0

0
0

文字

分享

0
0
0

電子耳如何重現聽力的世界?人工耳蝸的設計原理

Unmet Needs 臨床工程專欄_96
・2020/08/14 ・3567字 ・閱讀時間約 7 分鐘 ・SR值 547 ・八年級

電子耳就是人工耳蝸,屬於第三級醫療器材,那什麼樣的族群會需要人工耳蝸呢?它究竟彌補了我們耳朵缺失的哪一項功能呢?一個人造的儀器,可以重現聽損患者失去的世界?透過這篇文章,讓我們簡單的來了解人工耳蝸的基本設計。

  • 撰文:
    許逸翔|台大生資所碩士生
    詹喬智|獨立醫材研究員

  • 核稿:
    郭文瑞|國立陽明大學神經科學研究所 教授
    賴穎暉|國立陽明大學醫學工程研究所 助理教授
    (按筆畫順序排列)

人工耳蝸 — 透視圖。
圖/wikipedia

聽力損傷最常見的種類

蘇軾〈石鐘山記〉提到:「事不目見耳聞而臆斷其有焦,可乎?」我們在認識這個世界時,眼睛與耳朵幾乎是同等的重要。

根據今年 3 月的 WHO 報告指出,目前全世界有 4 億 6 千萬的人口屬於聽力損傷(disabling hearing loss)患者,而到了 2050 年,聽損人口的數字將來到 9 億,這代表什麼意思呢?代表你未來在生活週遭的人群中,每 10 個人裡就有 1 個人是重聽。

圖/pixabay

但是聽損的患者裡,只有極小的比例是屬於小耳症,也就是我們上一篇提到的骨導式助聽器的主要適用族群。

絕大多數的患者,都是屬於感音神經性聽損的範疇,這些人主要配戴氣導式助聽器(一般市面上常見的助聽器)即可。不過大家有沒有想過,重度的感音神經性聽損患者,也是配戴一般助聽器就好了嗎?答案可能跟你想的不一樣,也是我們今天要來討論的主題。

「感音神經性聽損」是什麼?

在談到我們今天的主角之前,我們先來簡單瞭解一下前述的感音神經性聽損是什麼?

造成聽損、聽障的原因有很多,長期處在噪音的環境下,或是經由疾病、藥物,甚到老化、基因遺傳……等等都有可能引發。如果從耳朵病變位置的角度切入,聽損可以分成傳導性聽損(Conductive hearing loss)、感音神經性聽損(Sensorineural Hearing Loss, SNHL)與混合型聽損(Mixed Hearing Loss)三個方向。[參考資料:1, 2, 3

聽損類別 — 依病變位置分成 3 類。
圖/轉載自原文章

其中,感音神經性聽損又佔最大的比例,成因是我們內耳裡耳蝸的毛細胞受損,或是我們的聽神經纖維功能異常,造成聲音從內耳傳遞至大腦的路徑受到影響。這樣的患者,病情如果輕微戴上傳統助聽器就可以了,而如果病情嚴重的話,就可能會需要用到我們今天文章想要討論的主題──人工耳蝸 (Cochlear Implant) ,才有辦法聽見聲音。

人工耳蝸怎麼運作?

人工耳蝸到底是什麼?這裡的「人工」是什麼意思?跟我們常聽到的人工皮、人工心臟、人工淚液的「人工」是一樣的嗎?── 其實是類似的,人工都是有一種輔助增強、或是取代我們身體原功能的意思。

人工耳蝸主要就是利用一條長長的電極,進到我們耳朵的最深處的──內耳,繞過毛細胞,施予電訊號直接刺激聽神經,來達到「幫助我們恢復聽力的目的」。

耳蝸內植入電極示意圖。圖嵌入自/Advanced Bionics

生物+工程,人工耳蝸的設計原理

人工耳蝸 (Cochlear Implant) 的設計與改良,有很大一部分取決於電極與耳蝸聽神經之間的刺激關係,想要來探討其中的奧秘,我們可以分別從「生物面」「工程面」的角度去切入。

1. 生物面:運用共振分辨頻率的「內耳」

我們人聽到聲音這件事,其實機制是極其複雜的。內耳如何去處理聲音裡複雜的頻率,扮演了很大的角色。試想,我們在一場音樂會裡,為什麼有辦法同時聽到不同的樂器,所發出的不同聲調的聲音呢?

