4

0
0

文字

分享

4
0
0

吃果子的魚孕育了遙遠的叢林

陸子鈞
・2011/03/24 ・745字 ・閱讀時間約 1 分鐘 ・SR值 483 ・五年級

-----廣告,請繼續往下閱讀-----

新的研究指出,亞馬遜的大蓋巨脂鯉(Colossoma macropomum)能帶著植物的種子,橫越超過五公里外的氾濫平原。

大蓋巨脂鯉(Colossoma macropomum)可能是亞馬遜地區植物種子主要的傳播媒介。

過去以來,雖然科學家預期魚在植物種子的傳播上扮演重要的角色,但對於種子的發芽率及傳播距離,卻缺少實際證據。

杜克大學的演化生態學家Jill Anderson,和她的團隊在祕魯的國家保護區裡發現,大蓋巨脂鯉腸道內有數以百計的種子。然而,這種魚能帶著種子多遠的距離,以及種子是否能在新地點發芽都是未知。

為了要找到答案,Anderson和她的團隊利用無線電,在河水會氾濫的季節,追蹤24隻大蓋巨脂鯉的位置,結果發現魚移動5.9公里遠。配合在實驗室中,種子能在魚腸道內存活多久的資料,推測大蓋巨脂鯉平均移動337~55英尺,而且種子能被帶到5.5公里之外。

-----廣告,請繼續往下閱讀-----

這是食果動物傳播種子最遠的紀錄,與非洲犀鳥及亞洲象不相上下。

更重要的關鍵是,這些分布在氾濫平原的種子,偏好在這樣的環境發芽,而非在像是湖泊這樣不流動的水域中。

美國加州的生態學家Michael Horn認為,過去我們都低估了魚對種子傳播的貢獻,即使科學家們都認為魚在生態系中扮演潛在的重要角色;熱帶非洲、北美及歐洲,都有魚攜帶種子傳播的例子。然而,我們對於細節卻都不清楚,其中一個原因是,和魚相比,鳥類及陸上哺乳類傳播種子的行為較容易研究。

即使Anderson的研究指出大蓋巨脂鯉在種子傳播扮演重要的角色,但她認為大蓋巨脂鯉對生態的貢獻仍被低估了。因為她預期,更大的魚能將種子帶到更遠的地方,但這項研究所追蹤的個體,體型並不是最大的。在過去的紀錄中,大蓋巨脂鯉能長到30公斤重。

-----廣告,請繼續往下閱讀-----

此外,這項研究也指出另一項隱憂,亞馬遜地區的過度漁撈,對生態的衝擊可能遠超過我們的想像。

資料來源:Fruit-feasting fish fertilize faraway forests

文章難易度
所有討論 4
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
誰在馬丘比丘終老?來自印加帝國各地,還有遙遠的亞馬遜
寒波_96
・2023/09/13 ・3774字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

馬丘比丘(Machu Picchu)可謂世界知名的遺跡,觀光客前仆後繼。後世外人神秘的想像下,這兒其實是印加帝國王室冬季渡假的離宮,平時有一批工作人員長住。公元 2023 年發表的論文,透過古代 DNA 分析,證實這群人來自南美洲各地。

馬丘比丘,鍵盤旅遊常見的俯視視角。圖/Eddie Kiszka/Pexels, CC BY-SA

印加王室專屬的服務團隊

馬丘比丘位於現今的秘魯南部,安地斯山區海拔 2450 公尺之處,距離印加帝國的首府庫斯科(Cusco)約 75 公里,只有幾天路程。此處當年是一片完整的園區,足以容納數百人,王室成員會在冬天造訪(南半球的冬天,就是台灣所屬北半球的夏季月份)。

即使是使用淡季,馬丘比丘也住著不少工作人員;從遺留至今的墓葬,可以見到他們的存在。園區由 15 世紀初開始營業,到印加帝國 16 世紀滅亡為止,此後與外界斷絕聯繫數百年,一直到 1912 年,美國調查隊再度「發現」這處世界奇觀。

