0

0
0

文字

分享

0
0
0

餓肚子的細菌會變壞!

陳俊堯
・2008/02/10 ・413字 ・閱讀時間少於 1 分鐘 ・SR值 543 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

突破人體皮膜細胞的Streptococcus pyogenes(credit: CC by Carl Zeiss Microscopy@flickr)

新研究指出A群鏈球菌(Group A streptococcus; Streptococcus pyogenes)在餓肚子時的代謝和表現出來的毒性有關!在革蘭氏陽性細菌掌管一大群碳水化合物代謝相關酵素基因該不該表現的CcpA(catabolite control protein A), 現在被證實會影響細菌毒力因子的表現。製造 CcpA 蛋白的基因被破壞後,GAS 菌在感染老鼠時的毒性會變弱。把這些有缺陷的突變株放在養份充足的培養基裡,細菌會製造出毒力因子;但是如果把它們放進低養份的環境(如人體唾液),少了 CcpA 的細菌在毒力因子的製造上就大受影響了。除了生理上的證據外,純化的 CcpA 蛋白也的確會接在毒力因子streptolysin S的promoter基因序列上。所以餓肚子會變壞的這個現象,是印在生物基因裡古老本能囉!

研究文獻:

Samuel A. Shelburne, III, David Keith, Nicola Horstmann, Paul Sumby, Michael T. Davenport, Edward A. Graviss, Richard G. Brennan, and James M. Musser. 2008. A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. PNAS 105: 1698-1703.

文章來源:30.6kj

文章難易度
陳俊堯
109 篇文章 ・ 16 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

1
0

文字

分享

0
1
0
從基隆進港的深海活化石中,意外發現新物種!——專訪國立臺南大學副教授黃銘志
Heidi_96
・2022/11/29 ・3887字 ・閱讀時間約 8 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

新種具足蟲,發現!

2019 年,國立臺南大學生物科技學系副教授 黃銘志 從基隆漁民手中獲得一批具足蟲。為了鑑定這些小傢伙的種類,黃銘志從日本換來兩隻大王具足蟲(B. giganteus),沒想到卻意外發現前所未見的新種——猶加敦具足蟲(B. yucatanensis)!

這到底是怎麼回事呢?別急,在我們看下去前,先告訴你一個具足蟲的小秘密。

具足蟲又稱為深水蝨,是居住在深海的甲殼類活化石。你可能沒聽過這兩個名稱,但如果你看過《風之谷》或是《星際大戰》(Star Wars),肯定對王蟲和黑武士有印象,而他們的原型就是具足蟲!

在宮崎駿動畫《風之谷》中,王蟲是守護腐海的生物。當他們憤怒時,眼睛會由藍轉紅。圖/スタジオジブリ
《星際大戰》系列電影的角色——黑武士的面具原型也是具足蟲!圖/Star Wars

既然不小心撈到了,那就抓來研究吧~

小秘密說完了,讓我們原地跳一下,回到 2019 年看看事情發生的經過。

當年七月,黃銘志在基隆正濱漁港採集到俗稱「金絲猴」的紅頭龍蝦,登錄為臺灣新記錄種「海神後海螯蝦(Metanephrops neptunus)」。此後,黃銘志就有和當地漁民保持聯繫。

臺灣新記錄種「海神後海螯蝦(Metanephrops neptunus)」。圖/TaiBNET

後來,有船長告訴黃銘志:「我抓到十隻具足蟲,你要不要?」

在基隆,具足蟲的漁獲量並不多,通常是拖網捕蝦附帶的戰利品。雖然東北角有很多販售具足蟲料理的店家,具足蟲吃起來也像龍蝦,但民眾還是喜歡吃真正的蝦子,所以具足蟲銷不出去,黃銘志就整批買了下來。

這時,問題來了!臺灣沒有具足蟲專家,而黃銘志本身也不是分類學家,要怎麼鑑定呢?沒辦法,只好自行摸索。

於是,黃銘志和日本新江之島水族館交換兩隻大王具足蟲,但這兩隻越看越不對勁,「⋯⋯怎麼其中一隻腰身比較細?難道是牠比較瘦、吃比較少嗎?」

「背景不同的人,就會用不同的視角看事情!」

後來,黃銘志想起赴日深造時,研究魚類基因演化、解析人體基因結構的經驗,就決定分析具足蟲的基因。從黃銘志的專業背景——分子生物學的角度來看,至少要採用兩種分析方法才夠,因為每個基因演化速度都不同,像具足蟲演化得很慢,基因差異不太明顯,就很難區分。