簡單來說,內耳分辨頻率,是利用你我都耳熟能詳的「共振」原理。國中曾學到,一個物體的自然頻率如果與外力的頻率接近或一致,那物體便會不由自主的擺動起來,且擺動的幅度非常大。最著名的案例有 Tacoma 吊橋倒塌事件,風的頻率與吊橋的自然頻率很不巧的達到一致;還有英國步兵過橋時由於步伐太過一致,造成的吊橋倒塌事件

而平常外界的聲音從外耳傳到中耳、內耳時,我們的鐙骨(聲音在中耳的終點)會開始不斷敲擊耳蝸的卵圓窗(聲音在內耳的起點),並對耳蝸內的淋巴液產生擾動(行進波,Traveling Wave),從耳蝸的基部(Base)一路傳遞至耳蝸的頂部(Apex)。

然而,我們耳蝸不同部位的基底膜(Basilar membrane)對傳遞過來的行進波的反應都不太一樣,高頻的行進波,會引起耳蝸基部基底膜的共振;低頻的行進波,會引起耳蝸頂部基底膜的共振。由此一來,我們可以理解,不同頻率的聲音,會引起耳蝸不同的地方產生大幅度的振動,這些振動,會再帶動該部位的毛細胞擺動,進而刺激聽神經產生動作電位,傳遞至大腦。(更詳細機制可參考此影片

耳蝸內部基底膜對於不同音頻的共振關係。
圖/Jared E.〈Piezoelectric-Based, Self-Sustaining Artificial Cochlea〉

我們的耳蝸就是利用這樣的方式,對不同頻率的聲音進行拆解,再藉由聽神經將拆解後的訊號傳入大腦,使我們感受到了聲音的高低起伏。

耳蝸不同部位的基底膜對不同的聲音頻率產生共振。

2. 工程面:以電刺激器引發聽神經作用

我們理解大腦是如何透過耳蝸感知到這麼複雜的聲音後,就可以開始從工程面去思考如何設計人工耳蝸的植入電極了。首先,因為重度感音神經性患者的耳蝸毛細胞受損,基底膜共振的時候就不能帶動毛細胞擺動,引發該部位的聽神經產生動作電位。

所以我們就需要有一根長長的電刺激器取代毛細胞。它要能夠根據不同聲音的頻率,去刺激耳蝸不同部位的聽神經,另外它也要是柔軟的,能夠沿著耳蝸的螺旋形狀從基部一路延伸至頂部,而電刺激器上的電極陣列也是一個重點,電極數越高,代表越高的頻率解析度

電刺激器放大圖與在耳朵中的位置。
圖/Paweł R.〈From cochlear implants to brain-computer interfaces〉

3. 訊號接收器:以麥克風接收外在聲音轉成神經訊號

講完電刺激器後,難道就討論完人工耳蝸了嗎?其實還是不夠的,想讓重度感音神經性患者恢復聽力,人工耳蝸還需要其它物件。

除了電刺激器外,我們還需要一個訊號接收器(Receiver),它的作用除了要可以接收來自體表的訊號發射器所發出的無線電波外,還要擁有基底膜的功能,可以從無線電波解碼、分離出不同頻率的聲音訊息,之後再傳給電刺激器,進一步形成驅動電極的指令。

通常一個戴有人工耳蝸的聽損患者,耳朵後方還會安裝麥克風(Microphone)與語音處理器(Audio Processor)。麥克風就相當於人造的外耳,可以接收外界的聲音,並經由語音處理器的濾波後,無線傳遞至皮下的訊號接收器,最後形成前述提到的 ──能夠刺激聽神經的訊號。

圖人工耳蝸系統示意圖。
圖/Centre for Hearing

在醫療器材的背後,工程面與生物面的考慮

以上就是我們對人工耳蝸簡單的討論,我們希望讀者在閱讀完這篇文章後,可以瞭解人工耳蝸幾個重要的設計要點,與在人體中扮演的角色。

其實在設計每一項醫材時,工程面與生物面的考慮都是十分重要的,如何讓工程的裝置符合我們人體構造的需求,同時藉由儀器的刺激讓我們人體產生原有的知覺……等等,這些都是需要工程師與臨床人員不斷交流,細細去耕耘的。我們也希望可以藉由這篇文章,讓讀者瞭解一項醫材產品是如何因應臨床需求而去設計,並且需要哪些水平知識的連結。

補充:若正在閱讀文章的您正是電子耳使用者,或是您有認識配戴電子耳的親朋好友,歡迎加入陽明大學神研所有關電子耳的研究,一同為了更優質的聽知覺品質努力!詳情可以參考:連結

本文轉載自 Unmet Needs 臨床工程專欄《電子耳?人工耳蝸?助聽器的世界可能遠比你想像得還要複雜》。

文章難易度
Unmet Needs 臨床工程專欄_96
7 篇文章 ・ 230 位粉絲
「臨床工程專欄」希望從醫工的角度出發,與讀者分享醫材開發背後的巧思。藉由介紹醫材設計的觀點、開發醫材的經驗分享,與整理相關的知識資源,讓大家得知,醫材開發,有跡可循。

0

3
1

文字

分享

0
3
1
「拜託」最好和右耳說:解密聽覺「右耳優勢」現象
雅文兒童聽語文教基金會_96
・2023/09/20 ・3824字 ・閱讀時間約 7 分鐘

  • 文/謝耀文|雅文基金會 聽力師

聽覺,作為人類感知世界的重要途徑之一,一直是研究者感興趣的領域。這些年來左耳和右耳之間的聆聽差異性,逐漸受到人們關注。

2009年義大利的一項研究結果指出,當我們朝著他人的「右耳」提出請求時,往往會比較容易獲得成功。然而,有趣的是,在美國德州一所州立大學的學者卻提出了與之相異的論點,其研究指出當我們想要安慰他人時,應該靠近對方的「左耳」。這種截然相反的觀點讓人不禁追問,聽覺系統中的左右耳究竟有何不同?難道左耳和右耳聽到的聲音不一樣嗎? 

