Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
1

文字

分享

0
0
1

瑞德西韋的發展與原理(上):幻想中的抗病毒萬能藥能被找到嗎?

miss9_96
・2020/06/08 ・2044字 ・閱讀時間約 4 分鐘 ・SR值 622 ・十年級

圖/flickr

2020/05/01,美國授權瑞德西韋(Remdesivir)緊急治療新型冠狀病毒疾病(COVID-19)重症患者,吉利德科學(Gilead Sciences, Inc.)股價也應聲大漲。然而,瑞德西韋並非一帆風順,它也歷經失敗、塵封於抽屜,因緣際會才重新站回投手丘。本篇將講述瑞德西韋的崛起、失敗,與華麗轉身。

科學家的妄想:對抗RNA病毒的萬能藥

數十年來,RNA 病毒對人類的威脅越來越大,如:2009 年的 H1N1 流感病毒、2012 年的中東呼吸症候群冠狀病毒(Middle East respiratory syndrome coronavirus, MERS)。

著眼於此,上個世紀末期,美國疾病與控制中心(Centers for Disease Control and Prevention , CDC)、美國陸軍傳染病醫學研究所(United States Army Medical Research Institute of Infectious Diseases, USAMRIID)、吉利德科學這些單位透過三方合作,試圖找到一種能廣泛抑制多種 RNA 病毒的藥物。

換言之,科學家希望有種萬能藥,能對抗現在和未來所有的 RNA 病毒1,2。數十年的研究,累積了約一千種仿核苷酸藥物的各種生化資料。

-----廣告,請繼續往下閱讀-----

瑞德西韋的研發可追溯到天然的仿核苷酸藥物 Tubercidin(抗結核菌素)。它是來自放射線菌(細菌,該門產生多樣化的抗生素)分泌的天然毒物3,結構類似 RNA 或 DNA 的腺嘌呤(Adenine,代號A),能讓其他微生物在複製 DNA 或 RNA 時,不小心誤用 Tubercidin,導致死亡。

上圖:腺嘌呤(Adenine, 代號A)和對偶鹼基以氫鍵配對的示意圖。中圖:天然毒物-Tubercidin和科學家仿製的毒素。下圖:瑞德西韋和當年資料庫之一的化合物。中文資料為本文作者標註。from: Wikipedia, 參考文獻1, 3

科學家模仿 Tubercidin,創造了 1, 4-aza-7.9-dideazaadenosine,發現也有類似的毒殺功能。而吉利德的科學家以大自然為師,合成了一系列的化合物,並開始測試這些化合物的潛力。

嚴苛的篩選:誰是最好的抗病毒萬能藥?

科學家修飾 1, 4-aza-7.9-dideazaadenosine 醣基上的碳1,讓該位置有四種不同的官能基,其後再測試此四類化合物對病毒的抑制效果3

修飾 1, 4-aza-7.9-dideazaadenosine 醣基上的碳1官能基,出現四類化合物,分別為3a-3d。其中3a為瑞德西韋前身。from:參考文獻3

如下表,在抑制多種病毒裡,上圖的 3a 化合物有最廣泛的抗病毒能力,除了西尼羅河病毒、克沙奇A型病毒外,針對其他病毒都有一定的抑制效果(遠低於半數細胞毒性的濃度時,就能抑制半數病毒)。3b化合物也有廣譜抑制效果,但不如3a。3c化合物僅能抑制2003年的冠狀病毒、3d化合物沒有觀察到抗病毒效果3

-----廣告,請繼續往下閱讀-----

仿核苷酸化合物 1, 4-aza-7.9-dideazaadenosine 的各種版本及對病毒的有效濃度

EC50/CC50 (μM)
3a 3b 3c 3d
C型肝炎病毒 4.1/>89 39/>45 >89/>89 >89/>89
黃熱病毒 11/>30 ND ND ND
登革熱2型病毒 9.46/>30 >30/>30 >30/>30 >30/>30
西尼羅河病毒 >30/>30 >30/>30 >30/>30 >30/>30
A型流感病毒 27.9/>30 >30/>30 >30/>30 >30/>30
副流感病毒 1.71/>30 5.23/>30 >30/>30 >30/>30
SARS-CoV-1 2.24/>30 >30/>30 14.0/>30 >30/>30
克沙奇A型病毒/腸病毒 >30/>30 >30/>30 >30/>30 >30/>30
  • EC50:半數病毒抑制濃度;CC50:半數細胞毒性濃度

因為 3a-3d 化合物的單磷酸官能基上,帶有高度電荷性,因此難以穿透疏水性的細胞膜。因此科學家將兩個支鏈修飾於單磷酸上,形成疏水性較高的9a-9d化合物,再檢測此系列的毒性、抗病毒性、細胞膜內的累積能力。

將3a-3d的磷酸官能基再修飾,降低化合物電荷性。from:參考文獻3

如下表,以抗病毒能力而言,可發現 9a、9b 化合物的效果最好、有療效的濃度最低。但以安全性而言,9b 化合物則比 9a危險,殺死半數細胞的濃度(CC50),還不到半數抑制病毒濃度(EC50)的十倍,在臨床應用上困難。藥物的安全濃度太窄,可能在殺死病毒的過程中,也將細胞殺死。以細胞內可累積濃度而言,也以 9a 化合物為最佳,此結構的細胞滲透度最高 3

EC50/CC50( μM ) 細胞內累積濃度 ( pmol/million )
9a 0.085/3.2 4,220
9b 0.078/0.73 ND
9c 3.43/12 440
9d 6.01/26 150

吉利德的科學家於 2012 年發表了這些成果。然而,誰也沒想到兩年後,突如其來的瘟疫,瑞德西韋就此拉上投手丘,接受真實世界的考驗了。

-----廣告,請繼續往下閱讀-----

後續請見 瑞德西韋發展與原理(下):模仿「核苷酸」阻止遺傳物質的複製!