經過細胞色素 c 氧化酶亞基 1(COI)和 16S rRNA 分析後,黃銘志赫然發現很多 DNA 片段都不同。起初還以為是分析出錯,或是樣本破損,但重複試驗多次後的結果都一樣,黃銘志不禁感到困惑:「奇怪了,歐美研究大王具足蟲長達 140 年,有超過 1000 隻樣本,怎麼沒發現裡面可能有基因結構不同的個體?」

細胞色素 c 氧化酶亞基 1(COI)分析結果:第一行是猶加敦具足蟲,第二行是大王具足蟲。圖/Journal of Natural History
 16S rRNA 分析結果:第一行是猶加敦具足蟲,第二行是大王具足蟲。圖/Journal of Natural History

為了進一步梳理這些數據,黃銘志找來兩位分類學家助拳,一位是日本國際螯蝦學會的會長——甲殼類專家川井唯史(Dr. Kawai Tadashi),另一位則是澳洲昆士蘭博物館的無脊椎動物榮譽研究員——具足蟲專家尼爾.布魯斯(Dr. Niel L. Bruce)

不是這個專業,所以才能做到這件事

在三人正式合作前,黃銘志就大致完成這篇新種具足蟲的論文了,但後來,布魯斯發現了一個天大的錯誤,那就是黃銘志引用了某位印度專家錯誤的研究。

過去,也有中國學者引用這篇印度論文,指出印度洋海域有肯氏具足蟲(B. kensleyi)。黃銘志原先也以為是這樣,畢竟順著前人的研究比較不會有爭議,沒想到卻因此得出錯誤的推論。

第一次研究具足蟲,就要指正其他專家的研究,「老實說,我算哪根蔥?」黃銘志苦笑道。

為了修正錯誤,具足蟲的細部結構就交給布魯斯研究,再讓川井逐一比對、鉅細靡遺地畫下來。具足蟲演化較慢,所以每一種長得都很像,必須仔細觀察才能看出差異,比如鼻子的形狀、尾扇棘刺的數量、身體兩側的彎曲程度等等。

詹姆斯具足蟲(B. jamesi)和猶加敦具足蟲(B.yucatanensis)的身體(a)、頭部(b)、鼻子(c)和頭部側視圖(d)。圖/Journal of Natural History

雖然三人至今都沒有見過彼此,但當初為了辨別出不同的形態,他們互相傳了上千封信討論,才終於達成共識。回想這漫長的過程,黃銘志說:「那些圖都確認過十幾次了,意見不合也是常有的事,比如尾扇棘刺的數量要從哪裡開始數?」

黃銘志也提到,每種生物都有「種間變異」和「種內變異」。只要有變異,一定有不同的地方,但這些不同的地方可以直接判斷成不同種嗎?假如尾扇棘原本有 13 根,卻因為互相打鬥而斷了一兩根,是不是就要分成不同種?

詹姆斯具足蟲(B. jamesi)和猶加敦具足蟲(B.yucatanensis)的尾扇棘(c)。圖/Journal of Natural History

在這種情況下,由於形態非常接近,按照傳統分類學的做法,其實很容易將一整群可能摻雜不同種的樣本全都混為一類。因此,黃銘志認為最好的做法是從基因著手,用分子生物學的方法鑑定,而不是用個體的外觀差異判斷。

當分類學家多次比對不同樣本的外形,認為這不是大王具足蟲,而基因定序的結果也和資料庫既有的物種都不匹配的時候,就可以確認牠是未經發表的新種。

延伸閱讀:新種形成——秘中之秘

根據論文發表的結果,黃銘志最後將來自新江之島水族館的新種,以發現地墨西哥灣猶加敦半島(Yucatán Peninsula)為依據,命名為猶加敦具足蟲(B.yucatanensis)。