聽見聲音的奧秘

從解剖的角度來看,左耳和右耳的器官構造是對稱的(圖一)。我們的聽覺系統分為周邊和中樞兩個部分;外耳、中耳、內耳及聽神經的部分都屬於周邊,而從聽神經到大腦的區段則屬於中樞,整個聽覺系統運作是一個複雜而精巧的過程。首先,聲音最先被我們的外耳廓接收後,經過外耳道來到中耳,然後進入內耳。在內耳裡,聲音的震動被轉換為神經信號,再透過聽神經傳遞到我們的大腦,最終站則到達大腦中的覺皮質區。

當信號到達大腦時,我們才真正能夠聽到聲音。因此,正確來說,我們並不是用耳朵聽聲音,而是通過大腦來感知聲音並賦予聲音意義。

Anatomy of hearing
圖一:聽覺系統解剖圖。圖/entspecialties.com

大腦的不對稱性

多數生物的聽覺系統是對稱的,利用聲音傳到兩個耳朵的時間差和音量差,此足以應付當危險發生時,幫助留意周遭聲音的方向位置,如留意到警報聲或野獸的叫聲等做出反應。但是,人類隨著演化,大腦為了更有效率的處理複雜的聲音訊息,左腦與右腦發展出了不對稱性。

學者們普遍認為,左腦主要處理語言、邏輯推理等、而右腦則處理情緒、音樂等,說明左右大腦各有不同的優勢和專長(圖二)。正因如此,聲音進到我們的左耳和右耳時,會因負責處理的大腦半球不同,使得左耳和右耳所聽到的聲音處理上產生差異。這樣左右耳相異現象,最小在嬰兒的研究中,就被發現左耳和右耳天生對聲音的偏好有所不同。

https://topchurch.net/wp-content/uploads/2018/01/fig1-scaled.jpg
圖片二:左腦和右腦的差異。圖/topchurch.net

右耳優勢:從發現到機轉原因的探索

在聽力學上,右耳優勢是指當雙耳同時接收到語音訊息時,右耳的辨識能力優於左耳,也就是說,右耳對於聽取語音的正確率較高。最早於 1960 年代由 Kimura 教授發現。

為了解右耳優勢,研究者多透過雙耳異訊測驗 (Dichotic Listening Test)。測驗方式為讓受試者戴上耳機,左耳和右耳同時聆聽兩個不同的聲音,可能是句子或單字詞等。然後,他們被要求回想剛剛聽到的訊息,並分別判斷左耳和右耳的正確率。過往實驗結果皆顯示,聽力正常人的右耳的正確率普遍優於左耳。

根據現有的理論,這種現象可能與前述的大腦不對稱性有關。因為負責語言的區域主要位在左腦,所以右耳接收到的語音被認為多會直接傳遞到左腦,但左耳接收到的語音則是多先到右腦,然後還需藉由胼胝體將語音再跨傳至左腦去處理(圖三)。因此左耳聽到的聲音,需要多出這幾毫秒的時間差才會抵達左腦,使得右耳於生理上具備了先天利勢,能更快速且有效對語音進行辨識,造就右耳優勢。

https://almerja.net/medea/images/Capture_629.jpg
圖三:右耳接收到的語音直接傳到左腦處理,但左耳接收到的語音需先傳到右腦,再經由胼胝體跨傳到左腦去。圖/almerja.net

「右耳優勢」會隨著年齡改變

右耳優勢在正常聽力的成年人並不十分顯著。根據文獻,差異在 3-5% 以內。然而,在幼齡兒童身上,小時候右耳優勢相對較為顯著。過往有研究指出約要到 11 歲以後,隨著聽覺系統成熟後,兒童的表現才會接近成年人。

當研究對象轉向年長者時,普遍認為年長族群的表現會差於相對年輕的族群。然而,很多研究發現,當年齡增加,雙耳會有不等速的下降,通常左耳的正確率下降幅度會顯著高於右耳(圖四)。

意旨右耳優勢其實是源自於左耳的能力衰退,因此著名學者如 Jerger 等人,也將此現象稱作「左耳劣勢」。在台灣,陳小娟教授 2015 年的研究同樣指出,年長族群受試者中高達 95% 的人有左耳劣勢,但左耳下降的幅度個別差異很大。

一張含有 行, 圖表, 繪圖, 文字 的圖片

自動產生的描述
圖四:不同年齡族群於雙耳異訊測驗中,聽句子的百分比分數,紅色為右耳,藍色為左耳,詳細內容請見 Jerger J 等人 (1994)。圖/hearingreview.com

推論年長者左耳表現下降的成因中,與大腦中的「胼胝體」有關。因胼胝體功能是讓左右腦的訊息相互交流,所以當隨著年齡增長,胼胝體也會跟著受老化的影響,從而使左右腦間的訊息傳遞變得不夠高效,導致雙耳差異加劇。

右耳優勢的影響與意義

1. 聽覺中樞處理能力

不論年長者或兒童,當發現右耳優勢非常顯著時並非好事。根據美國聽力學會 2010 指引提出,當右耳優勢過於明顯或是缺乏右耳優勢時,被認為可能是聽覺中樞處理異常的指標,可能暗示著聽覺中樞系統老化衰退或是未發育成熟。

聽覺中樞處理異常最直接的影響可能是,明明聽得見聲音但卻聽不清楚。尤其在吵雜環境聽得更不理想。對於兒童來說,會阻礙其學習注意力,導致課堂上無法專心,或是把旁人的話當成耳邊風,導致學習困難,進而需要一些額外的聽覺輔具介入和教學策略來輔助。

2. 電子耳的植入耳選擇

對於聽損受損程度較嚴重的人來說,如果助聽器效益有限時,需評估電子耳的使用,然而選擇哪一耳植入電子耳也是有差別的。以色列的研究團隊指出,如果雙耳的聽力和結構相似的狀態下,他們發現右耳電子耳的語詞聽辨表現也有統計上優於左耳的情形,說明右耳優勢現象可能會對電子耳預後產生些影響。因此在左右耳條件相似的前提下,或許能做為選擇植入耳時的參考因素之一。

3. 1+1<2 助聽器選配

對於有聽力損失的人來說,使用助聽器雖能幫助矯正聽力,但當雙耳差異過大時,臨床上有些人戴助聽器,只會覺得助聽器聽起來很吵不清楚,或者更精確來說,會發現只戴單邊助聽器,居然比雙邊一起戴聽得更清楚;這樣的雙耳較不理想的表現,學術上被稱為「雙耳干擾」,意旨無法發揮 1+1>2 的雙耳效益;根據 2017 年的研究指出,雙耳干擾出現在將近 17% 的成年人。因此若留意到自己有聽沒有懂,或是用單耳聽比雙耳還要好時,可能不是錯覺。

4. 提升成功率的溝通小秘訣

雖然多數的右耳優勢研究是在受控的實驗室中進行,但有一項來自義大利的研究很不一樣,他們是在一間喧鬧的迪斯可舞廳進行。在這個實驗中,研究人員特意對 176 名參與者的左耳或右耳說話,然後詢問他們是否可以提供香菸。結果出乎意料,當朝著右耳提出請求時,88 名參與者中有 34 名同意提供香菸,但當朝著左耳提出請求時,只有 17 名參與者答應。這樣的結果或許也讓我們有理由相信右耳優勢在現實生活中能提供實質幫助,所以下次當我們需要與他人溝通重要的事情時,除了考慮時間、地點、環境等因素,或許也可以考慮面向哪個耳朵說話,這可能有助於提升溝通的成功率。

總結來說,左右耳各司其職,其中右耳被認為對語音的訊息處理較有效率,左耳則是對於非語音(如情緒、音樂)的訊息較敏感,這樣的差異反應出左右大腦的處理上各有所長,進而造就我們在聽取語音時的右耳優勢。然而,在成熟的聽覺系統中雙耳落差並不明顯,若當雙耳都聽得好時,才能最佳化我們的聽覺表現。因此建議要了解個別耳朵的聆聽狀況,並於發現問題時積極尋求耳鼻喉科醫師或聽力師諮詢,才能幫助後續聽力診斷,找出合適的處遇辦法。

參考資料

  • 陳小娟. (2015). 雙耳異訊測驗材料對於不同年齡者聆聽表現的效應. 中華心理學刊, 57(1), 27-43.
  • American Academy of Audiology(2010). Clinical Practice Guidelines: Diagnosis, Treatment and Management of Children and Adults with Central Auditory Processing Disorder.
  • Henkin, Y., Swead, R. T., Roth, D. A., Kishon-Rabin, L., Shapira, Y., Migirov, L., Hildesheimer, M., & Kaplan-Neeman, R. (2014). Evidence for a right cochlear implant advantage in simultaneous bilateral cochlear implantation. The Laryngoscope, 124(8), 1937–1941. https://doi.org/10.1002/lary.24635
  • Henkin, Y., Taitelbaum-Swead, R., Hildesheimer, M., Migirov, L., Kronenberg, J., & Kishon-Rabin, L. (2008). Is there a right cochlear implant advantage?. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 29(4), 489–494. https://doi.org/10.1097/MAO.0b013e31816fd6e5
  • Jerger J. The remarkable history of right-ear advantage. Hearing Review. 2018;25(1):12-16.
  • Jerger, J., Chmiel, R., Allen, J., & Wilson, A. (1994). Effects of age and gender on dichotic sentence identification. Ear and hearing, 15(4), 274–286. https://doi.org/10.1097/00003446-199408000-00002
  • Kieth, R. W., & Anderson, J. (2007). Dichotic listening tests. In F. E. Musiek & G. D. Chermak (Eds.), Handbook of (central) auditory processing disorders, vol. 1: Auditory neuroscience and diagnosis . San Diego, CA: Plural.
  • Kimura D. (2011). From ear to brain. Brain and cognition, 76(2), 214–217. https://doi.org/10.1016/j.bandc.2010.11.009
  • Marzoli, D., & Tommasi, L. (2009). Side biases in humans (Homo sapiens): three ecological studies on hemispheric asymmetries. Die Naturwissenschaften, 96(9), 1099–1106. https://doi.org/10.1007/s00114-009-0571-4
  • Mussoi, B. S. S., & Bentler, R. A. (2017). Binaural Interference and the Effects of Age and Hearing Loss. Journal of the American Academy of Audiology, 28(1), 5–13. https://doi.org/10.3766/jaaa.15011
  • Sim, T. C., & Martinez, C. (2005). Emotion words are remembered better in the left ear. Laterality, 10(2), 149–159. https://doi.org/10.1080/13576500342000365
  • Sininger, Y. S., & Cone-Wesson, B. (2004). Asymmetric cochlear processing mimics hemispheric specialization. Science (New York, N.Y.), 305(5690), 1581. https://doi.org/10.1126/science.1100646
雅文兒童聽語文教基金會_96
50 篇文章 ・ 208 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

2
0

文字

分享

0
2
0
腦子不能進水,耳朵可以進水嗎?看乾燥戰士和水氣怪獸的對決
雅文兒童聽語文教基金會_96
・2023/07/18 ・2946字 ・閱讀時間約 6 分鐘

  • 文/雅文基金會聽語科學研究中心研究員 詹益智

日常生活中,耳朵是個常被忽視的器官,但卻扮演著重要的角色。耳朵能讓我們感受聲音的美好,因此耳朵保健至關重要。然而,耳朵常面臨一個隱藏的殺手—水氣怪獸。當我們置身於水分過多的環境時,如:游泳池、浴室或雨中,水氣怪獸便可能趁機攻擊我們的耳朵,因而衍生出許多問題。

為了保護耳朵,我們需要乾燥戰士挺身而出,帶領我們投入一場激烈的對決,以乾燥的力量對抗水氣怪獸的侵襲。在這場耳朵乾燥大作戰中,乾燥戰士會使用哪些絕招,讓耳朵遠離水氣怪獸的威脅呢?準備好迎接這場乾燥戰士與水氣怪獸的對決了嗎?讓我們一同展開這場刺激又有趣的冒險吧!

我們置身於潮濕的環境時,如:游泳池,水氣怪獸便趁機攻擊我們的耳朵。圖/ Pexels

適度保持外耳道乾燥的重要性

外耳道是耳朵開孔至耳膜間長約 2.5 公分的通道,並非呈現直筒狀,而是向後上方彎曲的S形狀,其表皮具有大量的皮脂腺與毛髮,當皮脂腺的分泌物與脫落的表皮細胞相結合時,就形成眾所皆知的耳垢,具有保護外耳道的作用[1]

外耳道感染其實並不罕見,尤其是在水氣怪獸的攻擊下,外耳道更容易滋生細菌(如:鏈球菌、綠膿桿菌和葡萄球菌等[2])與真菌(如:白色念珠菌和黑麴黴菌[3]),因為水氣為這些微生物提供了理想的生長和繁殖環境,若不及時處置,恐會感染外耳道炎(otitis externa)[4]或是俗稱的「游泳耳」(swimmer’s ear)[5],也就是當水進入外耳道時,有可能會將具有保護耳朵作用的耳垢清除,從而破壞了外耳道自然防禦的機制,進而使耳朵疼痛、腫脹、發癢、發炎、流膿、有灼熱感或異物感[1,6]

此外,若外耳道內的水氣停留過久,也可能會使外耳道皮膚的角質層變薄[7],讓它失去原本的防護能力,一旦受到不當的刺激(如:用棉花棒挖耳朵),就容易造成損傷[8];更甚者,恐導致聽力下降[1]。讀到這,你應該知道水氣怪獸的威脅與適度保持外耳道乾燥的重要性了吧?

外耳道炎或俗稱「游泳耳」的症狀包括紅腫發癢、發炎、腫脹、流膿等。圖/ SickKids

乾燥戰士的戰術:保護外耳道免受水氣怪獸的侵害

難道水氣怪獸就沒有剋星了嗎?我們又要如何應付這難纏又惱人的怪獸呢?就讓我們請出乾燥戰士共同作戰吧!乾燥戰士主要的任務是確保外耳道遠離水氣怪獸的侵襲,使其保持乾爽。乾燥戰士會使用許多戰術幫助我們擊退水氣怪獸,且讓我們屏息以待吧!

避免長時間暴露於水氣過多的環境中是保持外耳道乾燥的關鍵;因此,當我們處在潮濕環境時,如:雨天,應使用雨傘、雨衣或防水耳罩,以阻止雨水滲入外耳道[9]。另一種作法則是,盡量減少長時間暴露在雨中的時間,若突然遇到下雨時,身上又沒帶雨傘或雨衣,建議先找地方躲雨,回到室內後,可使用乾淨的毛巾或紙巾輕輕擦拭耳朵周圍的水分,因為若不及時擦乾耳朵,這些水分很可能會流入外耳道內。但須注意的是,擦拭耳朵周圍時,不宜將毛巾或紙巾插入外耳道內部,只需擦拭耳朵周圍的皮膚即可[10]

還有一種讓外耳道受到水分怪獸襲擊的情況是,參與運動量大或容易出汗的活動時,如:運動場、健身房等,可能會讓外耳道受到汗水的威脅,若要保持外耳道的乾爽,不妨戴上棉質的吸汗頭帶,吸收頭部周圍的汗水,以避免汗水從額頭沿著臉龐流進外耳道內,從而減少耳朵接觸水氣的機會。

游泳、從事水上活動或洗澡時,若沒有做好防護措施,也會讓水分伺機侵入外耳道內;此時,可使用符合自己耳道大小和舒適的防水耳塞,或利用防水泳帽或髮套覆蓋耳朵,便能將水分有效地阻隔在外耳道之外。若水滲進了外耳道,則可讓積水的耳朵朝向地面,並採單腳跳耀的方式,原地跳數回,透過震動將耳內的水排出[11]。此外,淋浴時,可嘗試保持頭部直立,使水流遠離耳朵,以減少水進入外耳道的機會。再者,應避免使用高壓水柱直接衝擊耳朵,以免外耳道進水。

由於外耳道內壁非常的薄[7] ,且外耳道的末端是耳膜,是一層十分脆弱的組織[12],因此要清除裡面的水氣時,切忌使用棉花棒等尖銳的物品,若稍有不慎,就容易損傷外耳道的皮膚和組織,導致刮傷、撕裂或刺破等情況,進而引起疼痛、出血、發炎或感染[13],也可能不小心觸及耳膜,而使其破裂或穿孔,如此就得不償失了。

乾燥戰士的科技小幫手:耳朵吹風機

在採取了上述乾燥戰士的戰術後,耳道仍舊被水氣怪獸鳩占鵲巢時,乾燥戰士只好使出最後的殺手鐧­—耳朵吹風機(ear dryer),讓水氣怪獸付出應有的代價。

「耳朵吹風機」乍聽之下不就只是利用吹風機把外耳道內的水氣吹乾,不過這樣做會有風險,例如:吹風機所吹出來的熱風可能會傷害外耳道或使耳壓增加,且過大的噪音(可達100分貝)可能損傷聽力[14]。實際上,耳朵吹風機[15]是一種專門用於乾燥外耳道的設備,由耳鼻喉科醫生所研發,它的外觀就像是耳溫槍,擁有攜帶便利和易於操作的特點,並具有特殊的透氣矽膠耳塞,也可讓使用者自行控制溫度、氣流、循環時間與噪音等級。耳朵吹風機不僅能提供一般人安全有效且快速乾燥外耳道的方式外,也可幫聽損人士去除助聽器與耳朵皮膚貼合所產生的水氣。

乾燥戰士對抗水氣怪獸的殺手鐧­­—耳朵吹風機。圖/ Mack′s

這場乾燥戰士與水氣怪獸的大戰讓我們更加意識到保持耳朵適度乾燥的重要性。乾燥戰士所使出的戰術,如:避免讓耳朵處在具有水氣的環境、將水分隔離在耳朵外、使用耳朵吹風機等,都可有效地讓耳朵抵抗水氣怪獸的襲擊,進而防止細菌和真菌的入侵,減少外耳道感染,也保護了聽力。因此,透過適當的預防措施和良好的衛生習慣,便能維持耳朵的健康喔!

參考資料

  1. 洪偉誠 (2022年2月)。耳朵痛又癢 小心『外耳道炎』找上你。亞東院訊。https://www.femh.org.tw/magazine/viewmag?ID=10650
  2. 健康知識庫(n.d.)什麼是外耳炎?https://kb.commonhealth.com.tw/library/190.html#data-3-collapse
  3. 健康醫療網(2021年7月16日)。耳朵癢罪魁禍首是「它」 醫:嚴重恐致聽力受損。 https://news.tvbs.com.tw/health/1546774
  4. Rosser, E. J. (2004). Causes of otitis externa. Veterinary Clinics: Small Animal Practice, 34(2), 459-468.
  5. Kaushik, V., Malik, T., Saeed, S. R., & Maqbool, M. (2010). Swimmer’s ear: A review. The Journal of Laryngology & Otology, 124(07), 698-702
  6. SickKids. (2022). Swimmer’s ear (otitis externa). https://www.aboutkidshealth.ca/swimmersear
  7. 楊雅棠 (2019年9月3日)。 耳朵好癢好想挖? 醫師提醒:千萬別自行動手
    。 https://health.udn.com/health/story/5969/4026753?from=udn-referralnews_ch1005artbottom
    http://www.navehpharma.co.il/images/products/PDF/Dry-Ears/swimmer.pdf
  8. 陳登郎(2021年7月4日)。外傷性外耳道炎不治療 恐成菜花耳。https://health.ltn.com.tw/article/paper/1458622
  9. Lazar, R. (June 23, 2022). Preventing and treating swimmer’s war during pool season. https://www.entmemphis.com/preventing-and-treating-swimmers-ear- during-pool-season/
  10. 盧映慈(2020年4月29日)。耳朵很癢先別挖!耳科醫師教一招改善搔癢、保持聽力。https://heho.com.tw/archives/80269
  11. 運動星球 (2019年6月13日) 。 小心「游泳耳」!鐵人三項泳者必注意。https://www.sportsplanetmag.com/article/desc/190004815
  12. A+醫學百科(2013年4月20日)。耳廓耳道撕裂傷。http://cht.a-hospital.com/w/%E8%80%B3%E5%BB%93%E8%80%B3%E9%81%93%E6%92%95%E8%A3%82%E4%BC%A4
  13. KingNet 國家網路醫藥(2022年10月18日)。別再用棉花棒掏耳朵,恐影響聽力!專家教你4步驟正確清除耳垢。https://health.udn.com/health/story/5969/6694999
  14. 蔡經謙。(2021-08-30)。吹風機竟會讓聽力損害!還有6種被忽視的耳力殺手。https://www.edh.tw/article/28478/2
  15. Munatones, S. (June 28, 2020). Drying out your ears with Mack’s ear dryer after swimming in pool or open water. https://www.openwaterswimming.com/drying-out-with-macks-ear-dryer/
雅文兒童聽語文教基金會_96
50 篇文章 ・ 208 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

18
0

文字

分享

0
18
0
什麼!你怎麼用眼睛聽聲音:認識麥格克效應
雅文兒童聽語文教基金會_96
・2022/09/28 ・2905字 ・閱讀時間約 6 分鐘

  • 文/李翊瑞|雅文基金會聽語科學研究中心助理研究員

早晨,鬧鐘聲不停地在耳邊響起,儘管心裡有再多的不甘願,你依然掀開棉被起身,輕揉著眼睛抬頭看了看時間。

在日常生活中,透過耳朵聽聲音、依靠眼睛看東西,兩者獨立運作,似乎是我們不曾懷疑過的事情。然而,人類的視覺及聽覺真的互不影響、毫無關聯嗎?

當朋友與我們說話時,對方的聲音和唇形如果有著明顯不同,又會發生什麼神奇的事呢?

究竟是「聽」別人說話,還是「看」別人說話呢?圖/Pexels

無心插柳柳成蔭:麥格克效應的發現

當一個人說話的聲音與唇形變化不一致時,所產生的聽錯覺現象稱為麥格克效應(McGurk effect)。

麥格克效應最早是由兩位英國心理學家——哈利.麥格克(Harry McGurk)約翰.麥克唐納(John MacDonald)於 1976 年提出[1],有趣的是,這個發現完全是場意料外的事。最初,他們正在進行一項語音知覺的研究,實驗中會讓嬰兒觀看一位母親說話的影片,同時搭配該位母親的配音,並記錄不同月齡的嬰兒對於語音的反應。

在一次實驗中,播放影片以及聲音時並未同步,使得影片中說話者唇形為「ga」,卻播放出「ba」的聲音。神奇的是,麥格克與麥克唐納不約而同聽到卻不是「ga」或「ba」,而是「da」的聲音[2]

說話者唇形為「ga」、播放聲音為「ba」,會聽到「da」的聲音。圖/雅文基金會

感到困惑的兩人,隨後重新設計了實驗,並招募更多受試者參與研究,發現高達 98% 的受試者在唇形為「ga」播放聲為「ba」的情況下都聽到了「da」的聲音。最終,他們將這個出乎意料的發現,發表在著名的科學期刊《Nature》[1],開啟了後續一系列有關聽錯覺以及視聽整合的研究。

聽到你懷疑人生,不存在的聲音從何而來?

麥格克效應的發生,顯示了視覺與聽覺訊息之間會相互作用,使我們得以一窺人類語音知覺系統的神秘面紗。與他人對話時,雙耳會將接收到的刺激(語音)傳遞至大腦的初級聽覺皮質(A1,圖中藍色處),同時雙眼接收到的訊息(嘴唇變化、臉部表情與舌頭動作)則會傳遞到初級視覺皮質(V1,圖中紅色處),這兩個區域所接收到的訊息會進一步傳送到顳上溝(superior temporal sulcus,STS,圖中紫色處)進行整合[3]

因此,我們知覺到的語音就不是單一的視覺(「ga」)或聽覺(「ba」)訊息,而是整合後的「da」。顳上溝在視聽整合的過程中扮演非常關鍵的角色[4],後續研究也發現,麥格克效應較少出現在顳上溝功能異常的受試者,如自閉症兒童及失語症成人[5, 6, 7]

視覺訊息(來自初級聽覺皮質 A1,圖中藍色處)和聽覺訊息(來自初級視覺皮質 V1,圖中紅色處)會在顳上溝(STS,圖中紫色處)進行整合。圖/Lüttke (2018)

既然我們已經知道不存在的聲音是經大腦整合而產生,多聽多看幾次就會漸漸習慣而消失嗎?長期研究麥格克效應的美國心理學家勞倫斯.羅森布拉姆(Lawrence Rosenblum)曾提到:

「即便我已經研究此效應長達二十五年,既看又聽了成千上萬次,它依然會發生在我身上,無法自主地去控制它[8]。」

由此可知,麥格克效應不同於一般的魔術表演,即使已經瞭解了原理,甚至感受到它正在發生,但那個不存在的聲音依舊會在我們腦中迴響。

從戴口罩到追劇,視聽整合的重要性

雖然口罩雖然能有效減少病毒的傳播,卻也增加了與他人對話上的困難,使溝通的品質大打折扣[9]。在口罩會影響溝通的「聲音」與「視覺」線索,該如何為愛防疫無礙溝通?文中就有提到,影響溝通的兩大面向為[10]

  • 聽覺:口罩會降低高頻語音(約 2000 – 7000 赫茲)的音量,影響高頻語音的清晰度,讓聲音聽起來悶悶的。如果聽不清楚,就可能會把「胡先生」聽成「吳先生」、「鞋子」聽成「茄子」等。
  • 視覺:口罩會遮蔽臉部表情與唇形變化,因而缺少了視覺上的線索。像是在餐廳或會議等多人同時說話的吵雜環境,若看不見唇形會較難辨別每句話的來源。

麥格克效應顯示了大腦會整合聽覺與視覺訊息來理解當下的聲音,而佩戴口罩所帶來的不便,不僅影響了聽力正常者,對於聽力受損的族群更是一大挑戰,不僅無法接收到清楚的語音訊息,更不能透過讀唇來理解對話內容。所幸,透明口罩的問世[11],使我們得以看見對方的表情,感受到對方的情緒,更能清楚辨識唇形,兼顧防疫及溝通的需求!

透明口罩幫助我們看見對方的唇形和表情,減少溝通上的阻礙。圖/BBC News

另一方面,疫情的衝擊也帶動串流影音平台的崛起,宅在家收看喜愛的戲劇及電影已蔚為風潮,而追劇的過程其實也是種視聽整合的展現。我們對於劇情的理解,除了劇中角色對話的聲音,影片中的字幕也很關鍵。要知道怎樣追劇可以聽和看得更輕鬆嗎?別錯過追劇沒字幕就聽不到?電視聲音不清楚,你可以這樣做[12]

字幕有助於理解影片的內容。圖/Pexels

參考資料

  1. McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature264(5588), 746–748. https://doi.org/10.1038/264746a0
  2. Massaro, D. W., & Stork, D. G. (1998). Speech Recognition and Sensory Integration: A 240-year-old theorem helps explain how people and machines can integrate auditory and visual information to understand speech. American Scientist, 86(3), 236–244. http://www.jstor.org/stable/27857023
  3. Lüttke, C. S. (2018). What you see is what you hear: Visual influences on auditory speech perception (Doctoral dissertation, [Sl: sn]).
  4. Beauchamp, M. S., Nath, A. R., & Pasalar, S. (2010). fMRI-Guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the McGurk effect. Journal of Neuroscience30(7), 2414-2417. https://doi.org/10.1523/JNEUROSCI.4865-09.2010
  5. Taylor, N., Isaac, C., & Milne, E. (2010). A comparison of the development of audiovisual integration in children with autism spectrum disorders and typically developing children. Journal of Autism and Developmental Disorders40(11), 1403–1411. https://doi.org/10.1007/s10803-010-1000-4
  6. Redcay E. (2008). The superior temporal sulcus performs a common function for social and speech perception: implications for the emergence of autism. Neuroscience and Biobehavioral Reviews32(1), 123–142. https://doi.org/10.1016/j.neubiorev.2007.06.004 
  7. Hickok, G., Rogalsky, C., Matchin, W., Basilakos, A., Cai, J., Pillay, S., … & Fridriksson, J. (2018). Neural networks supporting audiovisual integration for speech: A large-scale lesion study. Cortex103, 360-371.
  8. BBC Two. (2010). Try this bizarre audio illusion! Retrieved August 12, 2022, from https://www.youtube.com/watch?v=G-lN8vWm3m0.
  9. Chládková, K., Podlipský, V. J., Nudga, N., & Šimáčková, Š. (2021). The McGurk effect in the time of pandemic: Age-dependent adaptation to an environmental loss of visual speech cues. Psychonomic Bulletin & Review28(3), 992–1002. https://doi.org/10.3758/s13423-020-01852-2
  10. 張逸屏(民109年8月11日)。口罩會影響溝通的「聲音」與「視覺」線索,該如何為愛防疫無礙溝通?PanSci泛科學。https://pansci.asia/archives/189531
  11. Taylor-Coleman, J. (2020, May 26). Coronavirus: Call for clear face masks to be ‘the norm’. BBC News. Retrieved August 12, 2022, from https://www.bbc.com/news/world-52764355 。
  12. 洪右真(民109年10月28日) 追劇沒字幕就聽不到?電視聲音不清楚,你可以這樣做。PanSci泛科學。https://pansci.asia/archives/192941
雅文兒童聽語文教基金會_96
50 篇文章 ・ 208 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。