參考文獻

  1. Richard T. Eastman, Richard T. Eastman, Jacob S. Roth, Kyle R. Brimacombe, Anton Simeonov, Min Shen, Samarjit Patnaik, Matthew D. Hall (2020)  Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19ACS Central Science. https://doi.org/10.1021/acscentsci.0c00489
  2. Dustin Siegel, Hon C. Hui, Edward Doerffler, Michael O. Clarke, Kwon Chun, Lijun Zhang, Sean Neville, Ernest Carra, Willard Lew, Bruce Ross, Queenie Wang, Lydia Wolfe, Robert Jordan, Veronica Soloveva, John Knox, Jason Perry, Michel Perron, Kirsten M. Stray, Ona Barauskas, Joy Y. Feng, Yili Xu, Gary Lee, Arnold L. Rheingold, Adrian S. Ray, Roy Bannister, Robert Strickley, Swami Swaminathan, William A. Lee, Sina Bavari, Tomas Cihlar, Michael K. Lo, Travis K. Warren, Richard L. Mackman (2017)Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses Journal of Medicinal Chemistry. https://doi.org/10.1021/acs.jmedchem.6b01594
  3. Aesop Cho, Oliver L. Saunders, Thomas Butler, Lijun Zhang, Jie Xu, Jennifer E. Vela, Joy Y. Feng, Adrian S. Ray, Choung U. Kim (2012) Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorganic & Medicinal Chemistry Letters. https://doi.org/10.1016/j.bmcl.2012.02.105
-----廣告,請繼續往下閱讀-----
文章難易度
miss9_96
170 篇文章 ・ 1101 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

0
0

文字

分享

0
0
0
環境共生的牆:冠軍磁磚如何幫建築降溫
鳥苷三磷酸 (PanSci Promo)_96
・2025/08/29 ・4556字 ・閱讀時間約 9 分鐘

本文與 冠軍磁磚 合作,泛科學企劃執行

夏天早已不是可以輕忽的季節巨獸,就連位於中高緯度的歐洲也深受其威脅。然而,在德國漢堡,有一棟建築不僅不用付電費,還能自行發電,同時維持室內恆溫。它的秘密武器,不是屋頂上的太陽能板,而是長在牆壁上的「太陽能葉片」(SolarLeaf)

這面牆不是冰冷的水泥,而是一片片富有生命力的綠色面板,正式名稱是「光合生物反應器」。它由四層玻璃製成,僅 2 公分寬的玻璃空腔內,充填著 24 公升的微藻培養液。為了讓藻類保持活力,系統會定時從底部打入回收自鄰近設施的二氧化碳。產生的大量氣泡不僅提供光合作用所需的原料,還產生「氣舉效應」(airlift effect):向上浮力會帶動周圍的液體一起向上運動,產生液體流動、持續攪動培養液,就像為藻類進行 SPA 按摩,確保每顆藻都能均勻曬到陽光。

產生的大量氣泡不僅提供光合作用所需的原料,還產生「氣舉效應」(airlift effect)/ 照片:© Colt International、Arup Deutschland、SSC GmbH

在這過程中,微藻吸收日光,提供了動態的遮陽效果,並透過光合作用將能量轉化為可儲存的生物質。與僅能吸熱的水泥牆不同,這片牆真正「存住」了太陽能,同時避免城市熱島效應。更重要的是,這些反應器還能蒐集住家與周邊建築燃燒或煮菜所排放的二氧化碳,將其迅速封存於藻類體內。

-----廣告,請繼續往下閱讀-----

聽起來像科幻小說?別急,這才只是今天要介紹的第一種前衛建築。接下來,還有用真菌「種」出來的隔熱磚、會隨太陽軌跡跳舞的窗花,以及在台灣就能落實的降溫磁磚設計。在這些千變萬化的創新方法中,總有一款會讓你眼睛一亮。它們不僅節能省錢,更代表一種與環境共生的全新可能。

不只種藻,還能「種磚」

要讓建築自我降溫,科學家的靈感往往向自然界取經。前面提到的 SolarLeaf 是極致案例,但如果不想大動工程,也可以從「建材本身」著手。最常見的方法是鋪設隔熱磚,而有些科學家則做出更環保的版本,不是培養微藻,而是「種真菌」。

作法是先將稻殼、稻草、鋸末或紙漿廢料滅菌,去除雜菌後再將這些基材混入菌種,灌入特定形狀的模具。接著在攝氏 20~25 度、濕度控制良好的條件下,菌絲體便會自行生長,像一種有生命的「超級膠水」,分泌酵素分解廢料當作養分。並將它細長的纖維網絡穿透、包裹、纏繞所有廢棄物顆粒,把所有廢棄物緊緊地固化成一塊緻密的隔熱板 。整個過程約需 5 至 21 天。

這種材料的熱傳導係數介於 0.03~0.07 W/m·K之間,性能已能與常見的保麗龍板或礦棉相媲美。原因在於菌絲體本身是由真菌生長出的細長纖維所構成,纖維之間會自動交織形成一個三維網絡。當它「吃掉」農業廢料並填滿模具後,就會生成密實卻輕盈的纖維結構,材質類似「天然泡棉」,但更為堅固。

-----廣告,請繼續往下閱讀-----

想像一座由菌絲長出的「無限城」:熱能被困在層層彎曲的通道裡,難以迅速穿過。熱走得越慢,隔熱效果就越好。這種材料最大的優勢在於生命週期完整,它以廢棄物為食、生產過程低耗能,最後還能完全被生物分解,回歸大地。

菌絲體本身是由真菌生長出的細長纖維所構成,纖維之間會自動交織形成一個三維網絡/ 照片:©https://ecovative.com/

目前這項技術最成熟的應用來自美國 Ecovative Design 公司,他們利用大麻稈或玉米莖等農業廢棄物培養菌絲。2024 年,該公司啟動「鳳凰計劃」(The Phoenix),在加州奧克蘭打造一個含有三百間住宅的社區,外牆便採用這種菌絲材料。由於原料取得容易,只要有農業廢棄物與菌種,就能培養出建材,應用範圍從建築延伸到日常使用的包裝材料,潛力無窮。

生物混凝土:讓苔蘚在牆上自然降溫

藻類、真菌還不夠?那就再「種」苔蘚。

西班牙加泰隆尼亞理工大學的研究團隊開發出一種名為 「生物混凝土」 的創新材料,其設計宗旨在於支持苔蘚、地衣等微生物的生長。

這種材料是一個多層系統:第一層是結構層,也就是標準混凝土,負責承重;第二層是防水層,保護內部結構不受水分侵蝕;第三層則是最外面的生物層,經特殊處理的外層,其孔隙率和表面粗糙度經過調整,利於捕捉和保持雨水,為微生物的定殖提供一個理想的生活環境。 

-----廣告,請繼續往下閱讀-----

這個「活的」表面帶來多重效益:植被層本身形成了一層隔熱層,更關鍵的是,其保水能力使其可以透過蒸發冷卻(evaporative cooling)來主動降低牆體表面溫度,從而顯著減少建築的熱增益 。   

不過,從藻類到真菌,再到苔蘚,這樣住個房子還要考慮陽光、空氣、水,難道沒有更方便的方法嗎?

外牆乾掛系統:利用空氣與模組化磁磚實現隔熱

如果不想「種生物」,也可以透過工程手法和巧妙設計來降溫,那就是第四種方法「外牆乾掛系統」

它的原理,其實就是用了最便宜的隔熱材料:空氣。傳統牆壁中,磁磚是用水泥直接黏死,但乾掛系統透過金屬骨架,將外層飾面板「掛」在建築結構外,中間刻意留出一個連續的空氣腔。

-----廣告,請繼續往下閱讀-----
傳統牆壁中,磁磚是用水泥直接黏死,但乾掛系統透過金屬骨架,將外層飾面板「掛」在建築結構外,中間刻意留出一個連續的空氣腔 / 圖片來源:冠軍建材

為什麼有效?普通水泥的導熱係數約在 1.5–2.0 W/(m·K),而靜止空氣在標準條件下約 0.025 W/m·K,兩者相差了 70 倍。也就是說,傳統水泥建築在太陽照射下,熱量會直接傳入室內;而使用外牆乾掛系統的建築,就像多了一層隔熱盾,從一開始就將大部分熱量隔絕在外。這種方法的最大優勢,是不需研發複雜的新材料或製程,關鍵在於將瓷磚模組化,只要能安裝到外牆乾掛系統上,磁磚的樣式、顏色和種類也可以一樣多元。

在台灣,磁磚龍頭「冠軍建材」便推出了應用這原理的系統。該公司委託成功大學實驗室進行隔熱試驗,結果顯示:2 公分厚磚搭配特定乾掛工法,熱傳透率(U 值)可達 1.66 W/m²K,符合高性能綠建材 U 值需低於 1.8 的標準。這不僅能讓室內降溫約 4°C,空調用電還可減少 24–36%

屋頂同樣是最曬重災區。全球建築師常用屋頂綠化或太陽能板降低陽光的熱吸收,而冠軍建材提供更簡單的方法:將屋頂磁磚架高。他們的架高節能工法,採用義大利 ETERNOIVICA 架高器,將磁磚架高 15 公分。別小看這 15 公分,就能阻絕 90% 的熱傳導,並讓樓板降溫 15°C

這種降溫方式不影響美觀與安全性。冠軍建材推出了大理石、石紋等多種質感的磁磚,價格約為天然石材的 3 到 5 成。同時,其外牆乾掛節能工法也通過了17級風雨試驗、50 公斤多次撞擊測試,即便在地震、颱風頻繁的台灣,也能安心使用。產品具高抗折強度、低吸水率,可抵抗酸雨、風化等問題引起的剝落風險,並兼具耐火、防水、耐磨、防滑及易保養等優點。

-----廣告,請繼續往下閱讀-----
冠軍建材推出了大理石、石紋等多種質感的磁磚,其外牆乾掛節能工法也通過了17級風雨試驗、50 公斤多次撞擊測試。/ 圖片來源:冠軍建材