鑑定深海物種,有助於我們更認識深海

在十八、十九世紀時,科學家非常好奇深海到底有沒有生物,而如今,具足蟲就是活生生的鐵證,因此歐美國家非常重視具足蟲的學術價值。這些深海小傢伙證明了一件事:即使在光線微弱、水壓極高、溫度極低、幾乎沒有食物的環境下,還是有生物存在。

目前,我們對於月球的了解甚至還比深海多。布魯斯表示,陸生生物即使雜交,只要能產生有生殖能力的後代,原則上都可以算是同種,但水生生物並不完全遵循這個原則。

比方說,現在有很多鱘龍魚是雜交種,而且是不同種交配生下的、具有生殖能力的後代,這些不同的後代,都各自稱得上是新物種。按照這個邏輯,海洋時刻都有新物種誕生,是我們探索不完的神秘區域。

本篇論文的第三作者:尼爾.布魯斯。圖/ResearchGate

不過,相對於西方國家多半將具足蟲作為研究用途,東方國家比較在乎的反而是「這可以吃嗎?要怎麼料理才能變得更好吃?」

在日本,有一種零食就是將具足蟲磨成粉後加進仙貝,讓仙貝吃起來有蝦子的味道。黃銘志笑著說:「這很暢銷!」但也補充道,他在東京大學做研究時,實驗室有個傳統,那就是「當你研究某種生物的時候,你就不吃牠們,代表你對這種生物的敬意。」

關於具足蟲,還有哪些待解之謎?

這份耗時三年的研究,不但指正了前人的研究、改變了具足蟲近百年來的分類,也暗示著既有的「群模式樣本」或許有很大的問題。換句話說,目前已知的具足蟲種類不多,可能是分類錯誤造成的結果,說不定早就有很多種摻雜在其中了!

延伸閱讀:怎麼把牠們當成一樣的物種!物種分類出錯怎麼辦?——分類學家偵探事件簿(三)

在日本,鳥羽水族館有一隻具足蟲長達五年沒進食。目前仍沒有科學家著手細探背後的原因,而牠們的食物來源、繁衍方法,以及牠們如何在極端惡劣的深海環境生存,都是接下來必須進一步探究的課題。

舉例來說,紅色在深海是一種隱性色,而深海的甲殼類生物(比如甜蝦、天使紅蝦)體內通常帶有蝦紅素,使得體表呈現紅色,可以保護牠們不被天敵發現。可是,具足蟲的分布範圍深達數千米,體內卻沒有蝦紅素,煮熟後也不會像蝦子那樣變紅。

延伸閱讀:煮熟的龍蝦為什麼會變色呢?

此外,透過研究具足蟲,科學家可以更了解全球暖化對深海的影響、陸地上的重金屬和放射性物質沉進深海造成的衝擊,以及這些具足蟲是否可以取代龍蝦,成為新的食物選擇。

最近,南海的船長捕到了 80 幾隻具足蟲,黃銘志買下了形態看起來比較特殊的 10 隻,希望可以篩出更多新種,解開更多有趣的謎底。

延伸閱讀

參考資料

  1. Huang, M. C., Kawai, T., & Bruce, N. L. (2022). A new species of Bathynomus Milne-Edwards, 1879 (Isopoda: Cirolanidae) from the southern Gulf of Mexico with a redescription of Bathynomus jamesi Kou, Chen and Li, 2017 from off Pratas Island, Taiwan. Journal of Natural History, 56(13-16), 885-921.
  2. 交換日本水族館具足蟲 南大發現深水蝨新物種|生活|中央社 CNA
Heidi_96
7 篇文章 ・ 12 位粉絲
PanSci 編輯部角落生物|外語系還沒畢業,潛心於翻譯與教學,試圖淡化語言與知識的隔閡。

1

4
2

文字

分享

1
4
2
【2022 年諾貝爾生理或醫學奬】復現尼安德塔人消逝的 DNA,也映襯我們何以為人
寒波_96
・2022/10/06 ・8169字 ・閱讀時間約 17 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

人對自身歷史的好奇歷久彌新。最近十年古代 DNA 研究大行其道,光是發表於 Cell、Nature、Science 的論文就多到要辛苦讀完,加上其他期刊更是眼花撩亂。「古代遺傳學」的衝擊毋庸置疑,開創者帕波(Svante Pääbo)足以名列歷史偉人;然而,得知 2022 年諾貝爾生理或醫學獎由他一人獨得 ,還是令人吃驚——諾貝爾獎竟然會頒給人類演化學家?

