Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

疫情之下航空業有什麼改變?四引擎大型客機將提前告別天空

fabg
・2020/07/26 ・2722字 ・閱讀時間約 5 分鐘 ・SR值 529 ・七年級

如果在2019年的暑假,有人預言說一年之後航空業將會吹起前所未見的寒冬,會有一堆飛機就這樣沒有任務的停放在地上,可能 99% 在航空業的人都不會相信他所說的話。依據國際航空運輸協會(IATA)統計,2019年全年航空運輸人次逼近46億人次,創下民航史上最蓬勃的榮景之年。不只主導航空技術的北美與歐洲欣欣向榮,印度、東南亞、非洲的航空業都呈現穩定成長的態勢。

再看看現在:從2020 年 1 月底爆發的肺炎疫情迄今已經快要滿 6 個月,航空業不只是要能「撐」,更是要「活下去」。為了存活,也間使得某些機種,將提前被大時代所淘汰。

圖/pixabay

相信很多讀者在肺炎疫情爆發前,每年前往日本、韓國的次數,比去花東的次數還要多,且有時去國外的機票比國內線還要便宜。這是由於現代的民航運輸在廉價航空的催生下,可以達成點對點的便捷需求。不過,民航服務也不是一開始就能這麼便利地從一地飛到另外一地,這也是經過歷史的演進才達成便利的型態。

沒有阻礙,就可以點對點嗎?

人類的行為,就是希望可以從起點出發之後直接就到目的地,陸運系統由於受到地形阻礙,很難達成點對點直線的需求;可是在毫無阻礙的空中,點對點的最短距離,只要克服國界和空防要求,在兩地間拉起直線以提供飛航服務,相對陸運與海運而言,要容易得多。

-----廣告,請繼續往下閱讀-----
比起陸運和海運,空運更容易提供點對點的最短距離運輸。圖/pixabay

不過,為了讓重達數百噸的飛機能在天空翱翔,除了飛機本身造價昂貴,飛機所需要的燃油成本也十分驚人。因此,航空業在過去發展時,一向訴求「要有規模才能服務」的服務模式,加上許多國家把國與國之間的航空服務,視為國家主權的延伸條件,因此讓民航業產生了兩種飛航服務模式軸輻網路(Hub and Spoke)與點對點(Point to Point)

是直接飛過去,或者轉機停兩次?

點對點的飛航服務非常直覺,就是旅客可以從主要需求的航點,搭乘航班直飛到另外一個航點。例如臺灣和日本間開放天空後,不只是桃園機場可以搭機到日本各個不同的城市,甚至還有如臺南到大阪的直飛航線,旅客可以在這兩地間直接往來。

與點對點恰好相反的,就是軸輻網路的服務模式。所謂軸輻網路,各位可以把每個航點想像成自行車車輪邊緣的每個航點,而車輪軸心的「軸點」通常就是該地區的主力機場。如果旅客剛好就是在兩個軸點間飛航,當然仍然可以享受點對點的便捷服務。但如果旅客起訖點都不在軸點上時,就必須從出發地先到鄰近的軸點轉機,飛到另一個地區的軸點後,再轉換運輸工具抵達目的地。

軸幅網路理論下產生的樞紐機場概念圖。圖/wikipedia

軸幅網路的設計形態,過去在越洋或者是越大陸的航線環境中,因為航程遠、航班調度的成本較高,比較容易看到軸幅網路的航網結構,像是太平洋東西兩端的溫哥華、舊金山、洛杉磯、東京、仁川、香港、臺北等等,都是因為軸幅網路發展的航點。而像是中東的杜拜,則是阿聯酋航空在過去歐亞兩地的需求中,透過讓旅客從本來轉機兩次的機制,合併到杜拜進行轉機而成型的新形態航網軸點。

-----廣告,請繼續往下閱讀-----

從大飛機,變成小而遠的機種

要怎麼鼓勵旅客願意轉機呢?很簡單,價格就是重點。

由於航班營運成本的設計,理論上,每一班航班的載客量越高,因此在同樣線中,大飛機的每一座位成本自然會較可飛航同樣航程的中小型飛機為低,所以軸幅網路的設計方式,雖然旅客可能要轉機 1~2 次,但因為旅客需求可以集中在少數路徑上,航班頻率可以增加,因此旅客可以用較低廉的價錢,並符合自己需求的時間前往目的地。

在軸心至軸心的航點間,自然要使用載客量大的大型航機提供服務,從過去的波音 B747 系列、到後來可以載客高達 600 人座以上空中巴士 A380 客機,就成為服務軸幅網路最佳的機種,這兩種機種皆是以四發動機為設計、可以提供大量旅客在單一班次上便捷的移動。