雖然不是生物建材,但冠軍製造的建材仍符合廢棄物減量(Reduce)、再利用(Reuse)及再循環(Recycle)的3R原則。他們在生產中使用廢陶瓷粒料、無機污泥及非有害廢集塵灰等回收料,並與大型建設公司合作回收工地廢磚。產品運至工地後,切割產生的邊角料亦會回收再利用。冠軍建材將永續理念融入生產,產品使用了50%的生產循環回收料、6.5%的廢陶瓷粒料與43.5%的天然原料,有效減少了廢棄物並降低碳排。

顛覆想像:三大建築降溫策略

到這裡,我們介紹的都是利用被動方式將熱量隔絕在外的方法。接下來,來看看幾種由工程師顛覆傳統想像、腦洞大開的「讓建築主動降溫的策略」。

1. 水源熱泵:讓水域成為建築的低耗電恆溫空調

第一個方法,是用更大尺度的環境系統來調節建築溫度—水源熱泵(Water‑Source Heat Pump, WSHP)。

-----廣告,請繼續往下閱讀-----

想像一台超大的冷氣機,冷媒在密閉管路裡吸收室內的熱量後蒸發,再進入壓縮機被壓縮後凝結,並釋放熱量。依照熱力學定律,熱總是從高溫流向低溫,如果想要讓熱量逆向流動,就需要消耗能量。也就是說,當室外空氣溫度越高,要再把熱量搬到空氣中,就需要耗費更多電力。

工程師們想到,比起氣溫會隨季節劇烈起伏,水體的溫度相對穩定,冬暖夏涼。像河川、湖泊,甚至城市污水系統,都能當作一個大型的「散熱水冷排」。如果熱量不是排進空氣中,而是排進溫度較低的水中,需要消耗的電力就可以下降。

研究顯示,空氣源熱泵的性能係數(COP)約為 2.33,每消耗 1 焦耳的電力,可搬運 2.33 焦耳的熱能;而使用水作為冷卻源的水源熱泵的平均 COP 可穩定在 3.9左右,比空氣源熱泵高出 67%。更棒的是,水源熱泵不只在夏天吹冷氣省電,只要反過來運作,讓熱泵把熱量從室外搬到室內,也能在冬天開暖氣時幫你省電。等於整個水域都是我家的低耗電恆溫空調。

2. 動態遮陽外牆:讓建築自己追著太陽動

-----廣告,請繼續往下閱讀-----

第二個方法,是讓建築的外牆自己能動起來。位於阿布達比的 Al Bahar Towers,它的整個外牆被超過1000個獨立的、傘狀的六角形遮陽單元所覆蓋,這些單元的設計靈感來自傳統伊斯蘭窗花「Mashrabiya」。

位於阿布達比的 Al Bahar Towers,它的整個外牆被超過1000個獨立的、傘狀的六角形遮陽單元所覆蓋 / 圖片來源:shutterstock

每個單元由 PTFE(聚四氟乙烯)面板構成,並由線性致動器驅動,整個系統由電腦集中控制,程式會追蹤太陽軌跡,在東、南、西向立面上,於最需要遮陽的時刻與位置提供蔭蔽。系統還配備感測器,在強風或陰天時自動收回遮陽單元以保護結構。

這套動態系統可減少超過 50% 的太陽熱增益,顯著降低空調負荷,使整體空調設備規模減少 20%,資本成本降低 15%,冷氣負載下降 15%,每年更能減少超過1750公噸的二氧化碳排放。

3. 電致變色智慧玻璃:光與熱量隨心控制

最後,概念相同但更簡潔的方法,那就是「電致變色智慧玻璃」(EC Glass)。這種內部,有一層由氧化鎢製成的電致變色層 。只需施加 3–5 伏特微弱電壓,玻璃中的鋰離子就會開始移動,改變材料的光學特性,讓玻璃從透明變成深色,進而阻擋陽光與熱量 。

它最大的優點,就是只有在「切換顏色」的那一瞬間才耗電,一旦固定在透明或深色狀態,耗電量就是零 。研究顯示,在炎熱氣候下,這種玻璃可以節省10%-58%的空調耗能 。

結語

從會呼吸的藻類牆、運用大地熱能的水源熱泵,到巧妙駕馭空氣流動的通風帷幕,以及能追蹤太陽軌跡的智慧窗花,我們可以看到,未來建築的趨勢已不再只是「遮風避雨」,而是一個個高度整合、能與環境互動的複雜系統。

展望未來,建築不太可能依賴單一技術主宰,而更可能透過多種技術的智慧整合,創造出更高效、可持續且環境友善的建築方案。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
2

文字

分享

0
5
2
研究自閉症成因的新思路:環狀 RNA——專訪中研院基因體研究中心莊樹諄研究員
研之有物│中央研究院_96
・2023/09/22 ・5439字 ・閱讀時間約 11 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|寒波
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

自閉症研究的新方向

臺灣民眾大概都聽說過「自閉症」這個名詞,自閉症是腦部發育障礙導致的複雜疾病,同時受到先天遺傳以及後天環境因素的影響,具體成因依然是個謎,科學家須對遺傳調控方面有更多了解。中央研究院「研之有物」專訪院內基因體研究中心的莊樹諄研究員,他的團隊結合生物學、資訊學以及統計學方法,發現自閉症的風險基因與 RNA 之間有複雜的交互作用,在自閉症患者與非患者的腦部有很大差異。如果持續研究 RNA 的調控機制,或能開闢新的方向進一步理解自閉症。