諾貝爾獎有物理獎、有化學獎,但是沒有生物學獎,而是「生理或醫學獎」。帕波獲獎的理由是:「發現滅絕人類的基因組以及研究人類演化」。乍看和生理或醫學沒有關係,深入思考……好像還真的沒有什麼關係。

偷用強者我朋友的感想:「應該就是選厲害的。第一個和生理或醫學無關的生理或醫學獎得主,聽起來滿屌的」。

帕波直接的貢獻非常明確,在他的努力下,重現消失數萬年的尼安德塔人(Neanderthal)基因組。他為什麼想要這樣做,過程中經歷什麼困難,發現又有什麼意義呢?

喜愛古埃及的演化遺傳學家

帕波公元 1955 年在瑞典出生,獲獎時 67 歲。他從小對古埃及有興趣,大學時選擇醫學仍不忘古埃及,但是一生都在追求新奇的帕波,嫌埃及研究的步調太慢,後來走上科學研究之路。1980 年代初博士班時期,他使用當時最高端的分子生物學手段探討免疫學,成果發表於 Cell 等頂尖期刊,可謂免疫學界的頂級新秀。

然而,他始終無法忘情逝去的世界。1984 年美國的科學家獲得斑驢的 DNA 片段,轟動一時。斑驢已經滅絕一百年,能夠由其遺骸取得古代 DNA,令博士生帕波大為震撼。他很快決定結合自己的專業與興趣,嘗試由古埃及木乃伊取得 DNA,並且獨立將結果發表於 Nature 期刊。

古代 DNA。圖/取自 參考資料 1

博士畢業後,帕波義無反顧地轉換領域,遠渡美國追隨加州柏克萊大學的威爾森(Allan Wilson)。威爾森在 1970 年代便開始探討分子演化,後來又根據不同人類族群間粒線體 DNA 的差異,估計非洲以外的人群,分家只有幾萬年,支持智人出非洲說。

帕波正式投入相關研究後意識到,從古代樣本取樣 DNA 的汙染問題相當嚴重。這邊「汙染」的意思是,並非抓到樣本內真正的古代 DNA 目標,而是周圍環境、實驗操作者等來源的 DNA;包括他自己之前的木乃伊 DNA,很可能也不是真正的古代 DNA。另一大問題是,生物去世後 DNA 便會開始崩潰,經歷成千上萬年後,樣本中即使仍有少量遺傳物質殘存,含量也相當有限。

帕波投入不少心血改善問題。例如那時新發明的 PCR 能精確並大量複製 DNA,他馬上用於自己的題目(更早前是利用細菌,細菌繁殖時順便生產 DNA)。多年嘗試後,他決定放棄埃及木乃伊(埃及木乃伊的基因組在 2017 年成功),改以遺傳與智人差異較大的尼安德塔人為研究對象。

取得數萬年前尼安德塔人的 DNA

根據現有的證據,尼安德塔人是距今約 4 萬到 40 多萬年前的古人類。確認為尼安德塔人的第一件化石,於 1856 年在德國的尼安德谷發現,並以此得名(之前 2 次更早出土化石卻都沒有意識到)。這是我們所知第一種,不是智人的古代人類(hominin)。

對於古人類化石,一百多年來都是由考古與型態分析。帕波帶著遺傳學工具投入,不但增進考古和古人類學的知識,也拓展了遺傳學的領域。他後來前往德國的慕尼黑大學,幾年後又被挖角到馬克斯普朗克研究所,領導萊比錫新成立的人類演化部門,多年來培養出整個世代的科學家,也改變我們對人類演化的認知。

不同個體的粒線體 DNA 之間差異,智人與黑猩猩最多,智人與智人最少,智人與尼安德塔人介於期間。圖/取自 參考資料 2

帕波在 1996 年首度取得尼安德塔人的 DNA 片段,來自粒線體。他為了確認結果,邀請一位美國小女生重複實驗,驗證無誤,她就是後來也成為一方之霸的史東(Anne Stone)。比較這段長度 105 個核苷酸的片段,尼安德塔人與智人間的差異,明顯超過智人與智人。