A380 客機。圖/作者提供

然而,隨著複合材料技術與發動機技術的進展,波音 B787、空中巴士 A350 系列推出後,因為飛機相對過往更為省油,回到人類最初的需求,大家還是期待可以在起點與訖點之間便利地點對點往來。因此在肺炎爆發以前,像是波音 B747、或者是空中巴士 A380,本來就已經呈現逐步要被市場淘汰的態勢。

B787 飛機。圖/作者提供

肺炎疫情爆發之後,全球航班量大幅銳減到不到本來的 30%,像是桃園機場的進出旅客量更只有去年同期的不到 5%,縱使把客機拿來載貨都無法彌補劇烈的變動情況下,自然導致 B747、A380 這種大型機種要被市場提前淘汰。

-----廣告,請繼續往下閱讀-----

僅存雙引擎機種的天下?

B777、B787 飛機。圖/作者提供

在發動機可靠度大幅度提升的情況下,目前全球的主力機種,舉凡空中巴士 A321、A350、波音 B777、B787 等等,全數都是雙引擎機種,人類民用航空史上的多引擎機種,A380 的最後一架已進入組裝階段,待交機之後將正式關閉產線、而四發動機的 B747-8 家族,因為民航貨運的需求,雖然仍有少量訂單,但也可能在近兩年畫下終曲。接下來所加入市場的新穎機種,全數都是以雙發動機為設計的機種了。

A350 飛機。圖/作者提供

雖然 A380 與 B747 家族仍有一定的服役數量,但隨著產線停止,他們在天空中也將陸續凋零。在不久的未來,「空中皇后」與「空中郵輪」的傳奇,可能就只剩下民航發展史的一頁,只能相片和影片中追憶,但無法再親身體驗。

疫情還會繼續捲起淘汰飛機的波瀾嗎?

肺炎疫情除了讓大型客機淘汰之外,因為航空貨運的蓬勃興起,也讓許多飛機政策變成「反客為貨」,從客運服務轉為貨運服務為主體。雖然外觀上看不出來飛機有什麼變化,但是如果仔細觀察他們在停機坪的作業,會有機會發現地勤人員忙著進出的同時,客艙是一箱又一箱的散貨被搬入客艙中。雖然這不是客機最初設計的目的,但為了活下來,任何能讓飛機賺錢的項目,都會變成可能的選項。

如今肺炎疫情尚未有緩解的跡象,反客為貨縱使給航空公司一線生機,但也代表過去大量比重的客機仍持續得要停在地上一段時間。疫情再這樣持續下去,也許不僅連多發動機的機種都會消失,甚至連機齡較高的雙發動機機種,都岌岌可危。

-----廣告,請繼續往下閱讀-----
圖/pexels

而唯一的解法,只能祈求疫情趕快緩和,讓人們可以再回到安心享受空中旅行的那一天⋯⋯

-----廣告,請繼續往下閱讀-----
文章難易度
fabg
5 篇文章 ・ 0 位粉絲
從小就追著火車和飛機跑來跑去的宅小孩,生活的最大興趣就是研究交通工具,後來發現交通工具富含許多常見的科學原理,加上與「人」的互動後更呈現了多樣化的樂趣,於是決定努力鑽研、把自己研究的小小發現用淺顯易懂的方式與普羅大眾分享。現為國語日報科學版專欄作者、經營自己的Blog:「fabg@運輸邦」 (Blog網址:http://fabg.pixnet.net/blog)

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
找回擁有食物的主導權?從零開始「菇類採集」!——《真菌大未來》
積木文化
・2024/02/25 ・4266字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

菇類採集

在新冠肺炎(COVID-19)大流行後,馬斯洛「需求層次理論」裡的食品與安全在眾目睽睽下被抽離出來,變成後疫情時代最重要的兩個元素。對食物的焦慮點燃人們大腦中所有生存意志,於是大家開始恐慌性地購買,讓原本就已經脆弱、易受攻擊的現代糧食系統更岌岌可危。

值得慶幸的是,我們的祖先以前就經歷過這一切,留下來的經驗值得借鏡。菇類採集的興趣在艱難時期達到顛峰,這反映了人類本能上對未來產生的恐懼。1 無論是否有意,我們意識到需要找回擁有食物的主導權,循著古老能力的引導來找尋、準備我們自己的食物,如此才能應付食物短缺所產生的焦慮。

