Loading [MathJax]/extensions/tex2jax.js

0

12
1

文字

分享

0
12
1

過去的瘟疫大流行是怎麼發生的?有些竟然是流行性感冒!——《大流感:致命的瘟疫史》

臺灣商務印書館
・2021/01/21 ・3320字 ・閱讀時間約 6 分鐘 ・SR值 515 ・六年級

瘟疫大流行的發生——抗原突變

瘟疫大流行只有當血凝素和神經氨酸突觸兩者之一,或是同時,發生重大改變時發生。當全新的基因組合代替舊基因時,新抗原的形狀會和舊抗原有相當大差異。這叫作「抗原突變」 (antigen shift) 。

再用足球員的球衣來比喻,抗原突變相當於球員把綠衣白褲換成橘衣黑褲。抗原突變發生時,免疫系統根本不能辨認新抗原。全世界極少有人具有對抗這種抗原的抗體,所以病毒可以用爆炸性的速度橫掃人類社會。

抗原突變後,免疫系統不能辨認新抗原,病毒便可橫掃人類社會。圖/pixy.org

血凝素有十五種基本型,神經氨酸有九種,它們有不同的組合方式,加上一些亞型。病毒學家用這些抗原組合來區分研究中的特定病毒,例如 H1N1 病毒是一九一八年流行的病毒,現在仍存在豬隻身上。H3N2 則是今天在人類身上流行的病毒。

病毒突變是怎麼回事?基因怎麼重組?

病毒突變是當一向只感染鳥類的病毒轉而直接或間接攻擊人類時發生。自一九九七年起,H5N1 和 H7N9 兩種禽類病毒直接感染了兩千三百人,超過一千人死亡,宛如另一場類似一九一八年的大流行。

-----廣告,請繼續往下閱讀-----

鳥類和人類的唾液酸受體不同,所以能和鳥類細胞受體結合的病毒通常不會和人類細胞結合,也就不會感染人類。香港十八個被感染的人可能是暴露在大量病毒之下,這些病毒突變群裡可能含有能與人類受體結合的突變種,而大量接觸的情況下使得變種病毒得以在人體內建立據點而發病。幸虧這些病毒並沒有演化為人類病毒,那次所有的患者都是直接被家禽傳染的。

病毒突變是當一向只感染鳥類的病毒轉而直接或間接攻擊人類時發生。圖/Alltech

動物病毒跳上人體之後,只要一點簡單的突變就可以轉變成人類病毒。這過程也可以間接發生,因為感冒病毒最後一個不凡的特性就是可以在物種之間適應轉移。

感冒病毒不僅突變快速,它的基因組成還是成段分開的。就是說它的基因組不像大多數有機體或其他病毒一樣沿著核酸串在一起,而是存在不連貫的 RNA 上。所以當兩種不同病毒侵入同一個細胞時,它們的基因組就很可能混合重組。

重組會讓一個病毒的基因和另一個混在一起,好比把兩種不同花色的撲克牌洗在一塊,然後出現一疊含有兩種花色的牌。這就產生一種全新的病毒,讓它有機會從一個物種跳到另一個物種上。

-----廣告,請繼續往下閱讀-----
基因重組就像把不同花色的撲克牌洗在一起,出現一疊有兩種花色的牌。圖/Nhu Tran

香港禽流感中,如果有個人同時感染兩種病毒,這兩種病毒就有機會重組它們的基因,產生能容易在人類流傳的新病毒品種,而致命的病毒就這樣變成人類病毒。

病毒也可以經由中介者間接變成適合的。有病毒學家提出,對病毒來說豬是最佳的仲介,因為豬細胞的唾液酸受體能同時與鳥類和人類的病毒結合。當鳥類病毒和人類病毒同時感染同一頭豬時,病毒重組就可能發生,全新的病毒便可能現身人間。

一九一八年時獸醫曾提到豬和其他動物發生流行性感冒;而今天的豬感冒病毒也是一九一八的感冒病毒的直系後代。但我們並不清楚人和豬之間究竟是誰先把感冒傳給誰的。

紐約西奈山醫學中心的彼得.巴利斯 (Peter Palese) 醫師是世界感冒病毒權威,認為病毒基因重組的理論[1]可以解釋病原突變的現象:「⋯⋯另一個可能性是鳥類病毒和人類病毒同時感染肺部細胞,給了病毒升級的機會⋯⋯不管是豬肺或人肺,沒理由說這種混合不可能發生。沒有絕對證據說這兩個物種沒有共同的唾液酸受體,也不能保證鳥類的受體和人類真的不同。只要有一個胺基酸的突變,病毒就可以很容易找到另一個宿主。」

-----廣告,請繼續往下閱讀-----

有些過去的瘟疫竟然是流行性感冒?

因為病原突變而造成的大規模瘟疫在人類交通還沒有像今天一樣繁忙之前就發生過了。大多數醫史學家從疾病傳播的速度和感染人數推斷,十五、十六世紀歷史上發生的幾次瘟疫都是流行性感冒,但還是有分歧的看法。一五一○年非洲傳來瘟疫肺炎「立刻狂掃歐洲,不放過每個家庭的每一個人。」

一五八○年又有一次疫病從亞洲傳來,到了非洲、歐洲,再到美洲。它的威力大得「六星期內折磨幾乎全歐每個國家,不到二十分之一的人得以倖免。」在西班牙有些城市「人口幾乎完全被滅絕。」

有些過去的瘟疫則無疑是流行性感冒。一六八八英國光榮革命那年,流感襲擊英國、愛爾蘭、新大陸的維吉尼亞州,這些地方記載著:「⋯⋯人們死去⋯⋯像在鼠疫中⋯⋯」五年之後,感冒又掃過歐洲:「各種狀況的人都被感染⋯⋯強健的人和衰弱的人一樣倒下⋯⋯不分老幼。」

1665 年倫敦大瘟疫期間的一條街道上,有一輛死亡推車和送葬者。圖/Wikimedia common

一六九九年的麻州,科頓.馬瑟 (Cotton Mather) 寫道:「病魔幾乎侵入所有家庭,極少人逃過。在波士頓死亡特別多,而且有人死得很怪異。有些家庭全家生病,有些地方全鎮都病倒,真是個疾病的時代。」

-----廣告,請繼續往下閱讀-----

歐洲在十八世紀至少被三次,可能多達六次瘟疫襲擊,十九世紀至少有四次。一八四七年和一八四八年這兩年倫敦死於感冒的人數超過一八三二年霍亂流行的時候。一八八九和一八九○年又一次世界性大流行,不過不如一九一八年猛烈。二十世紀有三次來襲,每次都是由抗原突變引起,不是血凝素就是神經氨酸,或是兩者同時大幅變化,或是其他基因組異動造成的緣故。

流行性感冒通常感染百分之十五到四十的人口。任何感冒病毒感染那麼多人,又造成相當比例的死亡率,的確是超乎想象的恐怖。近年來公共衛生當局發現至少兩起新病毒感染人類,而在它突變成為人類病毒之前就先作了防堵措施。一九九七年香港的禽流感在十八個病例中有六人死亡。

那次為了防止家禽病毒變成人類病毒,當局將香港所有的一百二十萬隻雞全部撲殺。不過這麼做還是沒有徹底消滅 H5N1 病毒,它仍留在家禽身上,而在二○○三年又感染兩個人,造成一人死亡。這種特殊病毒的疫苗已經研發出來,但是並沒有大量製造。

這種特殊病毒的疫苗已研發出來,但沒有大量製造。圖/Wikimedia common

二○○三年春天當一種新的 H7N7 病毒在荷蘭、比利時、和德國的家禽農場出現時,造成更大規模的撲殺。那次病毒感染了八十三個人,其中一人死亡,並且傳染到豬隻身上。當局撲殺了將近三千萬隻家禽和一些豬。

-----廣告,請繼續往下閱讀-----

到了二○○四年,從未真正消失的 H5N1 以復仇之姿再次回歸。它在五年內感染了全世界約四千人,並奪去其中約百分之六十的人性命。它造成、且很有可能再度造成另一場大流行。為了防堵這個病毒,估計共有上億隻家禽被撲殺,但世界各地仍出現地方性的疫情。

執行這種昂貴又恐怖屠殺的原因是為了不讓一九一八年的故事重演。這麼做是為了要防止病毒突變,荼毒人間。在此同時,二○○九年突如其來,從感染過鳥、豬及人類的病毒中基因重組的一種病毒,也造成了另一次大流行。

註解

  1. 二○○一年澳大利亞科學家馬克.吉伯斯 (Mark Gibbs) 提出理論說,感冒病毒也可以自己重組基因,就是說把一段基因拿下來接到另一個基因上。好像把兩疊牌切碎,把碎牌隨便黏在一起,然後任意撿起五十二張新牌成為一套。這種重組在實驗室中曾經被證明,但大部分病毒學家還是對這種說法持疑。
——本文摘自《大流感:致命的瘟疫史》,台灣商務出版,2020 年 10 月5日。
-----廣告,請繼續往下閱讀-----
文章難易度
臺灣商務印書館
5 篇文章 ・ 2 位粉絲
1897年於上海成立,由出身印刷業的夏瑞芳等四位先生創辦,原意只做印刷商業文件的生意,故以「商務」為名。1948 年臺北分館開業,隔年商務臺灣分館改名為「臺灣商務印書館」,開始獨立經營。商務印書館的靈魂人物王雲五先生,於 1921 入館擔任編譯所所長至 1929 年,1930 年受邀回館任總經理至 1946 年;王雲五先生 1951 年自香港抵臺定居,以股東資格對臺灣商務印書館提供業務諮詢;1964 年由王雲五先生擔任董事長,直到 1979 年,對於商務印書館能夠成為當今華文世界最早的現代出版社,有著畫時代的意義。 商務印書館出版超過萬種好書,既有經典叢書如萬有文庫、人人文庫、古籍今註今譯等,近年更開創新系列叢書,包括 OPEN、Ciel、新萬有文庫、VOICE、U 小說、Alinea 等,極獲好評,為臺灣出版界重要的老字號出版社之一。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
把握 2050 淨零轉型契機!了解「產品碳足跡」提升企業 ESG 績效
宜特科技_96
・2024/10/06 ・5540字 ・閱讀時間約 11 分鐘

圖/宜特科技

邁向 2050 淨零轉型,當企業在面對客戶價值鏈要求時,導入 ESG 早已成為提升營運績效的重要指標。而「產品碳足跡」是企業在品質、價格、規格之外,貼近客戶價值鏈、爭取國際品牌廠青睞的重要關鍵。透過本文一起深入探討,如何有效率地開展產品碳足跡計算與報告領域。

本文轉載自宜特小學堂〈把握淨零轉型契機 用產品碳足跡提升 ESG 績效〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

全球氣候變遷早已成為國際間重要環境議題,目前不同國家和地區具有針對碳足跡的要求和指南,例如:法國的 ADEME(環境和能源管理署)指南和日本的碳足跡計劃;而國際大廠(包含 Microsoft 及 Bosh 等車電大廠等)也積極推動供應商碳足跡管理,以降低整體供應鏈的碳排放,致力於實現其永續發展目標(Sustainable Development Goals,簡稱 SDGs)。臺灣也針對「2050 淨零轉型」提出四大策略及兩大基礎。

臺灣 2050 淨零排放路徑及策略總說明。圖/國家發展委員會

企業導入產品碳足跡可以幫助其成為客戶 ESG(Environmental, Social, and Governance)發展策略中重要合作夥伴,促進長期合作關係。然而,在企業開始進行碳足跡計算時,常常會面臨邊界設定、數據收集與量化等方面的各種問題,不知道該從何下手導致進展受阻。

宜特科技已有為數百家企業提供輔導服務的豐富經驗,成功協助客戶獲得多項增值認證,順利進入國際產業供應鏈。在本文中,我們將分享透過實例經驗,並深入探討如何有效率地開展產品碳足跡計算與報告領域,滿足客戶在 ESG 需求,從而幫助企業在國際供應鏈中保持競爭優勢!

-----廣告,請繼續往下閱讀-----

產品碳足跡-基於生命周期評估(Life Cycle Assessment,簡稱 LCA)

碳足跡是一種特定的環境指標,用於量化某個活動、產品或服務在生命周期內,直接和間接產生的溫室氣體排放量,通常會以二氧化碳當量(CO2e)來表示。而產品碳足跡是基於 ISO 14040  和 14044 所定義之系統化的方法,針對整個生命周期中對暖化的影響加以評估,這其中包括從原材料的獲取、製造、使用到最終處置的各個階段排碳量。

( 一 ) ISO 14040:生命周期評估原則與框架(Life Cycle Assessment-Principles and Framework)提供了 LCA 的總體框架和原則,涵蓋了 LCA 的基本概念、應用範圍和限制,以及進行 LCA 的基本步驟和程序。

ISO 14040 產品生命周期評估原則與框架。圖/宜特科技

( 二 ) ISO 14044:生命周期評估需求與準則(Life Cycle Assessment-Requirements and Guidelines)描述了 LCA 各階段的技術要求,包括數據收集、數據品質、影響評估方法和解釋結果的方法。ISO 14044 對 LCI(Life Cycle Inventory,生命周期清單) 的實施提供了全面指導和技術要求,LCI 作為 LCA 的一個關鍵階段,在 ISO 14044  的框架下進行,可以確保其數據的品質和結果的可靠性。常見 LCI 如下:

ISO 14044 下常見的 LCI(生命周期清單)。圖/宜特科技

綜合上述 LCA 提供了一個全面的環境影響評估,可以幫助企業和決策者了解各種環境影響並進行綜合決策;LCA 涵蓋了多種環境影響指標(如暖化效應、臭氧層破壞、資源消耗、酸化效應、生態毒性等),而碳足跡是則聚焦於暖化效應。

-----廣告,請繼續往下閱讀-----

產品碳足跡系統邊界設定:

設定產品碳足跡盤查範疇(Boundary)是準確量化碳足跡的關鍵步驟。此過程包括確定哪些生命週期相應階段、活動和排放源應被納入碳足跡計算,並據此推動相關減排措施。基於生命週期的產品碳足跡,通常會涵蓋以下幾個主要階段:

  1. 原材料獲取:從自然資源中提取和加工原材料。
  2. 生產:製造和裝配產品的過程。
  3. 運輸和配銷:產品從生產地運輸到消費地的過程。
  4. 使用:產品在其使用壽命期間的階段。
  5. 最終處理階段:產品使用壽命結束後的處理,包括回收、再利用或廢棄處置。

完成生命週期設定後,需要進一步定義產品系統的邊界,包括哪些過程和活動應該納入盤查範疇。例如對於包材,應涵蓋包材的生產、製程中的能源消耗以及廢棄包裝的處理等完整階段,以供後續執行數據分配,如下圖所示:

生命週期之產品碳足跡主要階段。圖/宜特科技

若屬於 B2C 產品將涵蓋上述完整五個階段,而 B2B 產品則只包含上述前兩階段;下圖是 B2C 產品碳足跡的案例。

B2C 產品碳足跡案例。圖/工研院

量化產品碳足跡:依據 ISO14067 產品碳足跡來量化要求與指引

ISO 14067 提供了關於如何量化產品碳足跡的詳細指引,產品碳足跡計算基於「活動數據」與「排放係數」,下圖為相關案例。

-----廣告,請繼續往下閱讀-----
ISO 14067 產品碳足跡計算案例。圖/工研院

( 一 ) 如何蒐集活動數據

基於生命週期的不同階段,說明如下:

  1. 原材料階段

  • 原材料(包含輔材與包材)使用量:每種原材料的數量和重量。
  • 原材料製造過程的排放:包括從自然資源提取和加工過程中的溫室氣體排放。
  • 運輸數據:原材料從提取地點到加工廠的運輸距離和運輸方式(如貨運、海運等)。

  2. 生產階段

-----廣告,請繼續往下閱讀-----
  • 能源消耗:生產過程中使用的電力、燃料(如天然氣、汽柴油)等能源的消耗量。
  • 製程排放:生產過程中直接排放的溫室氣體(如化學反應產生的排放)。
  • 廢棄物管理:製造過程中產生的固體廢棄物、廢水和廢氣的處理過程中,涉及燃燒、分解等清理方式之處理量。

  3. 運輸和分銷階段

  • 運輸距離和方式:產品從生產地到消費地的運輸距離和運輸方式。
  • 運輸工具的能源消耗:運輸過程中運輸工具的燃料消耗量和類型。

  4. 使用階段

  • 使用過程中的能源消耗:產品在使用過程中消耗的能源(如家電使用的電力,車輛使用燃料等)。

  5. 最終處理階段

  • 廢棄物處理方式:產品生命終期(End of Life)不同處理方式(如焚燒、掩埋)對應之處理量。

( 二 ) 蒐集與應用排放係數

-----廣告,請繼續往下閱讀-----

藉由排放係數(Emission Factors,簡稱EF)可將活動數據(如能耗、材料使用等)轉換為溫室氣體排放量。ISO 14067 提供了量化產品碳足跡相關指引,幫助企業有效地收集和應用排放係數。以下是收集和使用排放係數的步驟和建議:

1.選擇排放係數來源

  • 官方資料庫:使用來自政府和國際組織的標準化排放係數,例如: United States Environmental Protection Agency(EPA)的排放係數資料庫、European Environment Agency(EEA)的排放係數、國際能源署(IEA)的能源數據以及台灣碳足跡資料庫。
  • 供應商提供的一手數據(Primary Data):來自供應商自行盤查的數據。
  • 第三方商業資料數據:市售第三方商業數據庫和工具,如 Ecoinvent(Simapro)和 GaBi。

2.評估和選擇排放係數

  • 地理相關性:確保排放係數與產品生產和使用的地理位置相關。例如,電力生產的排放係數在不同國家或地區可能差異很大。
  • 時間相關性:使用最新的排放係數數據,因為技術更新可能會影響排放量。

 3.應用排放係數

-----廣告,請繼續往下閱讀-----
  • 計算流程標準化:在計算產品碳足跡時,應建立標準化計算流程來應用排放係數,確保一致性和可比性。
  • 善用軟體工具:使用專門 LCA 軟體工具來管理和應用排放係數,如 SimaPro、GaBi 等。
  • 數據整合:將排放係數整合到產品碳足跡的計算公式中,與活動數據(如能源使用、材料消耗等)相結合,以計算總的溫室氣體排放量。

確保碳足跡量化數據品質

ISO 14067 對數據品質管理提出了明確的要求,以確保產品碳足跡量化準確性和可信度。以下是 ISO 14067 對數據品質管理的主要要求:

  1. 數據品質的評估指標
  • 代表性(Representativeness):數據應該反映真實的情況,包括地理範圍、時間範圍的相關性。
  • 一致性(Consistency):應使用一致的方法和假設來收集和處理數據,確保不同數據集之間的可比性。
  • 可靠性(Reliability):數據應該來自可信的來源,並經過適當的驗證。
  • 精確度(Accuracy):數據應該盡可能準確,減少誤差。
  • 完整性(Completeness):數據應該包含生命週期各階段重大排放,確保碳足跡計算的全面性。
  • 可追溯性(Traceability):數據來源和處理方法應該可追溯至原始單據,以便審查和驗證。

   2. 管控數據品質

  • 內部稽核:定期進行內部查核,評估數據品質,確保數據的準確性和可靠性。
  • 外部驗證:在必要時,進行外部驗證,確保數據和碳足跡計算結果的可信度。

   3. 執行數據敏感度分析

  • 碳足跡的敏感度分析是確保碳足跡計算結果的可靠性和準確性的重要步驟。敏感度分析有助於識別和理解不同參數對碳足跡數據的影響,從而幫助決策者進一步優化產品環境表現。
  • 執行方式為識別在碳足跡計算中使用的所有主要參數(能源消耗、材料用量、排放係數)等。選擇那些對結果有較大影響或存在較大不確定性的變量進行分析。
  • 執行方式為單因素分析(逐一改變每個變量,在保持其他變量不變的情況下,逐一調整每個變量的值,計算並記錄每次調整後的碳足跡結果)或多因素分析(同時改變多個變量,評估這些變量之間的交互作用及其對碳足跡結果的綜合影響)。
  • 根據敏感度分析結果,提出具體的改進方案,例如替換高碳排放材料、提高能源效率等。

 4. 持續改善和更新

-----廣告,請繼續往下閱讀-----
  • 持續改進:定期檢討和改進數據收集和處理流程,採用最新的技術和方法,提高數據品質。
  • 數據更新:根據最新的技術、方法和排放因子,定期更新數據,確保碳足跡計算的準確性。

ISO 14067 對數據品質管理的要求涵蓋了數據收集、評估、管控、改進的各個方面。通過遵循這些要求,企業可以確保其產品碳足跡計算的數據是準確、可靠和透明的,從而提高碳足跡報告的可信度和科學性。

碳足跡與產品環境宣告(Environmental Product Declaration):

產品碳足跡和產品環境宣告(Environmental Product Declaration,簡稱 EPD)是兩個相關但不同的概念,它們都提供產品的環境衝擊資訊,以幫助企業與消費者做出更可持續的選擇。

產品環境宣告是根據 ISO14025 國際標準所編制的技術文件,提供產品在生命周期內的環境影響資訊。EPD 基於生命周期評估(LCA)數據,可申請第三方認證。產品碳足跡通常是 EPD 中的一部分數據,尤其是在全球變暖潛勢(GWP)方面。EPD 包含了更廣泛的環境影響數據,而碳足跡專注於溫室氣體排放,相關範例如下:

產品環境宣告案例。圖/Fujitsu

運動飲料上針對碳足跡的標誌。圖/公視

產品碳足跡和產品環境宣告(EPD)兩者都是評估和傳達產品環境影響的重要工具。產品碳足跡專注於溫室氣體排放,而 EPD 則提供全面的環境影響資訊。兩者結合使用,可以幫助企業和消費者做出更可持續的選擇,推動環境保護和可持續發展。除了 ISO14067 外,溫室氣體議定書(GHG Protocol)也提供了計算產品碳足跡的詳細指導方針和方法。

自 2011 年起,宜特透過經濟部技術處科技專案「產品碳足跡與節能減碳資訊服務平台暨工具開發計畫」,積累輔導國內指標企業導入碳足跡的豐富經驗。我們認為,供應商碳排占比與減量機會,都是彰顯「產品環境績效」之關鍵,這正是導入碳足跡的重要目的之一。

因此供應商實地盤查至關重要,尤其針對排放貢獻占較大的本土供應商,宜特已定義出約 30 種盤查指標,企業可利用相關數據,偕同供應商建構減碳價值鏈。

我們輔導的客戶中包含全球知名代工龍頭廠、半導體設備製造廠、IC 設計廠商、光電業、電子元器件製造業、電子系統廠、傳產等國內上市櫃公司。在 ESG 輔導方面,亦有協助溫室氣體盤查、產品碳足跡、氣候相關財務揭露建議(TCFD)及 SBTi (科學基礎減量目標倡議,Science Based Targets Initiative)與 ISO 50001 能源管理與節能等相關輔導服務。

宜特科技可協助企業進行的 14 個輔導面向。圖/宜特科技

本文出自 宜特科技

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
15 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

2
0

文字

分享

0
2
0
從遺傳學角度剖析:女性能在體育場上超越男性嗎?——《運動基因》
行路出版_96
・2024/08/10 ・3712字 ・閱讀時間約 7 分鐘

科學期刊的預言:女性能追趕甚至超越男性?

我在 2002 年還在讀大四時,第一次看到兩位 UCLA 生理學家的論文〈不用多久女性就會跑得比男性快?〉,當時我覺得這個標題很荒謬。在那之前我花了五個賽季,進行 800 公尺中距離跑步訓練,成績已經超越世界女子紀錄。而且我還不是自己接力隊上跑最快的。

但那篇論文發表在《自然》(Nature)期刊上,這是世上極具聲望的科學期刊,所以一定有些道理。大眾就是這麼認為的。《美國新聞與世界報導》雜誌在 1996 年亞特蘭大奧運之前,對一千個美國人做了調查,結果其中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。

1996 年亞特蘭大奧運前,一千位美國人中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。 圖/envato

《自然》期刊上那篇論文的作者,把男子組和女子組從 200 公尺短跑到馬拉松各項賽事歷年的世界紀錄畫成圖表,發現女子組紀錄進步得遠比男子組急速。他們用外推法從曲線的趨勢推斷未來,確定到 21 世紀前半葉,女性就會在各個賽跑項目擊敗男性。兩名作者寫道:「正因進步速度的差異實在非常大,而使(兩者)差距逐漸縮小。」

2004 年,趁著雅典奧運成為新聞焦點之際,《自然》又特別刊出一篇同類型的文章〈2156 年奧運會場上的重要衝刺?〉(Momentous Sprint at the 2156 Olympics?)──標題所指的,正是女子選手會在 100 公尺短跑比賽中,勝過男子選手的預計時間。

-----廣告,請繼續往下閱讀-----

2005 年,三名運動科學家在《英國運動醫學期刊》發表了一篇論文,省去問號開門見山在標題宣稱:〈女性終將做到〉(Women Will Do It in the Long Run.)。

難道男性主導世界紀錄的情況,始終是歧視女性、把女性排除於競技場外的結果?