遺傳性疾病成因——致病基因

根據衛生福利部 2023 年統計數據,我國自閉症患者超過一萬九千人。自閉症的全稱為「自閉症譜系障礙(autism spectrum disorder,簡稱 ASD)」,常見症狀是溝通、表達、社交上有困難,經常出現反復固定的狹窄行為,目前尚無有效的治療藥物。雖然經典電影《雨人》的主角雷蒙或是韓劇《非常律師禹英禑》的禹英禑都令人印象深刻,不過天才或高智商的自閉症患者只是極少數,而且不同患者的症狀輕重差異很大,故稱之為「譜系」(spectrum)。

理解遺傳性疾病,可利用遺傳學與基因體學的研究方法,比較患者與非患者之間的遺傳差異,便有機會尋獲致病的遺傳成因。過往研究得知,有些遺傳性疾病只取決於單一或少數基因的強力影響,例如亨廷頓舞蹈症(Huntington’s disease)、纖維性囊腫(cystic fibrosis)等,致病原因較為單純。

自閉症自然也受到先天遺傳基因影響,然而,它涉及許多影響力不明顯的基因,而且影響每名患者的基因又不盡相同,讓遺傳與症狀的關係更加複雜。如果從 RNA 研究路徑出發呢?RNA 是核糖核酸,具有承載 DNA 訊息和調控基因等功能,相比於其他疾病,在 RNA 層次研究自閉症的另一挑戰是取樣極為困難,自閉症患者的病因位於大腦內部,通常無法直接從人腦取樣分析。所幸的是,若檢視去世者捐贈的大腦樣本,仍有機會一窺自閉症的腦內奧秘。

-----廣告,請繼續往下閱讀-----

莊樹諄分析的數據來自公共存取的 Synapse 資料庫,包括上百位自閉症患者與非自閉症者的資料。人數乍看不多,卻已是當今想同時探討同一個人的基因體(DNA 層次)與轉錄體(RNA 層次)間因果關係的最佳的選擇。藉由此一資料庫蒐集的人類腦部組織轉錄體資料,可全面探討各式各樣的 RNA,包含信使 RNA(messenger RNA,簡稱 mRNA)、小分子 RNA(microRNA,簡稱 miRNA),以及莊樹諄鎖定的研究目標:環狀 RNA(circular RNA)

自閉症成因不明,目前尚無治療用藥物。有自閉症的人需要社會與家人的支持及陪伴,透過療育和行為輔導的協助,慢慢活出自我。
圖|iStock

不能轉譯,但似乎會互相影響?非編碼 RNA

莊樹諄的教育背景是資訊學博士,博士後研究的階段投入生物資訊學,之前主要從事 RNA 與靈長類演化方面的研究,探討多樣性切割、RNA 編輯(RNA editing)等議題,環狀 RNA 則是他近年來特別感興趣的題材。

根據生物資訊學的預測,環狀 RNA 這類長鍊的 RNA 分子有數萬個,但實際上有多少仍不清楚。它們在大腦神經系統特別常見,似乎涉及許多基因調控的工作。莊樹諄目前最關注環狀 RNA 對自閉症的影響,不過他指出這番思路不限於自閉症,阿茲海默症、帕金森氏症、精神分裂症(schizophrenia)等疾病也能用同樣的方法探索。

不過,什麼是環狀 RNA 呢?按照序列長度、作用,可以將 RNA 分為很多種類。DNA 轉錄出的 RNA 經過處理,有些形成 20 多個核苷酸長的短鏈 RNA,如 miRNA 屬於此類。一些較長鏈的 mRNA 又會轉譯成氨基酸,產生各式蛋白質。還有些長鍊的 RNA 不會轉譯,仍然維持長鍊 RNA 的形式發揮作用,統稱為長鍊非編碼 RNA(long noncoding RNA,lncRNA),莊樹諄研究的主角環狀 RNA 大致上被歸屬於一種非編碼 RNA。這麼多種類的 RNA 彼此會互相影響,導致複雜的基因調控。

-----廣告,請繼續往下閱讀-----
長鍊非編碼 RNA(lncRNA)是 Pre-mRNA 選擇性剪接的產物,根據不同的生成方式,產生各種類型的環狀 RNA。
圖|研之有物(資料來源|International Journal of Oncology

由 DNA 轉錄而成的 RNA 是線形,至於「環狀」RNA 一如其名,是 RNA 長鏈首尾相接後形成的環形結構,相比線形 RNA 更加穩定,不容易遭到分解。這些長期存在的圈圈,假如序列可以和短鏈的 miRNA 互補,兩者便有機會結合在一起,讀者可以想像為類似「海綿」(sponge)的吸附作用。

miRNA 原本的工作是結合 mRNA,使其無法轉錄為蛋白質,抑制基因表現。可想而知,一旦 miRNA 被環狀 RNA 吸附,便無法再干擾 mRNA 作用,失去抑制基因表現的效果。因此環狀 RNA 能透過直接影響 miRNA,來間接參與調控其他的下游基因。這便是環狀 RNA 的許多種調控功能中,最常被研究的一種。

左圖是 miRNA 抑制 mRNA 轉譯的一般流程。右圖是環狀 RNA 像海綿一樣吸附 miRNA,讓 miRNA 原本抑制 mRNA 轉譯的「剎車」功能失去作用。因此環狀 RNA 透過直接影響 miRNA,就能間接參與調控其他的下游基因。
圖|研之有物(資料來源|Frontiers in Cardiovascular Medicine