在新冠肺炎大流行後,馬斯洛「需求層次理論」裡的食品與安全在眾目睽睽下被抽離出來,變成後疫情時代最重要的兩個元素。圖/pexels

我們看見越來越多人以城市採集者的身分對野生菇類有了新的品味,進而找到安全感並與大自然建立起連結。這並不是說菇類採集將成為主要的生存方式,而是找回重新獲得自給自足能力的安全感。此外,菇類採集的快感就足以讓任何人不斷回歸嘗試。

在這個數位時代,菇類採集是讓我們能與自然重新連結的獨特活動。我們早已遺忘,身體和本能,就是遺傳自世世代代與自然和諧相處的菇類採集者。走出現代牢籠、進入大自然從而獲得的心理和心靈滋養不容小不容小覷。森林和其他自然空間提醒著我們,這裡還存在另一個宇宙,且和那些由金錢、商業、政治與媒體統治的宇宙同樣重要(或更重要)。

-----廣告,請繼續往下閱讀-----
在這個數位時代,菇類採集是讓我們能與自然重新連結的獨特活動。圖/unsplash

只有願意撥開遮蓋的落葉並專注尋找,才能體認到菇類的多樣性和廣泛分布。一趟森林之旅能讓人與廣大的生態系統重新建立連結,另一方面也提醒我們,自己永遠屬於生命之網的一部分,從未被排除在外。

腐爛的樹幹不再讓人看了難受,而是一個充滿機遇的地方:多孔菌(Bracket Fungi)──這個外觀看起來像貨架的木材分解者,就在腐爛的樹幹上茁壯成長,規模雖小卻很常見。此外,枯葉中、倒下的樹上、草地裡或牛糞上,也都是菇類生長的地方。

菇類採集是一種社會的「反學習」(遺忘先前所學)。你不是被動地吸收資訊,而是主動且專注地在森林的每個角落尋找真菌。不過度採集、只拿自身所需,把剩下的留給別人。你不再感覺遲鈍,而是磨練出注意的技巧,只注意菇類、泥土的香氣,以及醒目的形狀、質地和顏色。

只有願意撥開遮蓋的落葉並專注尋找,才能體認到菇類的多樣性和廣泛分布。圖/unsplash

菇類採集喚醒身體的感官感受,讓心靈與身體重新建立連結。這是一種可以從中瞭解自然世界的感人冥想,每次的發現都振奮人心,運氣好的話還可以帶一些免費、美味又營養的食物回家。祝您採集愉快。

-----廣告,請繼續往下閱讀-----

計畫

菇類採集就像在生活中摸索一樣,很難照既定計畫執行,而且以前的經歷完全派不上用場。最好的方法就是放棄「非採集到什麼不可」的念頭,持開放心態走出戶外執行這項工作。菇類採集不僅是享受找到菇的滿足感,更重要的是體驗走過鬆脆的樹葉、聞著森林潮濕的有機氣味,並與手持手杖和柳條筐的友善採菇人相遇的過程。

菇類採集很難照既定計畫執行,最好的方法就是放棄「非採集到什麼不可」的念頭。採集過程幾乎就像玩捉迷藏,只不過你根本不確定自己在找什麼,甚至根本不知道要找的東西是否存在。圖/unsplash

你很快就會明白為什麼真菌會有「神秘的生物界」的稱號。真菌無所不在但又難以捉摸,採集過程幾乎就像玩捉迷藏,只不過你根本不確定自己在找什麼,甚至根本不知道要找的東西是否存在。但還是要有信心,只要循著樹木走、翻動一下原木、看看有落葉的地方,這個過程就會為你指路。一點點的計畫,將大大增加你獲得健康收益的機會。所以,讓我們開始吧。

去哪裡找?

林地和草原,是你將開始探索的兩個主要所在。林地底層提供真菌所需的有機物質,也為樹木提供菌根關係。橡樹、松樹、山毛櫸和白樺樹都是長期的菌根夥伴,所以循著樹種,就離找到目標菇類更近了。

林地底層提供真菌所需的有機物質,也為樹木提供菌根關係。圖/pexels

草原上也會有大量菇類,但由於這裡的樹木多樣性和環境條件不足,所以菇類種類會比林地少許多。如果這些地點選項對你來說都太遠了,那麼可以試著在自家花園或在地公園綠地當中尋找看看。這些也都是尋菇的好地方。

-----廣告,請繼續往下閱讀-----

澳洲新南威爾斯州奧伯倫

澳洲可以說是真菌天堂。與其他大陸隔絕的歷史、不斷變化的氣候以及營養豐富的森林,讓澳洲真菌擁有廣大的多樣性。澳洲新南威爾斯州(New South Wales)的奧伯倫(Oberon)就有一座超過四萬公頃的松樹林,是採集菇類的最佳地點之一。

在那裡,有廣受歡迎的可食用菌松乳菇(又稱紅松菌),據說這種真菌的菌絲體附著在一棵歐洲進口樹的根部,而意外被引進澳洲。 1821 年,英國真菌學家塞繆爾・弗里德里克・格雷(Samuel Frederick Gray)將這種胡蘿蔔色的菇命名為美味乳菇(Lactarius deliciosus),這的確名符其實,因為「Deliciosus」在拉丁語中意為「美味」。如果想要在奧伯倫找到這些菇類,秋天時就要開始計劃,在隔年二月下旬至五月的產季到訪。

位於澳洲新南威爾斯州的奧伯倫就有一座超過四萬公頃的松樹林,是採集菇類的絕佳地點。圖/unsplash

英國漢普郡新森林國家公園

在英國,漢普郡的新森林國家公園(Hampshire’s New Forest)距離倫敦有九十分鐘的火車車程。它由林地和草原組成,當中有種類繁多的植物群、動物群和真菌可供遊客觀賞,甚至還有野生馬匹在園區裡四處遊蕩。

這片森林擁有兩千五百多種真菌,其中包括會散發惡臭的臭角菌(Phallus impudicus),它的外觀和結構就如圖鑑中描述般,與男性生殖器相似且不常見。還有喜好生長於橡樹上,外觀像架子一樣層層堆疊的硫色絢孔菌(Laetiporus sulphureus ,又稱林中雞)。該國家公園不允許遊客採收這裡的菇,所以請把時間花在搜尋、鑑別與欣賞真菌上。如果幸運的話,該地區可能會有採集團體可以加入,但能做的也僅限於採集圖像鑑別菇類,而非採集食用。

-----廣告,請繼續往下閱讀-----
在英國,漢普郡的新森林國家公園由林地和草原組成,當中有種類繁多的植物群、動物群和真菌可供遊客觀賞。該國家公園不允許遊客採收這裡的菇,所以請把時間花在搜尋、鑑別與欣賞真菌上。圖/unsplash

美國紐約市中央公園

甚至紐約市的中央公園也有採集菇類的可能性。雖然在 1850 年代公園建造之時並未刻意引進菇類物種,但這個占地八百四十英畝的公園現已登錄了四百多種菇類,足以證明真菌孢子的影響之深遠。

加里・林科夫(Gary Lincoff)是一位自學成才、被稱作「菇類吹笛人」2 的真菌學家,他住在中央公園附近,並以紐約真菌學會的名義會定期舉辦菇類採集活動。林科夫是該學會的早期成員之一,該學會於 1962 年由前衛作曲家約翰・凱吉(John Cage)重新恢復運作。凱吉也是一位自學成才的業餘真菌學家,並靠自己的能力成為專家。

甚至紐約市的中央公園也有採集菇類的可能性。雖然在 1850 年代公園建造之時並未刻意引進菇類物種,但這個占地八百四十英畝的公園現已登錄了四百多種菇類。圖/wikipedia

進行菇類採集時,找瞭解特定物種及其棲息地的在地專家結伴同行,總是有幫助的。如果你需要一個採集嚮導,求助於所在地的真菌學會會是一個正確方向。

何時去找?

在適當的環境條件下(例如溫度、光照、濕度和二氧化碳濃度),菌絲體全年皆可生長。某些物種對環境條件較敏感,但平均理想溫度介於 15~24 ℃ 之間,通常是正要進入冬季或冬季剛過期間,因此秋季和春季會是為採集菇類作計畫的好季節。

-----廣告,請繼續往下閱讀-----
秋季和春季是為採集菇類作計畫的好季節,但因為菇類受溫度變化模式和降雨量的影響很大,所以每年採菇的旺季時間會略有不同。圖/unsplash

當菌絲體從周圍吸收水分時,會產生一股破裂性的力量,讓細胞充滿水分並開始出菇。這就是菇類通常會出現在雨後和一年中最潮濕月份的原因。牢記這些條件,就可以引導你找到寶藏。但也要記得,因為菇類受溫度變化模式和降雨量的影響很大,所以每年採菇的旺季時間會略有不同。

註解

  1. Sonya Sachdeva, Marla R Emery and Patrick T Hurley, ‘Depiction of wild food foraging practices in the media: Impact of the great recession’, Society & Natural Resources, vol. 31, issue 8, 2018, <doi.org/10.1080/08941920.2 018.1450914>. ↩︎
  2. 譯注:民間傳說人物。吹笛人消除了哈梅林鎮的所有老鼠,但鎮上官員拒絕給予承諾的報酬,於是他就吹奏著美麗的音樂,把所有孩子帶出哈梅林鎮。 ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----