20 世紀上半葉,文化規範與偽科學嚴重限制了女性參與運動競技的機會。在 1928 年阿姆斯特丹奧運期間,有媒體(捏造)報導指稱,女性選手在 800 公尺賽跑後筋疲力竭地躺在地上,這讓一些醫生和體育記者十分反感,使得他們認為這個比賽項目會危害女性健康。《紐約時報》上有篇文章就寫:「這種距離太消耗女性的體力了。」〔1〕那幾屆奧運之後,在接下來的三十二年間,距離超過 200 公尺的所有女子項目,都突然遭禁,直到 2008 年奧運,男女運動員的徑賽項目才終於完全相同。但《自然》期刊上的那幾篇論文指出,隨著女性參賽人數增多,看起來她們的運動成績到最後可能會與男性並駕齊驅,甚至比男性更好。

運動能力的基因密碼:性別差異的生物學根源

我去拜訪約克大學的運動心理學家喬.貝克時,我們談論到運動表現的男女差異,尤其是投擲項目的差異。在科學實驗裡證實過的所有性別差異中,投擲項目一直名列前茅。用統計學術語來說的話,男女運動員的平均投擲速度相差了三個標準差,大約是男女身高差距的兩倍。這代表如果你從街上拉一千個男子,其中 997 人擲球的力氣會比普通女性大。

-----廣告,請繼續往下閱讀-----

不過貝克提到,這種情形可能是反映女性缺乏訓練。他的太太是打棒球長大的,輕輕鬆鬆就能贏過他。他打趣說:「她會發出一束雷射光。」那麼這是生物學上的差異嗎?

男性和女性的 DNA 差異極小,僅限於在女性身上為X或男性為Y的那單一染色體。姊弟或兄妹從完全相同的來源取得基因,透過重組母親和父親的 DNA,確保兄弟姊妹絕對不會相近到變成複製人。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,它的全名是「Y 染色體性別決定區基因」。若要說有「運動能力基因」,那就非 SRY 基因莫屬了。人類生物學的安排,就是讓同樣的雙親能夠同時生育出男性的兒子和女性的女兒,即使傳遞的是相同的基因。SRY 基因是一把 DNA 萬能鑰匙,會選擇性地啟動發育成男性的基因。

我們在生命初期都是女性──每個人類胚胎在形成的前六週都是女性。由於哺乳動物的胎兒會接觸到來自母親的大量雌激素,因此預設性別為女性是比較合算的。在男性身上,SRY 基因到第六週時會暗示睪丸及萊氏細胞(Leydig cell)該準備形成了;萊氏細胞是睪丸內負責合成睪固酮的細胞。睪固酮在一個月之內會不斷湧出,啟動特定基因,關閉其他基因,兩性投擲差距不用多久就會出現。

-----廣告,請繼續往下閱讀-----

男孩還在子宮時,就開始發育出比較長的前臂,這使得他們日後投擲時會做出更有力的揮臂動作。儘管男孩和女孩在投擲技能方面的差異,不如成年男性和女性之間那麼顯著,但這種差異在兩歲幼童身上已經很明顯了。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,會選擇性地啟動發育成男性的基因。 圖/envato

文化與訓練的影響:投擲項目中的性別差距

為了確定孩童之間的投擲差距有多少與文化有關,北德州大學和西澳大學的科學家組成團隊,共同測試美國孩童與澳洲原住民孩童的投擲技能。澳洲原住民沒有發展出農業,仍過著狩獵採集生活,他們教導女孩丟擲戰鬥及狩獵用武器,就像教導男孩一樣。這項研究確實發現,美國男孩和女孩在投擲技能上的差異,比澳洲原住民男孩和女孩之間的差異顯著許多。不過儘管女孩因為較早發育長得較高較壯,男孩仍比女孩擲得更遠。

普遍來說,男孩不僅比女孩更善於投擲,視覺追蹤攔截飛行物的能力往往也出色許多;87% 的男孩在目標鎖定能力的測試上,表現得比一般女孩好。另外,導致差異的部分原因,至少看起來是因為在子宮的時期接觸到了睪固酮。由於先天性腎上腺增生症,而在子宮裡接觸到高濃度睪固酮的女孩,上述項目的表現會像男孩一樣,而不像女孩;患有這種遺傳疾病的胎兒,腎上腺會過度分泌男性荷爾蒙。

受過良好投擲訓練的女性,能輕易勝過未受訓練的男性,但受過良好訓練的男性,表現會大幅超越受過良好訓練的女性。男子奧運標槍選手擲出的距離,比女子奧運選手遠大約三成,儘管女子組使用的標槍比較輕。此外,女性投出的最快棒球球速的金氏世界紀錄是 65 mph(相當於時速 105 公里),表現不錯的高中男生的球速經常比這還要快,有些男子職業球員可以投出超過 100 mph(相當於時速 160 公里)的球速。

-----廣告,請繼續往下閱讀-----

在跑步方面,從 100 公尺到 1 萬公尺,經驗法則是把菁英級表現差距定在 11%。從短跑到超級馬拉松,不管任何距離的賽跑,男子組的前十名都比女子組的前十名快大約 11%。〔2〕在職業等級,那就是個鴻溝。女子組的 100 公尺世界紀錄,跟 2012 年奧運男子組的參賽資格還差了四分之一秒;而在一萬公尺長跑,女子組的世界紀錄成績,與達到奧運參賽資格最低標準的男選手相比落後了一圈。

不論距離,男子組前十名的跑步速度普遍比女子組快約 11%。圖/enavato

投擲項目與純爆發力型運動項目的差距更大。在跳遠方面,女子選手落後男子 19%。差距最小的是長距離游泳競賽;在 800 公尺自由式比賽中,排名前面的女子選手,與排名前面的男子選手差距不到 6%。

預言女性運動員將超越男性的那幾篇論文暗示,從 1950 年代到 1980 年代,女性表現的進展遵循一條會持續下去的穩定軌跡,但在現實中是有一段短暫爆發,隨後趨於平穩──這是女子運動員,而非男子運動員進入的平穩期。儘管到 1980 年代,女性在 100 公尺到 1 英里各項賽跑的最快速度,都開始趨於穩定,但男子運動員仍繼續緩慢進步,雖然只進步一點點。

數字很明確。菁英女子選手並未趕上菁英男子選手,也沒有保持住狀況,男性運動員則在非常慢地進步。生物學上的差距在擴大。但為什麼原本就有差距存在?

-----廣告,請繼續往下閱讀-----

註釋

  1.  各報上氣不接下氣地報導 800 公尺女子選手紛紛倒在跑道上。正如運動雜誌《跑步時代》(Running Times)2012 年的一篇文章指出的,實情是只有一個女子選手在終點線倒下,其餘三名都打破了先前的世界紀錄。據稱人在現場的《紐約郵報》記者寫道,「11 位淒慘的女性」當中有 5 人沒有跑完,5 人在跑過終點線後倒下。《跑步時代》報導說,參賽的女運動員只有 9 個,而且全部跑完。
  2. 過去普遍認為,隨著比賽距離拉長,女子賽跑選手會超越男子選手。這是克里斯多福.麥杜格(Christopher McDougall)在《天生就會跑》這本很吸引人的書裡談到的主題,但不完全正確。成績非常優秀的跑者之間的 11% 差距,在最長距離和最短距離同樣穩固存在。儘管如此,南非生理學家卻發現,當一男一女的馬拉松完賽時間不相上下,那個男士在距離短於馬拉松的比賽中通常會贏過那個女士,但如果競賽距離加長到 64 公里,女士就會跑贏。他們報告說,這是因為男性通常比較高又比較重,比賽距離越長,這就會變成很大的缺點。然而在世界頂尖超馬選手當中,男女體型差異比一般群體中的差異小,而 11% 的成績差距,也存在於超級長距離的最優秀男女選手之間。

——本文摘自 大衛・艾普斯坦(David Epstein)運動基因:頂尖運動表現背後的科學》,2020 年 12 月,行路出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing