0

2
2

文字

分享

0
2
2

來塊很 Jazz 的「聽覺乳酪蛋糕」!卡路里消耗、大腦訓練、心情愉悅一次滿足

雅文兒童聽語文教基金會_96
・2022/06/22 ・3588字 ・閱讀時間約 7 分鐘
  • 文/雅文基金會聽語科學研究中心 張殷綮 研究助理

在美國哈佛大學心理學教授平克(Steven Pinker)的眼裡,音樂不過是一塊「聽覺的乳酪蛋糕」(auditory cheesecake),對人類的生存、繁衍一點用處也沒有,只是在演化的路上被選擇出來的娛樂附屬品。然而,音樂卻承載著人類的歷史文化,具有豐富多變的形式。

在淵遠流長的時間長河下,難道音樂真的一點用武之地也沒有嗎?喔不,誤會可大了!其實音樂就像一塊生乳酪蛋糕,只要將其中的基本元素加以烹調,就能變成像是說話、唱歌般的輕乳酪和重乳酪蛋糕!高熱量會讓大腦 up up 動起來消耗卡路里,不僅會分泌多巴胺,還能強健體魄,就讓我們來告訴你關於聽覺乳酪蛋糕可能會讓你很意外的 point 吧!

享受音樂就像是吃了一塊乳酪蛋糕。圖/Pexels

音樂、說話和唱歌,就像是生乳酪、輕乳酪和重乳酪蛋糕

試著打開 Google 翻譯,請 Google 小姐唸唸看「紅鯉魚與綠鯉魚與驢」或是「紅鳳凰黃鳳凰藍鳳凰粉紅鳳凰」,你是否發現,相較於真實語言,少了那麼點韻味呢?其實,口說語言的自然語韻就蘊含著音樂成分,節律及語調不僅暗藏著溝通線索,其中的音高、節奏與音量變化所組織而成的旋律,還能夠製造情緒的張力!

音樂的發展其實和語言同步,人類約需要花費 25 到 50 毫秒來辨認不同樂器的音色,而在提取話語中每一個音節的音素,所耗費的秒數也差不多。在媽咪的子宮時,我們就透過媽咪的聲音進行聽能訓練,學著將聲音與情緒連結。

初來乍到這個世上時,我們更是保留了對於各種聲音的敏感度,直到 6 個月大時,才逐漸被身處的文化習染,偏好特定的語言與音樂表現形式,為日後的發展奠下基石。因此,我們從小講話就不像 Google 小姐平直呆板,而是能隨著自身的狀態與情緒發聲(ENT & Audiology News, 2016; Brandt et al., 2012)。

原來,一字一句,不僅是平上去入的分別,還有著音高的起伏、節奏的快慢、音量大小的變化,宛如歌唱一般。我們很自然地懂得要將「紅鯉魚與綠鯉魚與驢」的「與」放輕,也懂得在不同顏色的「鳳凰」之間稍作停頓。如果想強調某個詞彙,便會加重語氣,比如在句末把「驢」字拉長,同時拔尖聲音、提高音量。如此一來,就更能讓聽者注意到「驢」的存在——「池塘裡明明游著紅鯉魚與綠鯉魚,怎麼突然出現驢子呢?」

由此看來,音樂、歌唱和說話的核心元素似乎沒有太多不同。透過這些高低起伏的韻律、有快有慢的節奏等特徵,都能讓對方聽得更輕鬆、理解更順暢!

享受蛋糕前,大腦得要 one more two more 動起來

要感受旋律的音高與和聲變化,需要倚靠聽覺系統順利運行,但大腦這台超級電腦可沒那麼簡單。一首曼妙的舞曲通常需要結合不同的腦區互相合作,溝通往來,例如「音調」便可能同時牽涉到小腦與前額葉皮質的運作(The Kennedy Center 50, n.d.)。那麼,音樂當中許多不同的組成元素,又分別由哪些腦區協調、操控呢?

嘻哈歌手動感又富含節奏性的饒舌歌曲,平平仄仄平,自成韻律,是音樂中不可或缺的元素。不管是用手指頭輕輕叩打桌面,還是拿起鼓棒奮力向鼓面一擊,都會牽涉到小腦運動皮質的運作。從西方的古典音樂到藍調、民謠,甚至是爵士樂與搖滾樂,不同的音樂風格都有既定的模式,久而久之,人們便有了預期心理,而大腦的前額葉皮質便有偵測節奏是否規律,判斷音程、調性是否合理的功用。

然而,也正是這種機制的存在,人們對意想不到的編曲會感到驚喜,而情緒的引發又有賴於小腦伏隔核杏仁核的運作。如果要在音樂會演奏一場曲目,更是會牽涉到小腦視覺皮質感覺皮質運動皮質的同步運作,就算有譜可以偷瞄一眼,也必須練到滾瓜爛熟,讓記憶能儲存到海馬迴。畢竟,不看指揮,指揮可是會生氣的呢(The Kennedy Center 50, n.d.)! 

不同的腦區協力運作,才能對聽到的歌曲感到放鬆愉悅,甚至順利將其演奏出來。
圖/The Kennedy Center

既能像乳酪蛋糕帶來愉悅,又能像彈力帶般健腦凍齡

近來健身風氣盛行,上班族坐久了,下班都需要活絡筋骨,而音樂也像是大腦聽覺系統的健身器材,讓每一條聽覺神經更為強健、敏銳。

所謂的音樂訓練講究主動參與,是一種高強度的認知訓練,不僅講求每一個音符和表情符號都要達到有效的情緒溝通與渲染效果,還必須對聲音的細節,諸如音高、時值、音色等,保持敏銳的感受力,甚至涉及工作記憶(working memory)、執行功能(executive function)以及多重感官的整合,學會如何分辨不同的聲部,跟著主旋律,與其他歌手、樂手合作表演。每一次的練習,都是在強化耳蝸腦幹聽覺皮質間的迴路,形成一反饋系統——這就是為什麼音樂家對於聽覺訊號會特別敏感,甚至能預測音樂進行走向的緣故(Kraus & Chandrasekaran, 2010)。

在神經科學的研究中,就發現音樂家的腦波活動異於常人,不但對高音出現更明顯的反應,在偵測非語言訊號(像是嬰兒的哭鬧聲)等,反應也比未接受過音樂訓練的人強烈。大量的聽覺刺激使音樂家對於言語中的基礎頻率、時值變化、諧波組成成分,以及子音過渡到母音的起始點更為敏銳,甚至是在聽覺相關的注意力、記憶力都有較好的表現,能在嘈雜的環境中辨識語音。音樂訓練可說是練就了音樂家耳聽八方的能力,促進其聽能技巧的發展(Kraus & Chandrasekaran, 2010)。

音樂家(紅線)對高音以及嬰兒哭聲的腦波反應比未經過音樂訓練的人(黑線)來得強烈。圖/Nature

不用人人都是蛋糕師傅,純享用也可以

相信學音樂的人一定對「我沒學過音樂啦!不懂啦!」這句話不陌生。不管是樂團主唱還是合唱團員,也時常聽到對方聲稱自己不會唱歌,彷彿音樂訓練是一種標誌,是享有特權的人才能擁有的專利。

然而,生活周遭中的音樂俯拾即是,不管是戴著耳機播放自己建立的最愛清單、關注最新的歌曲排行榜,還是看電影、玩遊戲時,使人身歷其境、驚心動魄的背景音樂,或是唱卡拉 OK、參加演唱會時,不自覺的身體律動等等,都會讓人潛移默化,足以吸取對特定文化背後所富藏的音樂相關知識(Putkinen et al., 2013)。

研究更指出,早年的音樂活動可能會帶動聽能技巧注意力的發展,進而對學齡後的語言表現造成正面影響。而在電生理訊號的研究中,參與音樂活動的多寡又與 2 到 3 歲孩童對聽覺刺激反應的偵測能力相關。此時,你是不是正回想著小時候有沒有乖乖去操場跳早操,然後好好上音樂課、吹直笛呢(Putkinen et al., 2013)? 