自閉症的成因要往腦部深究,環狀 RNA 又在腦部表現最多,使得莊樹諄好奇當中的奧秘。然而儘管如今 RNA 定序已經很發達,環狀 RNA 由於結構的關係,一般的 RNA 定序方法無法抓到這類環形分子。莊樹諄指出這也是 Synapse 資料庫的一大優點,此一資料庫罕見地包含能找出環狀 RNA 的 RNA 定序資料,配合 miRNA、mRNA 與基因體等資料交叉分析,才有機會闡明環狀 RNA 的角色。

尋找環狀 RNA 和自閉症的關聯

莊樹諄率領的團隊已經發表 2 篇環狀 RNA 與自閉症的研究論文,第一篇論文著重於尋找哪些環狀 RNA 和自閉症有關,研究假設是環狀 RNA 透過 miRNA 間接影響自閉症風險基因 mRNA 的表現。由於環狀 RNA、miRNA 和 mRNA 都多達數萬個,需要統計分析的幫忙。

-----廣告,請繼續往下閱讀-----

首先,將樣本分為有自閉症/無自閉症。要注意每個自閉症患者的基因表現仍有差異,納入夠多樣本一起比較,才有機會看出端倪。

接著,尋找環狀 RNA 和風險基因有顯著相關的搭配組合。例如:高比例自閉症的人,某個環狀 RNA 含量較高時,某個風險基因的 mRNA 表達量也較高,那這組環狀 RNA 和基因就存在正相關;反之則為負相關。

不過相關性很可能只是巧合,所以莊樹諄團隊比對序列,找到符合上述相關性的中介因子「miRNA」。最後再觀察「當排除 miRNA 影響時,環狀 RNA 與風險基因的顯著關係即消失」的組合,這些消失的組合,就是真正共同參與基因調控的「三人組」(環狀 RNA、miRNA、mRNA)。

一番分析後,篩選出的環狀 RNA 共有 60 個,其中涉及與 miRNA、mRNA 的組合總共 8,170 組。人類一共 2 萬個基因,與自閉症有關的調控網路就有 8,000 組之多,數字相當可觀,顯示環狀 RNA 的重要性。莊樹諄用統計手法找出的自閉症風險基因,和過去科學家已知的部分風險基因相符合,未來可以繼續探究在這 8,000 組調控網路中,有哪幾組是真的作用在生物上。

-----廣告,請繼續往下閱讀-----

在資訊與統計分析之外,莊樹諄的團隊也有人進行分子生物學實驗,驗證 RNA 調控網路的相互影響。以體外培養的人類細胞為材料,人為誘導遺傳突變,精確分析特定環狀 RNA 在細胞內分子層次的作用。實驗證實選取的環狀 RNA,確實會結合 miRNA,又影響 mRNA 的表現。

環狀 RNA 會取消原本 miRNA 抑制 mRNA 轉譯的「煞車功能」,進而影響自閉症風險基因的表現。
圖|研之有物(資料來源|中研院基因體研究中心

基因調控是什麼?

莊樹諄強調,使用資料庫的公開資料,好處是經過多方檢視,避免資料品質不一致的問題,缺點是大家都能取得數據,必須要跳脫既有的思考模式才能發現新的結果。他在環狀 RNA 議題的新思路,成為第二篇論文的內容:探討環狀 RNA 的遠端調控(trans-regulation)對自閉症的影響

基因的表達會受到基因調控元件(regulatory element,一段非編碼 DNA 序列)的影響,若調控元件就在基因附近,稱為近端調控(cis-regulation);如果調控元件不在附近,甚至位於另一條染色體上,則為遠端調控。

研究基因調控,通常近端比遠端調控容易,因為近端調控元件(cis-regulatory element)的位置就在基因旁邊,不難尋找;但遠端調控卻沒那麼直觀,作用機制也比較難以想像。實際上常常能發現一個基因的表現,受到多處近端調控,加上多處遠端調控的影響。如果想全方位認識一個基因的表現與調控,最好能都能得知近端與遠端的影響,否則難以掌握調控的全貌。

-----廣告,請繼續往下閱讀-----

莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 參與?具體說來就是某個調控位置,先近端調控其周圍的環狀 RNA 基因,再藉由環狀 RNA 影響基因體上其他位置的基因表現,發揮遠端調控的效果。

如圖顯示,環狀 RNA 表達數量性狀基因座(circQTL)近端調控了環狀 RNA,遠端調控其他基因。莊樹諄的想法是,某些基因被遠端調控的過程,是否有環狀 RNA 的參與?
圖|研之有物(資料來源|Molecular Psychiatry

為了避免用語誤解,有必要先解釋一下什麼是「基因」。基因的概念隨著生物學發展持續改變,如今一般人熟悉的定義,基因是由 DNA 編碼序列構成,能轉錄出 mRNA,再轉譯為蛋白質的訊息載體。不過若將基因定義為會轉錄出 RNA 的 DNA 序列,那麼即使沒有對應的蛋白質產物,只要其衍生的 RNA 產物有所作用,也能視為「基因」,如 miRNA 基因、mRNA 或長鏈非編碼 RNA 基因。既然是有 DNA 編碼的基因,便會受到近端、遠端調控位置影響。

探索遠端調控機制有很多想法,莊樹諄可以說又打開了一條新思路。遠端調控位置不在基因旁邊,亦即基因體任何地方都有機會。假如直接挑戰基因與遠端調控位置的關聯性,可能相關的數量可謂天文數字,而且缺乏生物性的理由支持,找到的目標往往令人半信半疑。

莊樹諄引進環狀 RNA 涉及其中的可能性,尋找「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,大幅縮小了搜索範圍。

-----廣告,請繼續往下閱讀-----
莊樹諄透過「環狀 RNA 基因的近端調控位置」與「目標基因的遠端調控」之交集,找到環狀 RNA 參與遠端調控的證據。
圖|研之有物(資料來源|莊樹諄

一番分析後,研究團隊從自閉症患者的基因體上,定位出 3,619 個近端調控的 circQTLs,這些表達數量性狀基因座相當特殊,可能藉由直接或間接遠端調控兩種模式來調控遠端基因(如上圖)。而這 3,619 個 circQTLs,與環狀 RNA、遠端基因三者形成了八萬六千多組的遠端調控網路。接著團隊使用了不同的統計方法,其中 8,103 組通過多重統計測試,顯示較高的機率是屬於間接遠端調控模式。

莊樹諄團隊透過統計手法,找到相當多基因和調控路徑,雖然目前仍不清楚它們影響自閉症的具體細節,卻無疑讓我們新增一分對自閉症的認識。

莊樹諄指出,這套統計方法或可應用至人類的其他複雜疾病(如思覺失調症),找出基因調控的多個可能路徑,提供臨床醫藥研發更多線索。

生物與資訊的跨領域結合

訪談中問到:為何會從資訊科學跨入到生物領域?莊樹諄回憶,1998 他博士班畢業那年才第一次聽到「生物資訊」這個詞,他基於對生命科學的興趣,以及因為內在性格想往學術轉型的想法,引領他到了中研院。

-----廣告,請繼續往下閱讀-----

莊樹諄接著說,2003 年李文雄院士延攬他進入基因體研究中心,之前他們不曾認識。他感謝李院士帶他進入了分子演化的世界,就此打開了研究視野。在剛開始成立自己的實驗室時,缺少人力,李院士讓當時的博後陳豐奇博士(現為國衛院群體健康科學研究所研究員兼任副所長)與他共同工作。莊樹諄強調,他所有分子演化的觀念與基礎,都是陳博士幫他建立的,如果說陳博士是他的師父,那李院士就是師父的師父了。

如今,莊樹諄在中研院的研究生涯邁入第 25 年,從資訊學背景投入生物學研究,大量使用統計工具,他經常需要持續整合不同領域的觀念與工具,推動自己的新研究。在訪談中,他也感謝諸多研究同儕的協助,特別是幾年前建立分生實驗室時,蕭宏昇研究員及其團隊成員的鼎力相助。

莊樹諄的團隊包含資訊、統計、分子生物三個領域的同仁,來自不同領域,傾聽他人意見自然也特別重要,這是他們實驗室的核心價值之一。莊樹諄認為在科學面前,人是很渺小的,需要互相尊重和理解,方能一起解開科學之謎。

最後,莊樹諄特別強調他個人在相關領域的研究,仍有極巨大的進步空間,感謝研之有物的主動邀訪,期望將來能與更多先進交流學習,也企盼年輕新血加入這個生物資訊的跨領域團隊。

莊樹諄期望在環狀 RNA 與基因調控網路的研究基礎之上,可以對自閉症這個複雜疾病的調控機制,提供更多科學線索,幫助臨床上的診斷和治療。
圖|研之有物
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3718 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
2

文字

分享

0
2
2
長達 5 億年的空白:真核生物從何而來?「洛基」是人類起源的解答嗎?──《纏結的演化樹》
貓頭鷹出版社_96
・2022/08/06 ・2927字 ・閱讀時間約 6 分鐘

有細胞核的真核細胞,究竟從何而來?

當渥易斯去世時,還在爭議中的最大謎團之一便是真核細胞的起源,也就是說,我們生命最深處的開端,直至今日仍然沒有定論。

當時真核細胞的起源目前還沒有一個定論,不過可以確定的是,粒線體扮演著相當關鍵的角色。圖 / Pixabay

如果像渥易斯在一九七七年宣布的那樣,存在三個生命領域,其中一個領域是真核生物,包括所有動物、植物、真菌,和所有細胞裡面含有細胞核的微生物,那麼這個最終演化出人類和我們可見的所有其他生物的譜系的基礎故事是什麼?是什麼讓真核生物如此不同?

是什麼讓牠們走上如此不同的道路,從細菌和古菌的微小和相對簡單,走向巨大而複雜的紅杉、藍鯨和白犀牛,更不用說人類和我們對地球的所有特殊貢獻,像是美國職棒、抑揚五步格和葛利果聖歌?哪些部分以及哪些過程組合在一起,形成了第一個真核細胞?

如此重大的事件大概發生在 16 億到 21 億年前之間。這個足足有 5 億年之久的窗口,反映當前科學不確定性的程度。

最關鍵的線索?粒線體與「內共生理論」

不同陣營的意見強烈分歧,都提供了一些假設。

-----廣告,請繼續往下閱讀-----

岩石中早期微生物形式的化石證據,並沒能提供多少解答,科學家還是從基因體序列中發掘出更精確多樣的線索,並且其中一些線索仍然來自 S 核糖體 RNA,這要歸功於渥易斯當初的洞察力,以及後來四十多年間他的追隨者的心血。

但是這些數據的涵義為何則見仁見智。現在所有的專家都同意,當年內共生作用發揮了重要作用:不知何故,某個細菌被另一個細胞(宿主)捕獲並且在體內被馴化,然後成為粒線體

它們一旦存在早期真核細胞中並且數量變多後,就會提供大量能量,遠遠超出當時可用的任何能量,讓這些新細胞可以增加體積與複雜性,進而演化成多細胞生物。

粒線體的構造,成為了生物學家探索原生生物起源的重要線索。圖/Elements Evato

複雜性增加的一個顯著特徵,就是控制,特別是對遺傳材料的控制。

-----廣告,請繼續往下閱讀-----

從生命的起源之地尋找答案——前往深海

更具體地說,這意味著將每個細胞的大部分 DNA 包裝在一個內部胞器中,也就是由膜包圍住的細胞核。

因此,真核生物起源之謎包含三個主要問題:

一,原始宿主細胞是什麼?

二,粒線體的獲取是否觸發了最關鍵的變化?或者,是由它引起的嗎?

-----廣告,請繼續往下閱讀-----

三,細胞核是從何而來的?

更簡化的提問方式則是:一個東西跑到另一個東西裡面,形成複雜之類的東西?這些「東西」到底是什麼?

關於前兩個問題,最近的新證據來自一個意想不到的地點:大西洋底部。它來自於格陵蘭和挪威之間,一個近兩千四百多公尺深的區域所挖掘出的海洋沉積物,這地區附近有一個稱為洛基城堡的深海熱泉。

洛基是北歐神話中既狡猾又會變形的神;挪威主導團隊在發現這個熱泉後取了這個名字,因為這個礦化的噴口看起來就像一座城堡,而且所在位置難以尋找。

為了尋找證據,科學家將目光投向了一般生物無法安然生長的海底熱泉,而科學家也把這個發現洛基古菌的地點命名為「洛基城堡」(Loki’s Castle)。圖 / Youtube

他們與其他科學家一起分析這些海洋沉積物裡面所包含的 DNA,發現這代表了一個全新的古菌譜系,這些細菌的基因體與已知的任何東西都截然不同,似乎代表一個獨特的分類門(門是非常高的分類位階;比方說,所有脊椎動物都同屬於一個門)。

-----廣告,請繼續往下閱讀-----

帶領這項基因體研究的生物學家,是任職於瑞典一所大學的年輕荷蘭人,名叫艾特瑪。他結合深處城堡和狡猾神祇的語義,將這個族群命名為洛基古菌

全新的發現!最接近真核生物的古菌:洛基古菌

艾特瑪團隊於二〇一五年公布這項發現。這項發現具有廣泛報導的價值,因為洛基古菌的基因體,似乎與我們人類譜系起源的宿主細胞非常接近。

實驗室培養出來的洛基古菌在顯微鏡底下的樣貌。圖 / biorxiv

《華盛頓郵報》的一則標題說:「新發現的『失落的環節』顯示人類如何從單細胞生物演化而來。」這些從深海軟泥中提取的古菌,真的是二十億年前那些,自身譜系在經過激烈分化後,變成現代真核生物的古菌的表親嗎?這些古菌是我們最親近的微生物親戚嗎?也許真的是。這一點引起大眾的注意。

但是,使艾特瑪的研究在早期演化專家當中引發爭議的,還有另外兩點。

首先,艾特瑪團隊提出證據,表明洛基古菌等細胞在獲得粒線體之前,就已經開始發展出複雜性。也許是重要的蛋白質、內部結構、可以包圍並吞噬細菌的能力。

-----廣告,請繼續往下閱讀-----

若是如此,那麼偉大的粒線體捕獲事件,就是生命史上最大轉變的結果,或一連串變化其中之一的事件,而不是原因。某些人,例如馬丁,會強烈反對。

雖然科學家發現了洛基古菌,但也引起了許多爭議和討論,真核生物的演化謎團仍然沒有被完全解答。圖 / Pixabay

其次,艾特瑪團隊將真核生物的起源置於古菌中,而不是古菌旁邊。如果這個論點正確的話,便意味著我們又回到一棵兩個分支的生命樹,而兩大分支不管哪一支,都不是我們長久以來珍而重之、視為己有的。

這也就是說,我們人類就是古菌這種獨立生命形式的後代,這在一九七七年之前是無法想像的。(這種情況會產生錯綜複雜的糾葛,牽扯到在我們的譜系開始之前,細菌的基因水平轉移到我們的古菌祖先中,結果導致細菌也混入我們的基因體內,但本質仍然是:喔,我們就是它們!)

某些人,例如佩斯,會強烈反對。渥易斯也不會同意,只是他在世的時間不夠長,無緣被艾特瑪二〇一五年發表在《自然》期刊上的論文激怒。

-----廣告,請繼續往下閱讀-----

六月的一個早晨,在多倫多的一間會議室裡,艾特瑪向一屋子全神貫注的聽眾描述這項研究,其中包括杜立德和幾十名研究人員,還有我。

當我之後與杜立德碰面時,他用一貫的自嘲式幽默說:「我有點被洗腦了。」也是後來,我坐下來與艾特瑪對談。我們談到他當時仍未發表的最新研究,這會把同樣的涵義推得更進一步:粒線體是大轉變的次要因素,人類祖先植根於古菌中,位於兩分支的生命樹上。他很清楚反對的觀點,也清楚自己將會遭遇何等激烈的爭論。

他說:「我真的有在為某些可能迎面撲來的風暴做準備。」

——本文摘自《纏結的演化樹》,2022 年 7 月,貓頭鷹,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。