然而,粒線體只有 16500 個核苷酸,絕大部分遺傳訊息其實藏在細胞核的染色體中。想認識尼安德塔人的遺傳全貌,非得重現細胞核的基因組。

可是一個細胞內有數百套粒線體,只有 2 套基因組,因此粒線體 DNA 的含量為細胞核數百倍;而且染色體合計超過 30 億個核苷酸,數量無比龐大。可以說,細胞核基因組可供取材的 DNA 量少,需要復原的訊息又多,比粒線體更難好幾個次元。

方法學與時俱進:從 PCR 到次世代定序

一開始,帕波與合作者使用 PCR,但是帕波知道這是死路一條。取樣 DNA 會破壞材料,尼安德塔人的化石有限;PCR 一次又只能復原幾百核苷酸,要完成 30 億的目標遙遙無期。

帕波持續努力克服難關。2000 年人類基因組首度問世,採取「霰彈槍」定序法,大幅提升效率;也就是將 DNA 序列都打碎,一次定序一大堆片段,再由電腦程式拼湊。帕波因此和 454 生命科學公司合作,改用新的次世代定序法,偵測化石中的古代 DNA。2006 年發表的論文可謂里程碑,報告次世代定序得知的 100 萬個尼安德塔人核苷酸,足以進行一些基因體學的分析。

帕波當時在美國的合作者魯賓(Edward Rubin)持續使用 PCR,雙方分歧愈來愈大,終於分道揚鑣。所以很可惜地,2010 年尼安德塔人基因組論文發表時,魯賓沒有參與到最後。這是人類史上第一次,取得滅絕生物大致完整的基因組,也是帕波獲頒諾貝爾獎的直接理由。

帕波戰隊。圖/取自 The Neandertal Genome Project

鐵證:尼安德塔人與智人有過遺傳交流

這份拼湊多位尼安德塔人的基因組,儘管品質不佳,卻足以解答一個問題:尼安德塔人與智人有過混血嗎?答案是有,卻和本來想的不一樣。尼安德塔人沒有長居非洲,主要住在歐洲、西南亞、中亞,也就是歐亞大陸的西部。假如與智人有過混血,歐洲人應該最明顯。結果並非如此。

帕波的組隊能力無與倫比,他廣邀各領域的菁英參與計畫,不只取得 DNA 資料,也陸續研發許多分析資料的手法,其中以哈佛大學的瑞克(David Reich)最出名。

分析得知,非洲以外,歐洲、東亞、大洋洲的人,基因組都有 1% 到 4% 能追溯到尼安德塔人(後來修正為 2% 左右)。所以雙方傳承至今的混血,發生在智人離開非洲以後,又向各地分家以前;並非尼安德塔人主要活動的歐洲。

首度由 DNA 定義古代新人類:丹尼索瓦人

復原古代基因組的工作相當困難,不過引進次世代定序後,從不可能的任務降級為難題,尼安德塔人重出江湖變成時間問題。出乎意料,同樣在 2010 年,帕波戰隊又發表另外 2 篇論文,描述一種前所未知的古人類:丹尼索瓦人(Denisovan)。不是藉由化石,而是首度由 DNA 得知新的古代人種。

根據細胞核基因組,尼安德塔人、丹尼索瓦人的親戚關係最近,智人比較遠,三群人類間有過多次遺傳交流。圖/取自 參考資料 1

丹尼索瓦人得名於出土化石的遺址(地名來自古時候當地隱士的名字),位於西伯利亞南部的阿爾泰地區,算是中亞。帕波對這兒並不陌生,之前俄羅斯科學家在這裡發現過尼安德塔人化石,而且由於乾燥與寒冷,預計化石中的古代 DNA 保存狀況應該不錯。

帕波戰隊對丹尼索瓦洞穴中的一件小指碎骨定序,首先拼裝出粒線體,驚訝地察覺到這不是智人,卻也不是尼安德塔人,接下來的細胞核基因組重複證實此事。它們變成前後 2 篇論文,帕波出名的不喜歡物種爭論,不使用學名,所以直稱其為「丹尼索瓦人」。