馬丘比丘總共留下 107 座墓葬,174 位長眠者。這群人顯然不是印加王室,應該是歷代的服務團隊。以前有許多證據,根據不同手法與思維,支持馬丘比丘的工作員來歷很廣。例如這兒的陶器,各地風格都有。

-----廣告,請繼續往下閱讀-----

誰在馬丘比丘工作呢?發跡於庫斯科的印加帝國,後來成為廣大疆域的征服者,有一套「米塔(Mita)」制度調用各地的資源與人力。這套韭菜輪替,後來被西班牙殖民者沿用加改造,成為恐怖的剝削機器,也算是南美洲國家現今社會問題的一個根源。

然而,馬丘比丘的工作人員應該不是米塔制度的服役者,而是「亞納柯納(yanacona)」。他們是王室專屬的服務人員,來自帝國各地,小時候就離開家鄉,接受培育以服務王室。

印加帝國的地理格局。圖/參考資料1

來自印加各地,還有帝國以外的亞馬遜

這項研究由馬丘比丘的墓葬取得 34 個古代基因組,以及附近烏魯班巴谷(Urubamba Valley)的 34 位古代居民樣本,他們代表當地原本的鄉民。

分析發現,印加帝國能接觸到的地區,當地特色的血緣都能在馬丘比丘見到。唯一例外是帝國最南端,現今智利中部、阿根廷西部那一帶。這使得馬丘比丘,成為印加帝國 DNA 多樣性最高的地點。

-----廣告,請繼續往下閱讀-----

但是我不覺得,這等於馬丘比丘存在多樣性很高的「遺傳族群」。分析對象中只有一對母女,其他人都沒有血緣關係。這群人的 DNA 差異大,是因為持續有一位又一位孤立的人,從不同地方被帶進來,整群人只能算特殊個體的集合。

不過遠離家鄉,服務終生的亞納柯納們,彼此間還是可以結婚生小孩的。

性別方面有細微的差異。整體而言,男生具備較多安地斯高地的血緣,女生則配備更多高地以外族群的血緣。一個因素是,有些女生來自更遠的地方,例如文化有別的亞馬遜地區。

印加帝國對亞馬遜的政治勢力不是征服關係,似乎大致上對等。有些亞馬遜的女生大概出於交流目的,來到印加帝國。至少長眠於馬丘比丘的這幾位,生前受到的待遇看來不錯。

-----廣告,請繼續往下閱讀-----
馬丘比丘長眠者的年代與血緣組成。圖/參考資料1

山區到更高山區的情慾交流

對於更在地的族群調查,發現一件有趣的事。庫斯科附近的人群,以「秘魯南部高地」血緣為主,可以視為長居本地的血緣。一部分人卻也能偵測到,與更高山上之「的的喀喀湖(Titicaca)」的居民共享血緣。

庫斯科與的的喀喀湖,兩個地區有點距離,考古學證據指出,早於 2500 年前兩地間就存在交流。而遺傳學分析則支持,兩地存在情慾流動;可惜現有樣本,不太能精確判斷交流發生的年代。

來自亞馬遜的媽媽,女兒,爸爸

這批調查對象中,我覺得長眠於馬丘比丘的那對母女最有意思,值得特別思考。這對母女都是百分之百的亞馬遜西北部血緣,長眠於同一墓穴,兩者的關係在當時有被強調。

「亞馬遜」的面積妖獸大,印加帝國最有機會接觸的,應該是距離安地斯東方不遠的區域,也就是亞馬遜的西部和西北部。不論如何,亞馬遜有自己的一套,印加帝國與其有所交流,不過始終無法將其納入統治。

-----廣告,請繼續往下閱讀-----

征服到山與海的盡頭!以及雨林的邊緣……

馬丘比丘長眠者的鍶穩定同位素比值。圖/參考資料1

根據牙齒中鍶的穩定同位素,可以判斷一個人小時候在哪兒長大。媽媽 MP4b 成長於亞馬遜地區,表示她在長出恆齒後才抵達安地斯。

她的女兒 MP4f 則無法判斷具體地點,不過應該位於安地斯山區。兩人後來都在馬丘比丘服務,去世後長眠於此。

女兒沒有其餘地區血緣的特色,意謂女兒的爸,也配備百分之百的亞馬遜西北部 DNA,只是在馬丘比丘墓葬中看不到他。

-----廣告,請繼續往下閱讀-----

印加帝國興起,亞馬遜扮演什麼角色?

年代方面,媽媽算是長眠於馬丘比丘最早的一批人,處於印加建國的初期,甚至有可能早於開國之日。

依照歷史敘事,印加帝國始於「印加太祖」帕查庫特克(Pachacuti)擊敗昌卡人(Chanka)。印加勢力征服烏魯班巴谷以後,才有機會建設其上方的馬丘比丘。而印加太祖登基的年份為 1438 年。

然而,針對馬丘比丘遺骸的放射性碳同位素定年(碳14),指出兩人的年代或許早於 1420 年。考古學家因此懷疑,印加帝國建國的實際年代比 1438 年更早,也許早在 1420 年已經完成建國大業。

馬丘比丘最早長眠者的年代,似乎比歷史敘事中,印加帝國建國的 1438 年更早。圖/參考資料4

亞馬遜西北部長大的媽媽 MP4b 之年代,剛好介於這段時期。不論如何,這都是明確的證據,支持印加帝國建國之初,和亞馬遜之間有一定程度的正面交流。而女兒的爸,身份也引人好奇。

-----廣告,請繼續往下閱讀-----

他是當時亞馬遜政權派往印加的政治代表,或是軍事團助拳人嗎?還是替印加王室服務的商人,或是作戰的傭兵?他是在哪個地方,什麼情境下,與來自家鄉的女性生下女兒?最後,他本人最終的命運如何?

馬丘比丘在這對母女以後,至少還有四位純亞馬遜西北部血緣的女性長眠,延續到印加帝國的最後時期,當中至少兩位是在安地斯山區長大,和前輩女兒 MP4f 一樣。印加王室與亞馬遜的人口交流,貫串整段帝國時光。

古代 DNA 的分析,有相當客觀的套路,但是從中能牽引出的主觀議題千變萬化,非常有意思。

延伸閱讀

參考資料

  1. Salazar, L., Burger, R., Forst, J., Barquera, R., Nesbitt, J., Calero, J., … & Fehren-Schmitz, L. (2023). Insights into the genetic histories and lifeways of Machu Picchu’s occupants. Science Advances, 9(30), eadg3377.
  2. Who lived at Machu Picchu? DNA analysis shows surprising diversity at the ancient Inca palace
  3. Ancient DNA reveals diverse community in ‘Lost City of the Incas’
  4. Burger, R. L., Salazar, L. C., Nesbitt, J., Washburn, E., & Fehren-Schmitz, L. (2021). New AMS dates for Machu Picchu: results and implications. Antiquity, 95(383), 1265-1279.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1066 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

3

2
0

文字

分享

3
2
0
為什麼台灣文蛤是新的物種,古時候就住在台灣嗎?
寒波_96
・2023/06/15 ・3480字 ・閱讀時間約 7 分鐘

或許是台灣大眾對文蛤非常熟悉,所以 2023 年 4 月新聞報導「台灣文蛤」被認定為新的物種時,引發一波「蛤?」的熱潮。究竟文蛤有哪幾種,真的不一樣嗎?現在的台灣人會吃文蛤,古代人也會嗎?

三種文蛤大致的分佈範圍。圖/參考資料4

定義新的台灣本土物種

文蛤住在海岸附近,南亞、東南亞、東亞、東北亞到日本的沿岸,都能見到文蛤生存,物種不少,研究不多,分類有許多討論空間。

這項研究主要關注 3 個物種,包括住在日本、韓國的「麗文蛤(Meretrix lusoria)」,東亞偏北的「中華文蛤(Meretrix petechialis)」,以及全新定義,東亞南部與台灣的「台灣文蛤(Meretrix taiwanica)」。

台灣文蛤不只住在台灣,東亞沿岸也有,所以不算台灣特有種,不過可謂台灣的本土物種。

-----廣告,請繼續往下閱讀-----

遺傳上看,中國南北的文蛤各自成群,有所差異,為什麼以前沒有中國學者區分新物種?不清楚,或許是覺得同屬一個中國沒必要獨立,將其視為同一物種內的明顯差異。依照新研究,中國南部的文蛤將改名為台灣文蛤。

根據 CO1 基因建構的文蛤演化樹,中華文蛤、台灣文蛤彼此較為接近,和其他文蛤相比,兩者又與麗文蛤有較近的共同祖先。演化樹上其餘兩種為皺肋文蛤(Meretrix lyrata)、韓國文蛤(Meretrix lamarckii)。圖/參考資料5

這項研究使用外殼型態與 DNA 分辨不同文蛤。遺傳學標記是「CO1 Barcode」。CO1 全名 cytochrome c oxidase 1,是粒線體上的基因。

此基因在不同物種間的差異夠多,又沒那麼多(差異不多會分不清楚,可是倘若差異過多,同一物種內的變異也很大,就失去分群的意義,不適合用來鑑定)。儘管提供的訊息遠不如基因體全面,卻容易定序與分析,所以常常被用於鑑定與分類。

比對文蛤們的 CO1 基因序列,台灣文蛤、中華文蛤彼此最接近,不過兩群內皆明顯自成一群,也就是說台灣文蛤們獨立一群,中華文蛤們也自己一群,不論外貌如何,都可以明確區分出兩個物種。

-----廣告,請繼續往下閱讀-----

而麗文蛤們也自成一群,和兩者平行。被新定義為台灣文蛤的物種,和麗文蛤相比,遺傳上離中華文蛤更接近。因此可以確認台灣現今的文蛤,絕對不是以前長期認為的麗文蛤。

依照歷史記載,麗文蛤曾經在日治時代人為引進台灣,但是最近野外採集,都沒見到麗文蛤。

雖然顏色有深有淺,不過它們都是台灣文蛤。圖/參考資料1

蛤?台灣有或沒有哪些文蛤?

外觀方面,台灣文蛤的顏色與花紋變化多端,可是皆為同一物種。一般人不見得要像研究人員去野外廣泛採集才能體驗這件事,去點一盤或買一袋,應該也相當直觀。

神奇的是,其實 2020 年就有另一組學者,在另一篇論文中也將台灣文蛤定為新物種,建議命名為 Meretrix formosa(福爾摩沙文蛤)。不過這項研究沒有引起什麼關注,甚至被 2023 年的論文直接忽視。

-----廣告,請繼續往下閱讀-----

另外還有一個物種「Cytheraea formosa」,在公元 1851 年由英國學者 G.B. Sowerby II 命名。但是此一學名已經遭到取消,過往歸類為該物種的樣本學名應該皆為 Meretrix lusoria,也就是麗文蛤。

四款文蛤標本:A, Meretrix taiwanica 台灣文蛤。B, Meretrix petechialis 中華文蛤。C, Meretrix lusoria 麗文蛤。D, Cytheraea formosa 麗文蛤(已取消的舊名)。圖/參考資料1

台灣西部有一款很稀有的「虎斑文蛤(Meretris tigris)」。2019 年有一篇碩士論文《台灣養殖文蛤的遺傳多樣性及種原鑑定》(指導教授徐德華,研究生莊朝喜),主張虎斑文蛤不算一個物種,只是台灣的文蛤旗下一款。

這篇碩士論文沒有定義新物種,如果依照新分類,可以算是台灣文蛤的虎斑亞種(Meretrix taiwanica tigris)。

除此之外,現今台灣野外不只存在台灣文蛤,也採集到「韓國文蛤(Meretrix lamarckii)」。和麗文蛤相比,韓國文蛤與台灣文蛤的親戚關係更遠,明確為不同物種。兩者棲地也不同:韓國文蛤住在浪較大,純海水的環境;台灣文蛤則偏好坡度平緩的半淡鹹水河口。

-----廣告,請繼續往下閱讀-----

還有一種外觀與台灣文蛤類似的「普通文蛤(Meretrix meretrix)」,分布於東南亞,目前沒有在台灣見到。

台灣貝殼考古學

現今台灣本土的文蛤是台灣文蛤,但是古時候就存在台灣嗎?

