看來確認了水──儘管是鹽水──今日在火星表面流動。」

-----廣告,請繼續往下閱讀-----

這些下坡的流動,稱為季節性斜坡紋(recurring slope lineae, RSL),它被認為可能與液態水有關。在坡道上新發現的水合鹽類,便指明了與這些深色特徵的關聯。水合鹽類會降低液態鹽水的凝固點,這就像在地球上,馬路上的鹽會造成冰和雪更快融化。科學家說,這可能是淺層的地表下流動,並有一些水透過毛細作用來到地表上。這樣就可以解釋變黑的現象。

Credits: NASA/JPL/University of Arizona
Credits: NASA/JPL/University of Arizona

亞特蘭大的喬治亞理工學院的盧金德拉.歐嘉(Lujendra Ojha)是發表這項新發現的報告的第一作者,這篇文章發表在9月28日出版的《自然地球科學》(Nature Geoscience)期刊。

他說:「我們只有在這些季節特徵最寬的時候發現水合鹽類,表示這些深色條紋本身、或者某個造成深色條紋的機制,就是水合作用的來源。不管是哪一種情況,在山坡上偵測到水合礦物,就代表水在這些條紋的形成過程中,扮演重要的角色。」

-----廣告,請繼續往下閱讀-----

2010年,當歐嘉還是亞利桑那大學的大學生時,便利用MRO的高解析度成像科學設備(High Resolution Imaging Science Experiment, HiRISE),首次注意到這些令人困惑的特徵。HiRISE目前已經在火星上數十個地點觀測到RSL。新的研究結合了HiRISE的觀測,以及MRO的火星專用小型偵察影像頻譜儀(Compact Reconnaissance Imaging Spectrometer for Mars, CRISM)的礦物分布圖。

光譜儀的觀測,顯示了多個RSL地點的水合鹽類特徵,但只有在深色條紋相對較寬的時候會出現。當研究人員觀測同一個地點、但RSL較少的時期,就沒有偵測到水合鹽類。

歐嘉與其他共同作者,將此光譜的特徵解釋為過氯酸鹽的水合礦物。它的化學特徵與這些水合鹽類最相符的,可能是過氯酸鎂、氯酸鎂及過氯酸鈉的混合物。有些過氯酸鹽,讓液體甚至在華氏-94度(攝氏-70度)這麼低溫的情況下,都不會結冰。在地球上,自然產生的過氯酸鹽集中在沙漠,而有些種類的過氯酸鹽可以拿來作為火箭的推進劑。

之前人們就曾在火星上看到過氯酸鹽。NASA的鳳凰號和好奇號,都曾在火星的土壤中找到過氯酸鹽,而有些科學家還相信,1970年代的維京計畫已測量到這樣的特徵。不過,這次對於測量到RSL的地區,其水合型態的過氯酸鹽研究,跟先前的登陸器探測的地區並不同。這也是首次透過軌道上的衛星,來確認過氯酸鹽。

-----廣告,請繼續往下閱讀-----

MRO具有六個科學儀器,從2006年開始量測火星。

source:wikimedia
source:wikimedia

在加州帕薩迪納的NASA噴射推進實驗室的MRO計畫科學家理查德.楚雷克(Rich Zurek)說:「MRO可觀測火星許多年的能力,以及能夠看到這些特徵清楚的細節, 促成了這樣的發現:首次識別了令人困惑的季節性條紋,而現在則是解釋了它們是什麼,邁出了一大步。」

這些新發現對於歐嘉來說,是更強烈地證明了他五年前首次觀察到的火星坡道上神秘的線條,真的就是現存的水。他說:「大多數人談到火星上的水,通常談的是古老的水、或是結冰的水。現在我們知道,這個故事不只是如此。這是第一次明確支持我們對於RSL的『液態水形成假說』的光譜觀測證據。」這項發現,是NASA火星任務眾多突破性結果當中最新的一項。

-----廣告,請繼續往下閱讀-----

NASA華盛頓總部的火星探測計畫首席科學家麥克.邁爾(Michael Meyer)說:「為了解決這個謎團,眾多太空船花費了幾十年的時間,而現在我們知道,在這個寒冷、荒蕪的行星上有液態水。似乎對火星研究越多,我們就越知道生命如何維繫,以及未來哪裡有足以維持生命的資源。」

文章來源:

延伸閱讀:

歐柏昇
13 篇文章 ・ 6 位粉絲
台大物理與歷史系雙主修畢業,台大物理碩士。現為台大物理系、中研院天文所博士生,全國大學天文社聯盟理事長。盼望從天文與人文之間追尋更清澈的世界觀,在浩瀚宇宙中思考文明,讓科學走向人群。

0

0
0

文字

分享

0
0
0
一拍個不見陽光的流浪星球
臺北天文館_96
・2012/08/05 ・2159字 ・閱讀時間約 4 分鐘 ・SR值 593 ・九年級

什麼是「一拍個」?就是「一兆個」乘以一千倍啦。

2012年3月Universe Today這個網站媒體第一次報導了銀河系裡有著「如天文數字」般數量龐大的流浪行星。這項最新研究獲得批露後,這些孤單的星球,「不見天日」地漫遊在星際空間中,且沒日沒夜地恆定唱著「浪人之歌」…此情此景在視覺上教人匪夷所思,而在星際間竟漂流著這麼多孤獨的星球,實在也太令人跌破眼鏡,所以國外許多天文愛好者大加關注,在天文界中相關的討論方興未艾。

因此,以下將繼續介紹3位在天文領域裡深受景仰的國際知名科學家所研究估計的關於流浪行星的計算結果。如果估計結果和數字皆正確無誤,意味著銀河系裡的行星數量,不只是比恆星「多」而已 – 是多很多 – 在我們的銀河系裡,平均每一顆恆星都擁有著高達10萬顆這種流浪型的行星,換言之,小自冥王星起算,大到超過木星以上,大大小小攏總加起來,這些漂流星球的總數量,約達「千兆」之譜!(官方說法,這個單位叫做「拍」,以口語且較易懂的說法就是: “1”後面跟著15個”0”, quadrillion)。這些流浪行星所組成的世界,數量竟如此龐大,它們到底都是從哪兒來的?

最近卡弗里基金會(Kavli)邀集其他幾位正在進行流浪行星相關研究的天文學者,齊聚一堂進行討論。這些知名學者包括卡弗里天文物理及宇宙學粒子研究所(KIPAC)所長, Roger D. Blandford, 他同時也是史丹福大學的教授,哈佛大學的Dimitar D. Sasselov教授(NASA克卜勒計畫的共同主持人之一), 以及KIPAC副研究員 Louis E. Strigari,此外,還有SLAC 美國國家加速實驗室成員也參與討論 ,所討論的內容是:這些流浪星球世界究竟可能會像什麼樣子?它們是怎麼形成的呢?

-----廣告,請繼續往下閱讀-----

其中一種流浪行星的可能來源是,它們本來就是從各自的「太陽系」中被「踢」出來的。

大多數恆星形成於星群中,許多恆星四周都有氣體和塵埃所組成的原行星盤,行星誕生於原行星盤中,流浪行星也是。至於他們是在什麼樣的情況下?如何被踢出來?這可以有好幾種方式。研究人員說,這些形成於極早時期的恆星系統,大多擁有很多顆質量很小,差不多為冥王星等級的行星,所以,在恆星之間,發生「彼此互換小質量行星」的這種動作,頻率很高,應該是個不難想見的場景。

至於「行星形成於恆星盤以外地區」的這種可能性,雖並未遭完全排除 – 若是在這種條件下形成的流浪行星,其質量大小將設有最低門檻,在理論計算中發現,形成這種流浪星球的最低質量,應不小於木星等級;所以研究人員大多認為,木星質量可作為一個參考標準,如果行星質量小於「木星標準」的門檻,它將沒有機會能自行獨立並存在於一個發展中的恆星系統以外。

這些小行星到底由什麼組成?

-----廣告,請繼續往下閱讀-----

Sasselov教授表示,行星在沒有一顆的恆星來為它供應熱能和能量的這個條件下,「我們假設這些星球上應該是相當寒冷,且不適於生命發展。」不過他也指出,情況未必永遠不樂觀。流浪行星的內部熱源應可充當生命初始乍現所需的能量…至少能量必需充足,保持它們得以生存得下去。

想像一下,譬如以地球來說,要是地球從今天開始進行一場「無太陽的流浪之旅」,可以想見的是,地球上的生命並不會因而畫上終結號。這並非推論,是有實例可證明的,地球上已找到為數相當龐大的微生物、兩種線蟲,它們完全靠來自地球內殼核心的熱而存活的。這是100%千真萬確的事實。

KIPAC所長暨史丹福大學教授Roger Blandford也提出他的看法認為:「小型的流浪行星可能有一張高壓、高密度的保溫毯,這張毯子就覆蓋在行星的表面上」,毯子可能組成物質包括氫分子大氣或結冰的表面層,這些都能保存相當多的熱能,經由這種方法便可保持具傳導性的液態水,藉液態水而得以創造或維持生命。

星際間有這麼多行星維持著生命存在的可能性,如果它們果然如此穿梭來去銀河系當中,是否有可能,它們其實也幫助生物在銀河系中的恆星系統間彼此互通有無呢?其實,像這樣「播種論」的說法,並非近來所新創建的天文辭條;早在西元前400多年,就有古希臘哲學家Anaxagoras論述過這種可能性。假設流浪行星以每2,500萬年一次的頻率,能夠拜訪、經過內太陽系,這些流浪行星從地球上帶走一些生命和生物,並夾而帶之、傳播至銀河系其他地區的可能性,我們該認為它是高或低呢?Blandford表示:可樂觀以對。

-----廣告,請繼續往下閱讀-----

Blandford並指出:在銀河系以內的範圍,生命能以直接、隨機或甚至是惡意的方式傳佈,這是在20世紀便已有許多著名科學家加以研究論證過的;在21世紀的今天,現代天文學能夠繼續加以著墨發揮的部分,事實上更在於,進一步提供清楚的證據去證明許多星系之間如何互撞並散佈物質至星系際空間中。基本上,不單只是在星系內,即使是在「從A星系到B星系間」這種層次的生命持續播種的說法,學者也持肯定支持態度。

簡單講,流浪行星不僅只限於銀河系。如果有足夠的推動力,它可以被一個星系完全地推向另一個星系去。

誠如我們所知的,多數星系之間的碰撞都導致大量物質丟進星際太空中。而只要與恆星或黑洞相遇一次,就足以從中獲取一顆行星的彈出和離開一個星系所需的逃逸速度。

地球生命可能向外星球甚至外星系播種,這不僅是個歷史悠久的臆測,同時也是一個其來有自、有相當合理性的概念,以科學研究的能力來說,將它付諸研究實踐的可行性正在日益增加。(Lauren 譯)

-----廣告,請繼續往下閱讀-----

相關討論內容及參考資料請見:NOMADS OF THE GALAXY的其中一段落,以及Wickramasinghe NC et al (2012). Life-bearing primordial planets in the solar vicinity. Astrophysics and Space Science; DOI 10.1007/s10509-012-1092-8

資料來源:中研院天文網[2012.07.24]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!