音樂活動有助於提升聽能技巧與注意力的發展。圖/Pexels

關於聽覺乳酪蛋糕可能讓你很意外的 point

音樂的「健耳」功效也常用在聽損療育。相較於正常耳蝸有著高達 3,500 個毛細胞,能處理 20 到 20,000 赫茲間的聲音頻率,人工電子耳只有 12 到 22 個電極來處理 200 到 8,500 赫茲之間的語音頻率。

因此,配戴電子耳的人,面對較為細緻的聲音處理(如語言韻律與情緒感知)需要更大的音高變異性,才能察覺其中的分別;另外,有研究指出,在分辨中文聲調時,這些人也會遇到困難(Jiam & Limb, 2020)。

此時,在聽能復健中導入音樂便十分重要,因為許多歌曲就涵蓋大量重複、輪替的編曲技巧,不僅能讓聽損者仔細聆聽,也有說唱的機會,更能增加互動性、增強自信心、提升社交生活品質(Torppa & Huotilainen, 2019)。

人在年老時,聽覺神經的反應會逐漸下降,但根據陸續進行中的相關研究,晚期音樂的介入還是能達到終身音樂學習的效果,只是幅度較小。此外,音樂不僅有抗老化的作用,還能提高老人家參加社交活動的機會。透過節奏來帶動感官認知與運動整合,還能防止老人家摔倒(Kraus & White-Schwoch, 2017)。

此時此刻,你是不是想打開音樂軟體,盡情地享受這塊營養又美味的乳酪蛋糕呢?

參考文獻

  1. Brandt, A., Gebrian, M., & Slevc, L. R. (2012). Music and early language acquisition. Front. Psychology3:327.
  2. Garrido, C. (2016). Why does music move us? Music as auditory signals of emotion. ENT & Audiology News.
  3. Jiam, T. N., & Limb, C. (2020). Music perception and training for pediatric cochlear implant usersExpert Review of Medical Devices, 17:11, 1193-1206.
  4. Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skillsNat Rev Neurosci11, 599–605.
  5. Kraus, N., & White-Schwoch, T. (2017). Music Keeps the Hearing Brain Young. Hearing Journal, 70(11), 44–46.
  6. Putkinen, V., Saarikivi, K., & Tervaniemi, M. (2013). Do informal musical activities shape auditory skill development in preschool-age children?Front. Psychol., 4:572.
  7. McCollum, S. (2019). Your Brain on Music: The Sound System Between Your Ears. The Kennedy Center.
  8. Torppa, R., & Huotilainen, M. (2019). Why and how music can be used to rehabilitate and develop speech and language skills in hearing-impaired children. Hearing Research, 380:108–122.

數感宇宙探索課程,現正募資中!

文章難易度
雅文兒童聽語文教基金會_96
35 篇文章 ・ 194 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。


2

2
4

文字

分享

2
2
4

為何新冠病毒突變之後傳染力更強?——關鍵在於變異株的棘蛋白結構

研之有物│中央研究院_96
・2022/01/25 ・5088字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 美術設計/林洵安

為何新冠病毒突變之後傳染力更強?

COVID-19 至今仍深深影響全人類,新冠病毒持續演化,例如曾經造成臺灣大規模社區感染的 Alpha 變異株、傳染力更強的 Delta 變異株,近期出現的 Omicron 變異株等,它們逃避免疫系統的能力都不一樣,關鍵就在不同的棘蛋白(spike protein)結構。「研之有物」專訪中央研究院生物化學研究所徐尚德副研究員,他的團隊陸續解析各種新冠病毒變異株的棘蛋白結構,不但能釐清新的突變帶來的威脅,後續也可作為研發人造抗體的指引。

徐尚德手上拿著新冠病毒的棘蛋白模型,顯示棘蛋白與兩種不同抗體結合的情況。圖/研之有物

解析新型冠狀病毒棘蛋白

COVID-19 的病原體是一種冠狀病毒,和 SARS 病毒是近親,正式命名為 SARS-CoV-2,中文常稱作新型冠狀病毒。為了知道病毒如何感染人體細胞,以及如何逃避免疫系統的辨識,我們需要進一步瞭解冠狀病毒表面的棘蛋白結構。

結構為什麼重要?因為結構會影響蛋白質功能。蛋白質是由不同的氨基酸所組成的長鏈,實際作用時會摺疊形成特別立體結構,而冠狀病毒的蛋白質中,又以棘蛋白最為關鍵。

徐尚德強調,棘蛋白是冠狀病毒暴露在表面的蛋白質之一,絕大多數被感染者的免疫系統所產生的抗體都是辨識棘蛋白。因此現今臨床使用的蛋白質次單元疫苗、腺病毒疫苗以及 mRNA 疫苗,都是以棘蛋白為基礎來研發。

Cryo-EM 讓蛋白質結構無所遁形

工欲善其事,必先利其器。解析蛋白質結構的方法很多,早期的 X 光晶體繞射(X-ray diffraction),就像將影片定格截圖,但不一定為蛋白質實際作用的狀態。

再來是核磁共振(Nuclear Magnetic Resonanc,簡稱 NMR),這是徐尚德留學深造時的專業,可以重現蛋白質在水溶液中的結構及動態,更接近實際作用的形態,可惜不適合分子量較大的分子。

目前結構生物學最具潛力的新技術是:冷凍電子顯微鏡(Cryogenic Electron Microscopy,簡稱 Cryo-EM),Cryo-EM 可以拍出原子尺度下高解析度的三維結構,此技術於 2017 年獲得諾貝爾化學獎。中研院則於 2018 年開始添購 Cryo-EM 設備,而 Cryo-EM 正是徐尚德用來解析棘蛋白結構的主要利器!

在 COVID-19 疫情爆發初期(2020 年 1 月),徐尚德就率先啟動新冠病毒的結構分析,當時他的研究團隊剛好已分析過感染貓科動物的冠狀病毒,對於解析棘蛋白結構有一定經驗,可說是贏得先機。

具體來說,如何用 Cryo-EM 解析新冠病毒的棘蛋白結構?

首先要大量培養新冠病毒、再分離、純化得到棘蛋白。接下來,將大量蛋白質樣本鋪成薄薄一層液體,之後以 -190℃ 急速冷凍,讓蛋白質分子保持凍結前的形態,最後用程式重建棘蛋白的三維影像。徐尚德譬喻,就像一匹馬在高速移動時,連續拍攝許多照片,再將照片疊加起來,重建馬的形狀。

棘蛋白的體積已經算大,假如又與其他蛋白質結合,體積將會更大。能解析如此龐大結構為 Cryo-EM 一大優點,但是也會創造很大的資料量。徐尚德強調,用 Cryo-EM 分析蛋白質結構不只做實驗,也要協調資料處理等疑難雜症。

冷凍電子顯微鏡可以紀錄同一時間下、不同狀態的蛋白質三維立體結構。圖/研之有物

關鍵 D614G 突變,讓新冠病毒棘蛋白穩定性大增

儘管已有貓冠狀病毒的經驗,徐尚德研究團隊初期仍經歷一陣摸索,一大困難在於,做實驗時發現不少棘蛋白壞掉,不再保持原本的結構。

這是因為一般取得蛋白質樣本後會置於 4°C 冷藏,但 4°C 其實不適合保存棘蛋白。接著徐尚德細心觀察到,具備 D614G 突變的棘蛋白,保存期限竟然比沒突變的棘蛋白要長,可以從 1 天增加到至少 1 週。

什麼是 D614G 突變呢?武漢爆發 COVID-19 疫情的初版新冠病毒,其棘蛋白全長超過 1200 個胺基酸,D614G 突變的意思就是:第 614 號氨基酸由天門冬胺酸(aspartic acid,縮寫為 D)變成甘胺酸(glycine,縮寫為 G)。

D614G 突變誕生後,存在感持續上升,2020 年 6 月時已經成為全世界的主流,隨後新冠病毒 Alpha、Delta 等變異株,皆建立於 D614G 的基礎上。

儘管序列僅有微小差異,許多證據指出 D614G 突變會增加新冠病毒的傳染力。有趣的是,它也能大幅增加棘蛋白在體外的穩定性。因此在研究用途上,變種病毒的棘蛋白反而容易保存,徐尚德更指出,對抗變種病毒的蛋白質次單元疫苗(subunit vaccine)穩定性也會增加。

圖片為徐尚德實驗室提供的新冠病毒模型與三種不同的棘蛋白模型,棘蛋白的主體為白色,棘蛋白的受器結合區域(receptor binding domain,RBD)為藍綠色。圖/研之有物

新冠病毒棘蛋白的「三隻爪子」:受器結合區域

徐尚德參與的一系列新冠病毒結構研究,除了棘蛋白本身,還包含棘蛋白與細胞受器 ACE2 的結合、棘蛋白和人造抗體的結合。

既然要解析結構,儀器「解析度」能看清楚多小的尺度就很重要!蛋白質結構學的常見單位是 Å(10-10 公尺),原子與原子間的距離約為 2 Å,Cryo-EM 的極限將近 1 Å,不過棘蛋白大約到 3 Å 便足以重建立體結構。

冠狀病毒如何感染宿主細胞,和結構又有什麼關係?棘蛋白位於冠狀病毒的表面,直接接觸宿主細胞受器 ACE2 的部分,稱為受器結合區域(receptor binding domain,簡稱 RBD),結構可能展現「向上」(RBD-up)或是「向下」(RBD-down)的狀態。向下,RBD 便不會接觸宿主細胞的受器,缺乏感染能力,;向上,RBD 方能結合受器,引發後續入侵。

徐尚德團隊透過冷凍電子顯微鏡,拍攝新冠病毒 Alpha 株的棘蛋白結構,其中有三類棘蛋白的 RBD 為 1 個向上(佔 73%),有一類(類別3)的棘蛋白 RBD 則是 2 個向上(佔 27%)。圖/Nature Structural & Molecular Biology

新冠病毒表面的棘蛋白有「三隻爪子」(3 RBD),RBD 有可能同時向上(3 RBD-up),也可能只有 1~2 個向上,結構會影響病毒的感染能力。更詳細地說,棘蛋白某些胺基酸位置的差異,會影響結構的開放與封閉程度。

棘蛋白向上或向下是動態的,假如能保持穩定性,延長向上的時間,也有助於新冠病毒的感染。這正是徐尚德一系列研究下來,實際觀察到不同品系的變化。

截至 2022 年 01 月 18 日的新冠病毒品系發展歷史,其中 Delta 變異株擁有最多品系,而 Omicron 變異株則開始興起。雖然 Omicron 的品系並不多,但已逐漸成為主流。圖/Nextstrain; GISAID

一網打盡所有高關注變異株的結構變化

和武漢最初的新冠病毒相比,D614G 突變帶來什麼改變呢?簡單說:棘蛋白向上的比例增加了,導致整個結構變得更加開放,增加新冠病毒對宿主受器的親合力(affinity)。

以 D614G 為基礎,接下來又獨立衍生出數款品系,皆具備多個突變,傳染力、抵抗力更強 。影響最大的是首先於英國現身的 Alpha(B.1.1.7)、南非的 Beta(B.1.351)、巴西的 Gamma(P.1),以及更晚幾個月後,於印度誕生的 Kappa(B.167.1)與 Delta(B.167.2)。Alpha 一度於世界廣傳,導致包括臺灣在內的嚴重疫情,不過隨後不敵優勢更大的 Delta。

對於上述品系,徐尚德率隊一網打盡。 Alpha 的棘蛋白結構解析已經發表於 《自然-結構與分子生物學》(Nature Structural & Molecular Biology)期刊,其餘新冠病毒變異株的論文仍在等待審查,目前能在預印網站 bioRxiv 看到,該研究一次報告 38 個 Cryo-EM 結構,刷新紀錄。

圖 a 顯示新冠病毒 Alpha 變異株棘蛋白的突變氨基酸序列,一共有 9 處突變, D614G 突變以紫色表示。
圖 b 顯示突變的氨基酸在立體結構中的位置。
圖/Nature Structural & Molecular Biology

Alpha 變異株的 RBD 向上結構穩定

一度入侵台灣造成社區大規模感染的 Alpha 株有何優勢?其棘蛋白除了 D614G,還多出 8 處胺基酸突變,徐尚德發現 N501Y(天門冬酰胺變成酪胺酸)、A570D(丙胺酸變成天門冬胺酸)的影響相當關鍵。

直覺地想,棘蛋白的外層結構才會與受器接觸影響傳染力,立體結構中第 570 號胺基酸的位置比較裡面,乍看並不要緊。但是徐尚德敏銳地捕捉到,A570D 突變會改變局部的空間關係,令「RBD 向上」的結構更加穩定。徐尚德形容為「腳踏板」(pedal-bin)── A570D 突變的效果就像踩著垃圾桶的腳踏板,讓桶蓋(也就是 RBD)穩定保持開啟。

事實上,棘蛋白總體向上的比例,Alpha 還比單純的 D614G 突變株更少,不過 A570D 增進的穩定性似乎優勢更大。研究團隊製作缺乏 A570D 突變的人造模擬病毒,嘗試體外感染人類細胞,發現感染力明顯減少,證實 A570D 突變頗有貢獻。

新冠病毒 Alpha 株棘蛋白的「A570D 突變」,會改變棘蛋白內部的空間,讓「RBD 向上」的結構更加穩定,就像踩著垃圾桶的腳踏板,讓桶蓋保持開啟。圖/研之有物(資料來源/徐尚德、Nature Structural & Molecular Biology

Alpha 變異株的棘蛋白親近宿主細胞,干擾抗體作用

另一個重要突變是 N501Y,不只 Alpha 有,Beta 等許多品系也有,Delta 則無。N501Y 在眾多品系獨立誕生,似乎為趨同演化所致。N501Y 能為病毒帶來哪些優勢?