台灣各地常常能見到遺棄大量貝殼形成的貝塚,考古遺址也出土不少貝殼,可見貝類是古代常見的資源,不過確認的文蛤並不多。另外更要注意,以前沒有台灣文蛤一說,時常將台灣的文蛤視為麗文蛤。

展示十三行遺址出土物品的十三行博物館的貝殼們。左上角的 1 號是文蛤,說明為麗文蛤,但是依照新研究似乎該改為台灣文蛤。
上圖的物種說明。

目前最清晰的紀錄來自新北市海邊的十三行遺址,根據水產試驗所的學者蕭聖代、莊世昌鑑定,這兒出土的文蛤應該是台灣文蛤。另外台北市的國立臺灣博物館,台中市的國立自然科學博物館蒐藏的標本,僅管以前有不同分類,其實也都是台灣文蛤。

-----廣告,請繼續往下閱讀-----

台灣北部,淡水河流域的十三行遺址是住海邊的人群遺跡,文蛤年代至少數百年。不過以常理推論,台灣文蛤應該更早以前就住在台灣,只是存在感不如很多種貝類。

除了文蛤以外,十三行遺址也出土過許多種貝殼,見證古代豐富的貝類生態,例如大蜆、紅樹蜆、牡蠣、黑鐘螺等等。

圓山遺址出土的大蜆。圖/參考資料6

至於台北市比較內陸的圓山遺址,儘管以貝塚出名,卻沒有出土過文蛤,主要貝類是十三行遺址也有的大蜆(Cyrenobatissa subsulcata)。圓山的大蜆貝殼最長可達 8 公分,約為成人手掌大。

隨著時代變遷,現今大蜆已經從基隆河流域消失,不再能大蜆身手。

-----廣告,請繼續往下閱讀-----

由考古研究看來,台灣這塊土地的過去與現在是延續的。古早人吃台灣文蛤與其他貝類,現代人也吃台灣文蛤與其他貝類。

劃重點:

  • 台灣現今的文蛤主要為本土物種「台灣文蛤」,也分佈於中國南部;台灣還存在另一物種「韓國文蛤」。
  • 同為台灣文蛤的不同個體,顏色與花紋變化大,有一款特殊的虎斑亞種。
  • 台灣文蛤與中國北部的「中華文蛤」親戚關係最接近。
  • 古時候台灣就存在台灣文蛤,但是圓山沒有,主要是已經滅團的「大蜆」。

延伸閱讀

參考資料

  1. Hsiao, S. T., & Chuang, S. C. (2023). Meretrix taiwanica (Bivalvia: Veneridae), a previously misidentified new species in Taiwan. Molluscan Research, 43(1), 12-21.
  2. Gwo, J. C., & Hsu, T. H. (2020). Ultrastructure of sperm and complete mitochondrial genome in Meretrix sp.(Bivalvia: Veneridae) from Taiwan. Tissue and Cell, 67, 101454.
  3. 台灣養殖文蛤的遺傳多樣性及種原鑑定
  4. 水試所鑑定養殖文蛤DNA 發現新原生種「台灣文蛤」
  5. 研究員為確認台灣文蛤物種翻遍河口養殖場 十三行博物館找貝塚標本
  6. 【國定圓山考古遺址】〈圓山貝塚,蛤?蜆!〉
  7. 臺灣貝類資料庫「大蜆」
  8. 國家文化記憶庫「大蜆」

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 3
寒波_96
193 篇文章 ・ 1066 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。