還有幾顆丹尼索瓦洞穴出土的牙齒也尋獲粒線體,而且這些臼齒特別大,型態前所未見。奇妙的是,丹尼索瓦人粒線體、基因組的遺傳史不一樣;和智人、尼安德塔人相比,尼安德塔人的粒線體比較接近智人,細胞核基因組卻比較接近丹尼索瓦人。

這反映古代人類群體間的遺傳交流相當複雜,不只是智人、尼安德塔人,也不只有過一次。後來又在丹尼索瓦洞穴發現一位爸爸是丹尼索瓦人、媽媽是尼安德塔人的混血少女,更是支持不同人群遺傳交流的直接證據。

遠觀丹尼索瓦洞穴。圖/取自論文〈Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave〉的 Supplementary information

回溯分歧又交織的人類演化史

重現第一個尼安德塔人基因組後,帕波戰隊持續改進定序與分析的技術,也獲得更多樣本,深入不同族群的分家年代、彼此間的混血比例等問題,新知識不斷推陳出新。

丹尼索瓦人方面,如今仍無法確認他們的活動範圍,不過很可能是歐亞大陸偏東部的廣大地區。一如尼安德塔人,丹尼索瓦人也與智人有過遺傳交流。

最初估計某些大洋洲人配備 4% 到 6% 的丹尼索瓦人血緣,後來修正為 2% 左右(不同方法估計的結果不一樣,總之和尼安德塔血緣差不多)。不同智人具備丹尼索瓦 DNA 的比例差異頗大,某些大洋洲人之外,東亞族群也具備些許,歐亞大陸西部的人卻幾乎沒有。

到帕波獲得諾貝爾獎為止,古代 DNA 最早的紀錄是超過一百萬年的西伯利亞古代象。圖/最早古代 DNA,超過一百萬年的西伯利亞象

至今年代最古早的人類 DNA,來自西班牙的胡瑟裂谷(Sima de los Huesos),距今 43 萬年左右(最早的是超過一百萬年的古代象,由受到帕波啟發的其餘團隊發表)。根據 DNA 特徵,胡瑟裂谷人的細胞核基因組更接近尼安德塔人,可以視作初期的尼安德塔人族群。然而,他們的粒線體卻更像丹尼索瓦人。

帕波開發的研究方法,不只針對消逝的智人近親,也能用於古代智人與其他生物,累積一批數萬年前智人的基因組。釐清近期的混血事件外,還能探討不同人群當初分家的時期。估計尼安德塔人、丹尼索瓦人約在 40 多萬年前分家,他們和智人的共同祖先,又能追溯到距今 50 到 80 萬年的範圍。

智人何以為智人?遠古血脈的傳承,磨合,新適應

消逝幾萬年的尼安德塔人、丹尼索瓦人,皆為智人的極近親。由於數萬年前的遺傳交流,仍有一部分近親血脈流傳於智人的體內。這些血脈經過數萬年,早已融入成為我們的一部分。

人,人,人,人呀。圖/取自 參考資料 2

智人的某些基因與基因調控,受到遠古混血影響。最出名的案例,莫過於青藏高原族群(圖博人或藏人)的 EPAS1 基因繼承自丹尼索瓦人,比智人版本的基因更有利於適應缺氧。另外也觀察到許多案例,與免疫、代謝等功能有關。

近年 COVID-19(武漢肺炎、新冠肺炎)席捲世界,觀察到感染者的症狀輕重受到遺傳差異影響;其中至少兩處 DNA 片段,一處會增加、另一處降低住院的機率,都可以追溯到尼安德塔人的遠古混血。

非洲外每個人都有 1% 到 2% 血緣來自尼安德塔人,不同人遺傳到的片段不一樣。將不同智人個體的片段拼起來,大概能湊出 40% 尼安德塔人基因組(不同算法有不同結果),也就是說,當初進入智人族群的尼安德塔 DNA 變異,不少已經失傳。

失傳可能是機率問題,某一段 DNA 剛好沒有智人繼承。但是也可能是由於尼安德塔 DNA 變異,對智人有害或是遺傳不相容,而被天擇淘汰。遺傳重組之故,智人基因組上每個位置,繼承到尼安德塔變異的機率應該差不多;可是相比於體染色體,X 染色體的比例卻明顯偏低;這意謂智人的 X 染色體,不適合換上尼安德塔版本。

例如 2022 年發表的論文,比較 TKTL1 基因上的差異對智人、尼安德塔人神經發育的影響。圖/取自〈Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals

智人之所以異於非人者幾希?藉由比較智人的極近親尼安德塔人,能深入思考這個大哉問。是哪些遺傳改變讓智人誕生,後來又衍生出什麼不可取代的遺傳特色?另一方面也能反思,某些我們以為專屬智人的特色,其實並非智人的專利。

分析遺傳序列,畢竟只是鍵盤辦案,一向雄心壯志的帕波,當然想要更進一步解答疑惑。比方說,尼安德塔人、智人間某處 DNA 差異對神經發育有什麼影響?體外培養細胞、模擬器官發育的新穎技術,如今也被帕波引進人類演化學的領域。

瑞典與愛沙尼亞之子,德國製造,替人類做出卓越貢獻的人

回顧完帕波到得獎時的精彩成就,他的工作與生理或醫學有哪些關係,各位讀者可以自行判斷。我還是覺得沒什麼直接關係,如遠古混血影響病毒感染的重症機率這種事,那些 DNA 變異最初是否源自尼安德塔人,其實無關緊要。不過多少還是有些影響,像是為了研究古代基因組而研發出的基因體學分析方法,應該也能用於生醫領域。

《尋找失落的基因組》台灣翻譯本。

帕波 2014 年時發表回憶錄《尋找失落的基因組》,自爆許多內幕。台灣的翻譯出過兩版,可惜目前絕版了。我在 2015 年、2019 年各寫過一篇介紹。書中有許多值得玩味之處,不同讀者會看到不同重點,有興趣可以找來閱讀,看看有什麼啟發。

主題是諾貝爾獎就不能不提,帕波得獎也讓諾貝爾新添一組父子檔,他的爸爸伯格斯特龍(Sune Karl Bergström)是 1982 年生理或醫學獎得主。為什麼父子不同姓?因為他是隨母姓的私生子,父子間非常不熟。

他的媽媽卡琳.帕波(Karin Pääbo)是愛沙尼亞移民瑞典的化學家,2007 年去世前曾在訪問提及,她兒子在 13、14 歲時從埃及旅遊回來,對科學產生興趣。帕波獲頒諾貝爾獎後受訪提到,可惜媽媽已經去世,無法與她分享榮耀。移民異國討生活的單親媽媽,能夠養育出得到諾貝爾獎的兒子,也可謂偉大成就。

人類演化的議題弘大淵博,但是究其根本,依然要回歸到一代一代的傳承。每個人都無比渺小,卻也是全人類中的一份子,親身參與其中。諾貝爾生理或醫學獎 2022 年的頒獎選擇,乍看突兀,仔細思索卻頗有深意。帕波的研究也許很不生理或醫學,卻再度強化諾貝爾奬設立的精神:「獎勵替人類做出卓越貢獻的人」。

  • 帕波得獎後接受電話訪問:

延伸閱讀

參考資料

  1. Press release: The Nobel Prize in Physiology or Medicine 2022. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  2. Advanced information. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  3. Geneticist who unmasked lives of ancient humans wins medicine Nobel
  4. Ancient DNA pioneer Svante Pääbo wins Nobel Prize in Physiology or Medicine
  5. Nature 論文蒐集「Nobel Prize in Physiology or Medicine 2022
  6. Estonian descendant Svante Pääbo awarded Nobel prize

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
174 篇文章 ・ 671 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
1

文字

分享

0
1
1
當人們對細菌一無所知、當醫生不洗手:生產,就像是去鬼門關前走一趟──《厲害了,我的生物》
聚光文創_96
・2022/09/13 ・1767字 ・閱讀時間約 3 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

無知的代價:產褥熱

故事說到這裡,此時此刻,人們依然只能透過顯微鏡、放大鏡等工具,追尋微生物的芳蹤。當然啦,發現微生物是一回事,要確認這些微生物與特定疾病的相關性,並且證實它們的致病性與致病機制,則完全又是另一回事。

在那個對微生物一無所知的年代,該有多可怕?圖/envatoelements

然而,產業救星巴斯德先生在拔了一根草、測了測風向以後,敏銳的發現,風向是會改變的。在與微生物和疾病的永恆戰鬥中,人類也不會永遠的屈居下風。

巴斯德的重心,逐漸從化學轉移到微生物之上。他雖然不是醫生,也不是婦女,卻對婦女的生死大關特別有興趣。

在十八世紀到十九世紀之間,有多達百分之三十的婦女,會在生產後的「產褥期」,受到細菌感染而持續發燒,稱為「產褥熱」(puerperal fever)。

當時,產褥熱的致死率相當高,一旦受到感染,有百分之七十五的產婦可能會挺不過去,一手接生一手送死,悲傷的故事在醫院裡不斷上演。

被忽視的警告:「不要碰完屍體去接生!」

一八四三年,美國醫生霍姆斯(O. W. Holmes)在論文中提到,不少醫生會在解剖完屍體之後,再為產婦進行接生,這些產婦中,染上產褥熱的比例也偏高。

但是,當時的醫學界並不認同霍姆斯的觀點,將他的提醒當成了耳邊風。

進產房前,別忘了先寫遺囑!圖/聚光文創

與此同時,在著名的維也納大學醫學院中,匈牙利醫師塞麥爾維斯(Ignaz Philipp Semmelweis),正為了附屬醫院中,遲遲無法下降的產婦死亡率而苦惱著。

即使進行了詳細的大體解剖,塞麥爾維斯也無法找出產褥熱的原因,只能眼睜睜的看著產婦一邊期待著新生命的降臨,一害怕著死神將揮舞著鐮刀,收割她們的性命。

心痛的塞麥爾維斯,於是將目光轉向產房細節。他注意到,如果產婦居住在解剖室旁的產房,產褥熱的比例更居高不下;反觀助產士教學病房裡的產婦,死亡率就明顯較低。

塞麥爾維斯於是推測,或許在屍體中帶有某種毒素,經由負責解剖的醫生、實習生的雙手,在接生或產檢之際進入產房,造成了產婦的死亡。

只是洗個手,死亡率剩下原本的 1/4

一八四七年,塞麥爾維斯決定,要求產科裡所有醫生、實習生,特別是那些剛進行過大體解剖的小夥伴們,在為產婦接生或檢查之前,務必要用肥皂與漂白水浸泡、清洗雙手,並澈底刷洗指甲底下的汙垢。

果不其然,一個簡簡單單的洗手動作,就讓院內產婦的死亡率,從百分之十二下降到百分之三!可喜可賀!

即使塞麥爾維斯發現「洗手」就可以降低產婦的死亡率,但它的發現並未被醫界重視。圖/envatoelements

按照常理思考,我們可以大膽推測,接下來的劇情發展應該是:「塞麥爾維斯被譽為英雄,他所推行的洗手習慣,立刻被全世界廣泛採用……」

NO~NO~NO,塞麥爾維斯拿到的,可不是這麼簡潔、老生常談的劇本,故事尚未劇終,本章節依然未完待續。

事實上,他的重要發現並沒有受到醫學界的認可,連病房主任也說,死亡率的下降,是醫護同仁們用心禱告的結果,跟洗不洗手什麼沒啥關係。

不僅論點違背主流風向,許多醫生甚至覺得,塞麥爾維斯的說法,根本就是在說「醫生手很髒」或「病從醫生來」,對此,他們表達強烈的不憤怒與不滿。

讀到這裡,我們或許會覺得,只是洗個手,有那麼痛苦那麼難嗎?殊不知,即便是疫情當前的今日,對於這個倡導手部衛生的建議,依然有人會感到不滿與抗拒。

如此一想,一百多年前的醫生們不想洗手,好像不是多麼不可思議的事情了。

沒想到竟然連醫生都會不想洗手!圖/聚光文創

──本文摘自《厲害了,我的生物》,2022 年 8 月,聚光文創,未經同意請勿轉載。

聚光文創_96
6 篇文章 ・ 2 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。