第 501 號胺基酸位於棘蛋白表面,會直接與宿主受器 ACE2 結合。此一位置變成酪胺酸(tyrosine,縮寫為 Y)後,和受器的 Y41 兩個酪胺酸之間,容易形成苯環和苯環的「π–π stacking」鍵結,從而大幅提升棘蛋白對細胞的親合力。

新冠病毒 Alpha 株棘蛋白的「N501Y 突變」,讓 RBD 的胺基酸與宿主細胞受器 ACE2 形成「π–π stacking」鍵結,大幅提升棘蛋白對宿主細胞的親合力。圖/Nature Structural & Molecular Biology

另一方面,N501Y 突變也會干擾抗體的作用。中研院細胞與個體生物學研究所的吳漢忠特聘研究員,率隊研發一批針對棘蛋白的人造抗體,測試發現有一款抗體 chAb25 對 D614G 突變株相當有效,但是對 Alpha 株無能為力。徐尚德由結構分析發現:N501Y 改變了棘蛋白表面的形狀,讓抗體 chAb25 無法附著。

好消息是,另外有兩款抗體 chAb15、chAb45,依然能有效對抗 Alpha 病毒,不受 N501Y 影響。這兩款抗體會附著在棘蛋白 RBD 的邊緣,避免棘蛋白和宿主細胞接觸。而且抗體 chAb15、chAb45 會各占一方,可以同時使用,多面協同打擊病毒。

雖然新冠病毒 Alpha 株的棘蛋白表面讓某些抗體難以附著,還好仍有兩款抗體 chAb15(綠色)、chAb45(黃色)能有效「卡住」棘蛋白,干擾棘蛋白與宿主細胞結合。抗體 chAb15、chAb45 附著的位置,正好就是棘蛋白與宿主細胞結合的地方。圖/Nature Structural & Molecular Biology

棘蛋白結構不只胺基酸,還要注意表面的醣

有了 Alpha 的經驗,接下來分析 Beta、Gamma、Kappa、Delta 便順手很多。這批新冠病毒的棘蛋白變化多端,但是「RBD 向上」的整體比例皆超過 Alpha 和 D614G 突變株,可見適應上各有巧妙。徐尚德也發現,要釐清棘蛋白的結構,不能只關心蛋白質,還要考慮棘蛋白表面的醣基化(glycosylation)修飾。

蛋白質在完工後,某些胺基酸還能加上各種醣基。病毒蛋白質表面的醣基可以作為防護罩,干擾抗體和免疫系統的辨識。醣基化修飾就像替病毒訂作一套迷彩外衣,不同變異株的情況都不一樣,假如醣基化的位置和數量,由於突變而改變,便有可能影響立體結構,有助於它們閃躲抗體。例如和武漢原版新冠病毒相比,Delta 株棘蛋白少了一個醣化修飾,Gamma 株棘蛋白則多了兩處醣化。

還好從結構看來,並沒有任何突變組合能完美逃避抗體。例如由美國的雷傑納榮製藥公司(Regeneron)製作並通過緊急使用授權的抗體;以及中研院吳漢忠率隊研發,有望投入實用的多款人造抗體,對變異品系依然有效。這場人類與病毒的長期抗戰中,同時使用多款抗體的「雞尾酒」療法,仍然是可行的醫療方案。

回顧將近兩年來的研究之路,徐尚德表示:時間壓力真的非常大!COVID-19 疫情爆發後,全世界投入相關研究的專家眾多,只要稍有遲疑,便會落在競爭者後頭。但是即使跑在最前端的研究者,也只能苦苦追趕病毒演化的速度,一篇論文還在審查時,現實世界的疫情已經邁向全新局面。

人類要贏得勝利,必需全方面認識病毒,而結構無疑是相當重要的一環。


數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
20 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook