0

0
0

文字

分享

0
0
0

低脂乳製品能減少中風風險?

營養共筆
・2012/04/20 ・1018字 ・閱讀時間約 2 分鐘 ・SR值 527 ・七年級

-----廣告,請繼續往下閱讀-----

credit: CC by striatic@flickr

根據一篇發表在《Stroke》期刊的瑞典研究,中老年人飲用低脂乳製品也許能降低中風的風險。

研究者們花了十年多的時間追蹤將近 75,000 位男女,從中發現有吃低脂乳製品或飲料的人。瑞典卡羅林斯卡醫學院(Karolinska Institutet)營養流行病學副教授 Susanna Larsson 博士:「目前最合理的解釋是低脂乳製品食物能降低血壓。高血壓是中風相當主要的危險因子。有個可能的機制是低脂乳製品食物所含有的維生素 D 使中風風險降低。在美國與瑞典的低脂乳製品食物大多有額外強化維生素 D。」

過去的研究顯示適量維生素 D 有助預防發展為高血壓。Larsson 博士表示脫脂乳品製品若經過維生素 D 的強化,可能也有同樣的作用。

研究內容

1997 年的時候,參與研究的人們年齡範圍是 45 到 83 歲,並會對他們進行一個相當有份量問卷調查,涵蓋他們的生活方式、飲食、運動習慣、身體質量指數(BMI)、工作、教育程度以及病史等。研究最初的時候,所有參與者們都沒有心臟病、中風與癌症病史。

-----廣告,請繼續往下閱讀-----

在長達十年的追蹤期間,有 4 千多的人有中風的發生,其中有 2,400 男性。超過 3/4 的中風是缺血性的,這是提共大腦血液的動脈阻塞時的中風。將近 600 例的中風是出血性的。

研究者們發現攝取全脂乳製品與中風風險提昇有關連。他們認為全脂乳製品食物可能會增加血液中 LDL 的濃度,並抵銷一些乳製品能帶給健康的好處。

然而,他們發現平均每天吃四份低脂乳製品的人中風風險確實比不吃的人要來得低。就算把其他高血壓的可能因子考量在內,研究結果依然成立。

健康飲食是中風預防的一部分

奧勒崗健康與科學大學(Oregon Health and Science University)奧勒崗中風中心主任 Wayne Clark 醫師:「這是一個很棒的研究,能替我們已經知道低脂乳製品的好處再加分。」

-----廣告,請繼續往下閱讀-----

Clark 說乳製品中的鈣質可能也對降低血壓有幫助,他建議每天攝取 2 –3 份乳製品。不過,他指出飲食只是中風預防的一部分而已。「吃得健康、戒菸並增加你的運動量就能減少你的中風風險達 50%。這是三個主要項目,只要你能專注在這上面,你就能好好地掌握自己的健康。」

關於本文

  • 文章來源:WebMD
  • 文章標題:Low-Fat Dairy May Help Lower Stroke Risk
  • 文獻與人物:
    Susanna C. Larsson, PhD, associate professor, division of nutritional epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
    Wayne Clark, MD, director, Oregon Stroke Center, Oregon Health and Science University, Portland.
    Larsson, S. Stroke, April 2012.
    News release, American Heart Association.
    National Heart, Lung, and Blood Institute: “What Is a Stroke?”
  • 整理編譯:Sidney

原刊載於 營養共筆

-----廣告,請繼續往下閱讀-----
文章難易度
營養共筆
86 篇文章 ・ 3 位粉絲
應該是有幾個營養師一起寫的共筆,內容與健康議題有關。可能是新知分享、經驗分享或是有的沒的同學們~如果對寫這個共筆有興趣的話,歡迎一起豐富它的內容喔。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
解密離岸風電政策環評:從審查標準到執行成效,一次看懂
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/21 ・3546字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

政策環評是什麼,跟一般環評差在哪?

隨著公共建設的規模越來越大,傳統的環境影響評估(EIA),難以應對當今層層疊疊的環境議題。當我們評估一項重大政策時,只看「單一開發案」已經不夠,就像評估一棵樹,卻忽略了整片森林。因此,政策環境影響評估(SEA)應運而生,它看樹,也看森林,從政策的角度進行更全面的考量與評估。

與只專注於「單一開發案」的個案環評不同,政策環評更像是一場全面性的檢視,強調兩個核心重點:「整合評估」與「儘早評估」。簡單來說,這不再是逐案評估的模式,而是要求政府在制定政策時,就先全面分析可能帶來的影響,從單一行為的侷限中跳脫,轉而聚焦在整體影響的視角。無論是環境的整體變化,還是多項行為累計起來的長期影響,政策環評的目的就是讓這些潛在問題能儘早浮現、儘早解決。

除此之外,政策環評還像是一個大型的協商平台,以永續發展為最高指導原則,公開整合來自不同利益團體、民眾與各機關的意見。這裡,決策單位不再只是單純的「評分者」,而是轉為「協調者」或「仲裁者」,協調各方的意見看法在這裡得到整合,讓過程更具包容性。

-----廣告,請繼續往下閱讀-----

政策環評並沒有所謂的「否決權」,而是側重意見的蒐集與整合,讓行政機關在政策推動時,能更全面地掌握各方意見。政策環評旨在建立系統化、彈性的決策評估程序(包含量化、特徵化等評估方式),也廣納社會面或民眾滿意度等影響因子,把正式與非正式的作法一併考量進去。再來,決策程序中能層層檢討、隨時修正,也建立了追蹤機制和成效評估標準(如環境殘餘效應、累積效應等),透過學習來強化決策品質與嚴謹度。就像一場球賽,隨時根據變化、調整策略。

這樣的制度設計,就非常適合離岸風電這類規模大、跨區域、影響層面廣泛的能源政策評估,讓我們可以在政策推動初期就想到整個工程對環境、產業發展與社會的諸多影響,也為後續政策執行奠定更穩固的基礎。

政策環評並沒有否決權,而是重在整合各方意見、量化影響以及建立追蹤與修正機制,這樣的制度設計便適用於離岸風電等大型政策評估。圖/envato

離岸風電為何需要的是政策環評?

離岸風電是能源轉型的重要策略之一,但這不是只在某塊空地上架幾個風車,而是要在廣闊的大海中進行大規模建設,牽涉的不僅是發電,還涉及海洋保育、航空交通、水下文化資產等議題,更與當地漁民的權益息息相關。

這樣的大型離岸風電工程,因海洋環境的風險和不確定性極高,很容易讓人擔心生態影響。如何在海洋生態保護和綠能發展之間找到平衡點?這就需要政策環評的把關,從多方檢視這些複雜的挑戰,確保政策推行既能穩妥,又能達成發電目標。

-----廣告,請繼續往下閱讀-----

2016 年 3 月,經濟部自願提出「離岸風電區塊開發政策評估說明書」,是臺灣首次針對再生能源政策所進行的政策環評。根據這份評估說明書,政府將採分期公告、逐年檢討的方式,每三年開放 0.5~1 百萬瓩(GW)的電量額度鼓勵業者投入開發。當時環保署(現為環境部)歷經九個月召開 2 次意見徵詢會議,蒐集環評委員、專家學者、相關機關、民眾等意見,最終於同年 12 月的環評委員會作出徵詢意見。這些協商和檢討的過程,讓政策「名正言順」,得以充分顧及各方利益與生態平衡。

共通性環境議題與因應對策

在「離岸風電區塊開發政策評估說明書」中,環評會議盤點了開發過程中共通的環境議題。

首先,對於海洋生態保育的重點,特別是對中華白海豚的保護。環評會要求風機基座必須距離白海豚棲地1公里以上,以減少對其生態的干擾。實際上,這項規範在後續的實務執行中更為嚴格,例如,福海二期示範風場已退縮到 2.5 公里外,臺電二期風場甚至退到 4.2 公里外,顯示政策環評確實發揮了實質作用。此外,針對施工期間的聲音干擾,要求施工需有 30 分鐘以上的打樁緩啟動時間,並限制聲量不得超過 180 分貝等。

針對鳥類保育,政策環評也訂立了具體規範。其中,包括風機之間必須留設 500 公尺以上的鳥類穿行廊道,並在施工期間避開每年 11 月至隔年 3 月的候鳥過境期。同時,為確保這些措施確實生效,工程方也被要求設置「鳥類活動監測系統」,持續追蹤、評估風場對鳥類的影響。

-----廣告,請繼續往下閱讀-----

此外,環評會也確立了「先遠後近」的開發原則,要求優先開發較單純的航道外側區塊,待累積足夠經驗及相關資料後,再進行近岸區域的開發。這項原則考量了近海生態系的複雜性,也顧到養殖漁業的漁民權益,展現出政策環評在平衡發展需求與環境保護上的價值。

新一代的審查機制:達成能源轉型及環境保護雙贏

為提升環評效率並確保審查品質,環境部參考過去離岸風電審查經驗,制定「風力發電離岸系統開發行為環境影響評估初審作業要點」,建立了全新的二階段審查機制。

環境部推動二階段審查機制,提升離岸風電環評效率與審查品質。圖/envato

這套新機制分為兩個階段。第一階段,就像「初步檢查」,由環境部依照檢核表進行初審,並由環評審查委員會執行秘書邀集 2-5 位環評委員進行初審,通過第一階段初審之業者,可取得經濟部遴選資格,其初審結果有效期為兩年,必要時可申請展延一年。接著進入「第二階段」,開發單位檢附目的事業主管機關核配的容量證明文件等資料,提供更詳細的環境影響說明書以進行實質審查。

檢核表明確規範了 15 大項審查事項、112 項檢核項目,涵蓋開發案的全生命週期。

-----廣告,請繼續往下閱讀-----

工程面,包含風機及海上變電站基礎設置、海域電纜路線規劃、陸域設施工程等硬體設施的規範。其中,風機基礎設置必須避開海岸保護區、河口、潮間帶等環境敏感區域,且須進行地震危害度分析。海域電纜部分,除特殊情形外,埋設深度至少須達 1.5 公尺,且不得跨越中華電信海底電纜 1 公里的範圍。

環境保護上,檢核表則對施工噪音管制訂立了明確標準。舉例來說,打樁期間警戒區 750 公尺範圍內的水下噪音不得超過 160 分貝,且必須全程採用最佳噪音防制工法。同時,每個開發案或聯席審查的風場,同一時間內只能進行一支基樁施作,而日落前一小時到日出前也不得啟動新的打樁作業。

環境監測計畫更是檢核表中的重點,分為「施工前、施工期間、營運期間」三階段,每個階段都規定了詳細的監測要求(包括海域底質監測、水下噪音監測、鯨豚目視監測等)。以鯨豚監測為例,每年需執行20趟次,四季中每季至少執行 2 趟次。此外,所有監測數據都必須上傳至環境部「環保專案成果倉儲系統」(https://epaw.moenv.gov.tw/)供各界查閱。

這套標準化的審查機制不僅解決了「同一風場可能有多家廠商重複調查或審查」的資源浪費,也透過明確的檢核項目,讓開發單位在規劃階段就能掌握更具體的環境保護要求。不僅如此,該機制亦確保了環境保護標準前後一致,避免不同案件之間標準不一。

-----廣告,請繼續往下閱讀-----

結語

透過新的審查機制,環境部正積極推動再生能源開發案的環評審查作業,在提升行政效率之餘,也確保環境影響評估的品質,支持臺灣的離岸風電開發及國家能源轉型政策,也做好把關。藉由標準化檢核表和二階段審查制度,期待能在推動能源轉型的同時落實環境保護。

為確保制度能持續精進,環境部每半年至一年會進行制度檢討,並持續公開所有環評書件於「環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)。此外,環評會議召開前一週,也必須在指定網站公布開會訊息,讓民眾能申請列席旁聽或發表意見。透明化措施一方面展現了政府推動永續發展的決心,另一方面也確保全民能共同參與監督離岸風電的發展過程。未來,這套制度將在各界的檢視與建議中持續完善,為臺灣的永續發展貢獻心力,發揮環評作業的最大效益。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
她堅信自己已死:中風婦人的幻覺揭開科塔爾症候群的面紗——《大腦獵奇偵探社》
行路出版_96
・2024/08/22 ・2792字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

海爾妲的中風與奇異妄想

十八世紀末,七十歲的丹麥婦人海爾妲(Hilde)正在家中煮飯時,大腦突然缺血,情況不妙。海爾妲運氣很差,因為人類的腦細胞對缺血的耐受度近乎於零。少了血液,神經元(大腦裡的主要細胞)很快就會缺少氧與葡萄糖等必需物質;神經元會在短短幾分鐘內開始死去。若持續缺血,神經元會以驚人的速度消亡──每分鐘死掉將近兩百萬個。這一分鐘內消亡的神經纖維長度可達約十二公里(神經纖維是神經元向外延伸的軸突,負責在細胞之間傳遞訊號)。 簡言之,缺血會摧毀大腦。這種可怕的情況叫做中風,海爾妲中風了,她因此陷入昏迷。

海爾妲的案例細節來自一篇發表於一七八八年的科學論文。這篇論文沒有提到海爾妲的家人對她昏迷四天後醒來做何反應,但可以想見他們應該如釋重負。不過聽到海爾妲堅稱自己是死人,剛剛放下心中大石他們大概再次遭受暴擊。請注意,海爾妲說的不是她有瀕死經驗──看見隧道盡頭的那道光,最後一刻又被拉回人間──不是,她在與家人交談的時候說自己不是活人。

海爾妲並非是因為經歷過頻死經驗,才認定自己已死,而是談話時說自己不是活人。 圖/envato

我們是透過十八世紀瑞士科學家查爾斯.邦納(Charles Bonnet)的文章認識海爾妲的。 邦納是專業律師,但如同那個年代大部分的天才人物,他涉獵多個不同領域,決定投入科學研究就像我們現在決定追新劇一樣輕鬆隨意。令人驚訝的是,儘管態度輕鬆隨意,他的研究可是成果豐碩。

例如,邦納記錄了蚜蟲的無性繁殖過程,率先證實性別不是繁殖的先決條件(園丁都很熟悉也很討厭這種惱人的小蟲子)。他的其他昆蟲學研究,也為發現昆蟲如何呼吸提供重要助力。後來他的興趣轉向植物學,他的研究為後來發現二氧化碳與氧經由葉子進出植物奠定了基礎。以一個沒受過正式科學訓練、研究科學僅是嗜好的人來說,他還算厲害。

-----廣告,請繼續往下閱讀-----

我們運氣不錯,因為邦納也對異常的人類行為有興趣,例如海爾妲。老實說,海爾妲不是她的真名。也有可能是。邦納在描述她的情況時從未提到她的名字。如同科學文獻裡的許多醫學案例,邦納沒有寫下海爾妲的真名大概是為了保護她的隱私。我在此用這個常見的丹麥名字,方便我們討論她。

海爾妲中風之前,心理健康不曾出過大問題,所以她的奇特行為更加令人費解。家人想說服她相信自己並不是死人,畢竟她正好好坐在那兒跟大家講話。她康復了,這應該是對生命心懷感恩的時刻。但海爾妲一點也不開心。她變得暴躁易怒,責怪家人沒有為她舉辦告別式,實在太不像話。她要求家人幫她換裝,把她放進棺材裡,舉辦一場配合她身分地位的葬禮。

大家都希望海爾妲的幻覺會漸漸消失,但她的堅持有增無減,還開始口出威脅。似乎只有順從她的意願才能真正安撫她。她的家人半推半就地同意了。他們用裹屍布包裹她(十八世紀的丹麥顯然流行使用裹屍布),假裝正在為她安排葬禮。海爾妲對裹屍布的包法百般挑剔,用老師的嚴格口吻抱怨裹屍布不夠潔白,最後她終於安穩躺下、漸漸入睡。

家人為她脫掉裹屍布,把她挪到床上,希望這場鬧劇可以到此為止。沒想到海爾妲醒來之後依然故我,立刻堅持自己必須下葬。家人不願意真的把海爾妲埋進土裡(即使只是為了安撫這位吵鬧不休的病人,他們也不肯假裝將她下葬),所以他們只剩一條路可走:等待這奇怪的幻覺自動消失。

-----廣告,請繼續往下閱讀-----

後來幻覺真的消失了──可惜只是暫時的。每隔幾個月,幻覺就會從頭再來一遍,海爾妲深信她已經死了,不明白為什麼只有她看清這個事實。

海爾妲在認知現狀時,對於自己是「已死」的狀態深信不疑。 圖/envato

科塔爾症候群:明明活著,卻堅稱自己死了?

在邦納記錄這個事件之前,科學文獻裡沒有出現過海爾妲這樣的案例。但在那之後,科學文獻收錄了許多類似案例。由於類似案例夠多,我們可以相信海爾妲不是神經學上的偶發特例,這是一種症狀明確的神經疾病,而且症狀或可預測。這種疾病非常罕見,很難預估可靠的發生頻率,但沒有罕見到無人知曉,它的名字是:科塔爾症候群(Cotard’s syndrome)

病名源自法國神經學家朱爾斯.科塔爾(Jules Cotard),他生活於十九世紀下半葉。一八七四年,科塔爾在巴黎近郊的一個小鎮工作,碰到一名患者說自己沒有腦、神經和腸子。她宣稱自己不需要吃東西也能活著,而且感覺不到疼痛。關於疼痛的部分似乎可信:科塔爾的文字紀錄說他「把大頭針深深刺進」她的皮膚裡,她卻毫無反應(和現在相比,十九世紀的醫生不用太擔心醫療糾紛)。

科塔爾稱這位病患為 X 小姐,她的情況不是相信自己是死人,而是認為自己處於某種中間狀態──既非生,亦非死。她擔心自己會永遠困在這種不明不白的狀態裡,所以渴望真的死去。她認為只有活活燒死──雖然缺少有力的證據──才能讓她得到真正的死亡。她試著自己動手證明這個想法,所幸沒有成功。科塔爾對 X 小姐的情況很感興趣,他查找過去有沒有類似案例,沒想到居然找到好幾個。有人說自己正在慢慢腐爛,有人說自己沒有血液或是沒有身體,還有人被拋進永恆的虛無裡,或是處於某種存在的分歧狀態。

-----廣告,請繼續往下閱讀-----

科塔爾認為,他們的症狀屬於同一類疾病。他稱之為否認妄想(délire de negations)。妄想指的當然是患者對明顯虛假的事情深信不疑,科塔爾用否認一詞來形容這些病患最顯著的特徵:他們否認自己擁有(對多數人來說)生存不可或缺的東西。

科塔爾過世幾年後,另一位科學家在寫到否認妄想時,稱這種疾病為科塔爾症候群。從那之後,這種疾病曾被稱為科塔爾症候群、科塔爾妄想症,有時也叫做活死人症候群。科學家大多避免使用「活死人」這個詞,因為自稱死亡只是科塔爾症候群的諸多表現方式之一(而且這種不科學的誇飾用語,大部分科學家一聽就尷尬),前面介紹過的幾種存在狀態反而比較常見。

科塔爾症候群還有許多其他症狀,例如冷漠、感覺變敏感或變遲鈍、感覺不到飢餓或口渴(並因此絕食或脫水)、出現幻覺、焦慮、嚴重憂鬱、自戕、有自殺傾向等,這裡列出的僅是一小部分。患者否認自身存在,這讓他們的病情聽起來像小說情節。

——本文摘自《大腦獵奇偵探社:狼人、截肢癖、多重人格到集體中邪,100個讓你洞察人性的不思議腦科學案例》,2024 年 7 月,行路出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing