0

4
2

文字

分享

0
4
2

「看見」大腦記憶的生成──超解析 3D 層光定位顯微鏡

研之有物│中央研究院_96
・2020/04/30 ・3667字 ・閱讀時間約 7 分鐘 ・SR值 581 ・九年級

  • 撰文|呂杰翰、黃鈺珊、呂萱萱;美術編輯|林洵安

超解析 3D 層光定位顯微鏡

中研院江安世院士、應用科學研究中心陳壁彰助研究員,共同開發了「透化層光定位顯微鏡」,一次解構果蠅全腦的多巴胺神經網路,並可「看見」記憶蛋白在特定神經細胞突觸上的新生,此新技術可望揭開大腦記憶機制的神秘面紗。研究論文已於去(2019)年 10 月 18 日刊登在《自然通訊》(Nature Communications)。跟著研之有物一起來了解!

一個細微的動作、一絲情緒起伏,都是由千絲萬縷的神經網路,以及大量訊息傳遞的化學分子交錯作用的結果。早期心理學家要解析人類的大腦意識活動,必須對照研究對象的夢境和生活史。然而,大多數人一起床夢境就忘掉八成,還要將夢境和更久遠的童年記憶連繫起來,說佛洛伊德有多心累都不為過。

人類的任何情緒和行為,都是大腦千絲萬縷的神經網路,以及大量訊息傳遞的化學分子交錯作用的結果。
圖片來源│iStock

如今神經科學家有螢光蛋白與基因工程等工具在手,可先給予模式生物(如果蠅)特定刺激,然後用螢光定位腦內參與活動的生化分子(如某些與記憶有關的蛋白質分子),了解刺激前後分子如何重新分布,以此推測它們在腦部活動中所扮演的角色。

  • BUT!因為可見光無法穿透較厚的組織,過去研究者只能將腦組織切成薄片,才能用顯微鏡觀察。但切片會破壞大腦的整體性,無法忠實呈現完整的神經結構。

國立清華大學腦科學研究中心、中研院院士江安世與中研院應用科學研究中心助研究員陳壁彰,合作研發出可透視果蠅全腦的超解析 3D 層光定位顯微鏡,並利用化學方法把果蠅大腦變「透明」、可見光能通過,終於得以窺見果蠅腦部深處被螢光標定的單分子神經,藉此建構果蠅全腦神經網路地圖。

去年團隊藉著這項技術,「看見」記憶蛋白在大腦深處特定神經細胞突觸上的新生,初步揭開大腦記憶的神秘面紗。

-----廣告,請繼續往下閱讀-----

精彩故事,是這麼開始的……

解析度、廣度,統統都要!

先來說說傳統顯微鏡的問題!傳統光學顯微術能夠解析的最小距離,大約 250 奈米左右。也就是說,如果兩個發光分子之間的距離小於這個極限,因為光波的繞射特性會使分子影像變得模糊。這個鑑別距離極限,定義了光學成像的「解析度」。

傳統光學顯微術的「繞射極限」,硬生生地限制了科學家一窺腦部全貌的夢想。

大腦神經突觸的大小約在 20 到 40 奈米之間,與腦部分子活動相關的神經結構尺度也在數十奈米。可想而知,運用傳統「粗線條」的光學顯微術觀察大腦,一定會有「見林不見樹」的問題:即使可知大致的神經走向,也無法得知細微變化。但魔鬼,就是藏在細節裡啊~~

-----廣告,請繼續往下閱讀-----

另一方面,傳統顯微鏡還有視野廣度或視野大小的問題。神經突觸的大小是果蠅大腦 ( 約數百微米 ) 的數千分之一。想要解析特定分子在大腦的分布,困難度就像用小小無人機空拍一個籃球場,還要定位籃球場上每隻螞蟻的正確位置。

但在顯微鏡的世界裡,解析度和視野廣度本是兩個極端,想要一種技術、兩種滿足,必須找到非比尋常的解決之道。

關關難過關關過

首先,這種顯微技術必須能夠定位腦神經細胞中個別分子。衡量各種超解析顯微術的優勢與適用範圍,「單分子定位顯微術」(single molecule localization microscopy) 具有數十奈米等級的空間解析度,得以鑑別相距約 20 奈米的分子,恰好符合神經生物學家對解析度的要求,無疑是首選工具。

圖片來源│ 呂杰翰
圖說美化│林洵安

再者,因為神經網路遍佈全腦,並非僅侷限在大腦的表層,此顯微術必須能看得又深又清楚,才能重建果蠅大腦完整的三維影像,提供全面而精密的分子地圖。近年熱議的「層光顯微術」( light-sheet microscopy ) 可快速取得大範圍樣品的影像,成為不二首選

-----廣告,請繼續往下閱讀-----

有關層光顯微鏡的介紹,請見研之有物另一好文〈灑下百道層光,一窺微觀世界的生命律動:「晶格層光顯微鏡」如何為細胞拍攝寫真集〉。

再加上,江安世院士團隊透過生物組織澄清技術,運用化學方法讓果蠅腦變透明、能讓可見光通過,然後以層光掃描透明大腦,輔以上述單分子定位顯微術,即可在短時間內偵測大腦內的個別分子位置,稱為「透化層光定位顯微鏡」。

中研院應用科學研究中心陳壁彰助研究員與透化層光定位顯微鏡。
圖片來源│中研院秘書處

跨領域合作,打開大腦的潘朵拉盒子

有了既定的策略,抽象的概念立刻轉化為一個跨界、甚至跨國的技術整合問題。

陳壁彰助研究員與江安世院士合作,將一個由國家實驗研究院儀器科技中心打造的特殊顯微物鏡,整合入實驗室既有的掃描式貝色層光顯微鏡 (Scanning Bessel beam light-sheet microscope),建構出針對透明化樣品最佳化的超解析顯微鏡。

並應用日本東京大學 Yasuteru Urano 團隊開發的新型閃爍螢光染劑 HMSiR 標定腦內分子,讓每一個參與大腦記憶生成的分子,發出清晰且明亮的光訊號。

-----廣告,請繼續往下閱讀-----

論文第一作者、現任國立清華大學生醫工程與環境科學系助理教授朱麗安興奮地說:身為一個生物學家,使用自己建造的顯微鏡系統,就像打開潘朵拉的盒子,突然什麼都變成可能!

因為商用顯微鏡大多有鏡頭選用、解析度等限制,尤其層光顯微鏡在鏡頭選擇上更是有諸多限制。

那麼,這項新的顯微鏡系統,會對神經科學帶來什麼改革呢?

首先,神經訊號的傳遞仰賴神經突觸電位及神經傳導物質的傳遞,想要了解大腦的活動,必須解析突觸上的細微變化,如蛋白質的生成。以模式生物果蠅為例,神經突觸只有幾百奈米,過去只能仰賴電子顯微鏡。

但電子顯微鏡的樣品製備非常繁複,並需要將組織切片,無法呈現完整的神經結構,一次能看的樣品範圍也很小。電子顯微鏡的另一個問題是「很花時間」。美國珍利亞農場研究園區 (Janelia Research Campus) 所做的全果蠅腦電子顯微鏡連續切片影像,單一個果蠅腦就需花費 16 個月拍攝完成,再經過無數的工程師進行影像處理,不利於統計分析。

-----廣告,請繼續往下閱讀-----
果蠅全腦多巴胺神經多尺度圖像(上),細部的神經結構(左下),以及放大展現出非常複雜、但可經由新顯微術辨識的神經網路(右下)。
圖片來源│陳壁彰

透化層光定位顯微鏡,可在比細胞大將近一萬倍的組織(如果蠅大腦),定位其中所有蛋白質分子,進行果蠅全腦的攝影。而且全腦攝影可在一天之內完成,期間僅需移動樣品四次,大幅降低機械移動造成的誤差與後續影像處理的複雜性。與傳統的顯微技術比較,新技術能在合理的時間內拍攝大量樣品,即時提供生物學家更大的統計樣本。

去 (2019) 年初已初步告捷!新的顯微技術一次解構果蠅全腦的多巴胺神經網路,「看見」記憶蛋白在特定神經細胞突觸上的新生,可望揭開大腦記憶機制的神秘面紗。

看見記憶、解密大腦疾病

昆蟲腦部的蕈狀體分布了一種囊泡單胺運轉蛋白質 (vesicular monoamine transporter),與昆蟲的嗅覺與記憶功能息息相關,是一種在腦部負責訊息傳遞的重要分子。只要標定這種蛋白質分子的精確位置,即可從中歸納出與記憶有關的分子機制。

本次研究發現:在讓果蠅進行特定的記憶訓練後,只有特定的神經突觸會增加囊泡單胺運轉蛋白質表現,顯示這些神經在記憶過程可能肩負重大功能。

-----廣告,請繼續往下閱讀-----

藉由類似的實驗,神經科學家可以釐清神經變化和特定腦部活動的關聯,進一步理解神經在腦部記憶生成的機制,以及神經可塑性 (placiticity) 的變化,破解大腦記憶之謎。

左圖是超解析之果蠅眼部單一神經,右圖是超解析全腦囊泡單胺運轉蛋白在神經上的分佈。
圖片來源│Rapid single-wavelength lightsheet localization microscopy for clarified tissue

另一方面,由於鼠腦被普遍使用於與人類腦部疾病有關的研究,未來江安世院士研究團隊也計畫以此探索老鼠腦,揭密與蛋白質分布有關的機制,對於解答部分人類腦部疾病做出貢獻!

「目前為止,我們已經觀察果蠅在訓練前後的神經活動,並且能夠分辨尺度在數十奈米左右的變化,這對釐清分子在神經可塑性中扮演的角色提供很大的幫助。」朱麗安期許未來:「十年後的目標是將影像解析度提升到 10 奈米,並試著應用於活體,即時觀察神經在腦部活動下的重塑,終極目標是理解學習行為的詳細機制!」

也許不遠的未來,新的顯微技術可以觀察生物學習當下發生的每一個細微腦部變化,解密人之所以為人,是如何從經驗學習成長。

-----廣告,請繼續往下閱讀-----

延伸閱讀

本文轉載自中央研究院研之有物,原文為《「看見」大腦記憶的生成—-超解析 3D 層光定位顯微鏡》,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3868 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
看得見細胞的紙 蓪草紙見證台灣產業變遷
顯微觀點_96
・2025/12/26 ・2617字 ・閱讀時間約 5 分鐘

你知道透過顯微鏡觀察紙張,其實很難看到完整的細胞樣貌嗎?因為大多數的紙,常經過搗碎「煮成」紙漿後,才壓製成型。因此將紙張放在顯微鏡下觀看,往往只剩植物纖維的網狀結構。然而,有一種紙在顯微鏡下卻能完整呈現植物細胞的形狀,甚至在太陽光下透光觀察,蜂窩般的六角格紋也能一覽無遺。這就是承載台灣經濟社會變遷史的「蓪草紙」。

蓪草紙為什麼能看到細胞?

和一般造紙方法不同,蓪草紙不是將植物打漿後壓製而成,而是取材自蓪草莖髓。工匠將蓪草莖截斷,取出中央白色的髓心,再將蓪草髓心緊壓在盤面,使用裁刀依髓心邊緣滑行,「削出」一張張輕薄的蓪草紙。蓪草紙的厚度則由銅片與盤面間的高低來調整。

因為蓪草紙是直接由莖髓切片製成,細胞結構未被破壞,保留了幾乎完整的細胞,因此當蓪草紙放在顯微鏡下,便能看到完整地細胞型態。

蓪草紙的微細構造
光學顯微鏡下觀察蓪草髓心切面的蓪草紙結構。圖片來源:國家文化記憶庫,林盈宏攝影

蓪草-台灣第一個被正式命名發表的植物

十八、十九世紀中外貿易展開,當時清政府唯一開放對外貿易的港口-廣州開設許多專售外銷水彩畫的商鋪。中國畫家受到西方技法影響,透過精細的分工合作,使用西畫材料在綾絹、蓪草紙等各式媒材上,大量製作帶有中國風土風情的畫作,是當時西方人到中國購買的最佳伴手禮。其中,蓪草紙潔白透明,當時在西方被稱為「米紙(Rice Paper)」。

-----廣告,請繼續往下閱讀-----

由於十九世紀的歐洲正掀起博物學熱潮,除了透過畫作滿足對東方的想像,畫作所使用的媒材也引發西方人的興趣,因此歐洲植物學家開始疑惑:「米紙到底是從什麼植物而來的?」

正式為蓪草紙材料「蓪草」命名的是英國植物學家威廉.虎克(William Hooker)。

他在1830年發表對米紙的初步觀察,但無法確定來源植物。他曾經這樣形容:「如果將這張紙放在眼睛和光線之間,就會發現一種精美絕倫的細胞組織,這是任何人類藝術都無法創造或模仿的」。

其後,虎克仍陸續針對「米紙」進行研究。他於1841年被任命為英國皇家植物園邱園(Kew Garden)園長後,更是動用了所有官方和非官方的聯繫,透過廣州、廈門的商人與外交人員蒐集標本,不斷比對葉、花與莖髓,最終在1852年發表學名為 Aralia papyrifera,暫歸於五加科的五加屬(Aralia)。

-----廣告,請繼續往下閱讀-----

之後德國植物學家卡爾.科赫(Karl Koch)認為蓪草的花瓣、雄蕊和葉片形態與五加科的其他屬及物種相差甚遠,便將其獨立為新屬,改名為 Tetrapanax papyriferus,並沿用至今。

蓪草在台灣的歷史身影

蓪草在東亞其實早已是社會常用、熟悉的植物,並以多種名稱「蓪草」、「通草」、「通脫木」散見於各類典籍。例如中國六朝史料集《建康實錄》便曾記載晉惠帝曾命宮女準備五彩「蓪草」紙花。唐代藥學著作《本草拾遺》中則記錄著「『通脫木』,生山側。葉似萆麻,心中有瓤,輕白可愛,女工取以飾物。」

而虎克則曾經記錄他向長期居住在印度的哈德威克將軍(General Hardwicke)詢問「米紙」事宜。哈德威回復印度當地人將製作「米紙」的植物用於多種用途。他們將最粗的莖切成薄片製作人造花和各種精美裝飾品來裝飾神龕;也利用「米紙」製作帽子。「米紙」的材料對當地漁民來說也非常有用,可以做成適合他們漁網的浮筒。

中國清末因畫在蓪草紙上的外銷畫價格便宜、畫幅小便於攜帶,外銷市場需求日益增加。加上鴉片戰爭爆發後,原本位於廣州的外國行商陸續移到廈門,連帶也帶動台灣的蓪草產業蓬勃發展。

-----廣告,請繼續往下閱讀-----

蓪草在台灣的分布雖遍及全島,但受到氣候、土壤等影響,以新竹以北一帶山區生產的品質最佳,因此過去的新竹可說是蓪草產地的重鎮。

日治時期,日本政府進一步將蓪草列為台灣的重要殖產項目之一,設立農業試驗場改良品種、選定區域推廣栽種,原本野生採集的蓪草變成人工栽培,產量和品質都大幅提升。當時改良的美術蓪草紙被用於製作人造花、婚慶裝飾、扇子、畫材、蓪草卡片等,受到歐美各國的喜愛。

戰後國民政府接收台灣,蓪草製品(如蓪草紙、蓪草花及裝飾品)是重要的出口支柱,以外銷美國市場為主。在「客廳即工廠」的五、六〇年代,蓪草加工製品可說是許多家庭生計的依靠。

可惜隨著石化工業興起,價格低廉的塑膠花取代了蓪草花的製作,重創台灣蓪草產業,新竹的老牌業者金泉發蓪草行也在1972年結束長達約130年的蓪草事業。

-----廣告,請繼續往下閱讀-----

蓪草的產業消長,反映了出台灣社會經濟的轉型過程。現今市面上雖然幾乎已不見蓪草紙的蹤影,年輕世代甚至根本不知道什麼是蓪草,但仍有許多人、組織致力於蓪草文化的推廣,開設工藝課程和工作坊、蒐集史料,盼讓這段歷史重新被看見。

蓪草紙不僅是能「看見細胞的紙」具有其科學趣味,也是一段跨越東西方的博物學探險旅程,更是台灣社會經濟史的一頁篇章。 下次當你拿著蓪草紙透著陽光觀察那一格格清晰的細胞形狀時,相信看見的不只是生物結構,也會看見台灣走入世界科學舞台的起點,以及一段歷經繁榮沒落、正在重生的文化記憶。

蓪草心與蓪草紙
蓪草心與蓪草紙。圖片來源:國家文化記憶庫

參考資料:

延伸閱讀:

馬祖藍眼淚:從海岸奇景到顯微鏡下的祕密

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
45 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
1

文字

分享

0
0
1
顯微鏡下的淚水結晶 ——《眼淚的地形學》
顯微觀點_96
・2025/10/22 ・1486字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

喜極而泣的淚水、悲傷難過滴下淚水,眼淚表現著人當下的情緒;不僅如此,眼淚更是保護眼睛、避免角膜受傷的關鍵要素。

但你可曾想過,微觀的眼淚長成什麼樣子?科學藝術家透過顯微鏡觀察眼淚,發現人的眼淚居然有著和雪花相似的晶體,且每一滴淚的結晶樣貌都獨一無二,可說是獨特的藝術品。

蘿絲‧林‧費雪(Rose-Lynn Fisher)是一位常駐洛杉磯的美國攝影師,曾用掃描式電子顯微鏡(SEM)的視角捕捉蜜蜂的微觀結構,並以《蜜蜂》(Bee)的照片集聞名。

-----廣告,請繼續往下閱讀-----

2008 年費雪因痛失至親,經常落淚。因此有天她突發奇想,如果將眼淚放在顯微鏡下拍攝是什麼樣子?她看到眼淚水分蒸發後呈現結晶排列,如同地球的地形一樣,簡直就像「情感領域的鳥瞰圖」。因此她陸續蒐集 100 份眼淚樣本進行顯微攝影,出版了攝影集《眼淚的地形學》(The Topography of Tears)。

無獨有偶,遠在荷蘭海牙的攝影師莫里斯‧麥克斯(Maurice Mikkers) 也正從事眼淚的顯微攝影,在他的顯微視角下,眼淚結晶則像雪花一般。

莫里斯開始拍攝顯微鏡下的眼淚,始因於 2015 年某天,他重重地踢到桌腳不禁落淚的經驗。

當時莫里斯正在研究雙氯芬酸(Diclofenac),一種非類固醇抗發炎藥的結晶。當他拿著結晶幻燈片從廚房走回辦公室時,腳趾大力地撞到桌子,落淚的那一刻,他腦中想著:「我要拿微量吸管捕捉臉頰上滾落的淚水。」

-----廣告,請繼續往下閱讀-----

他將蒐集到的眼淚滴在顯微鏡玻片上,並且透過顯微鏡看見淚水呈現美麗的結晶樣貌。

莫里斯原本也不知道必須使用什麼樣的顯微技術才能「看見」眼淚,一開始嘗試了明視野和偏光照明的方式,雖然都有非常漂亮的結果,但他仍覺得「缺少些什麼」。爾後,他使用了暗視野照明方式。

「我驚呆了!眼淚在黑暗的背景上,形狀就像一個小星球,星球地貌呈現出美麗的圖案和形狀,感覺就像是一顆『眼淚行星』」,莫里斯這麼說道。

不同照明技術下的成像。

莫里斯也試著探究為何眼淚在顯微鏡下呈現的結晶樣貌各有不同。不過,雖然推測受淚液的組成影響,其中包含水、脂質、葡萄糖、粘蛋白、乳鐵蛋白、淚蛋白、免疫球蛋白、尿素、鈉、鉀、氯、錳和溶菌酶等;甚至情緒性的眼淚還包含催乳素、促腎上腺皮質激素。

-----廣告,請繼續往下閱讀-----

此外,莫里斯透過親友和計畫募集三種類型的淚水。第一種是用於潤滑的「基礎型淚水」(basal),透過看著電扇、通風器等,睜眼 60 秒以上且不眨眼的方式蒐集;第二種是因為吃辣椒、切洋蔥等導致流淚的「反射型淚水」(reflex);第三種則是因為快樂、悲傷痛苦而留下的「情緒型淚水」(emotional)。

但莫里斯發現,儘管是同一種類型的淚水,在顯微鏡下仍然呈現不同的圖像。「它們都是獨一無二的」,莫里斯說,因不是在完全受控的環境形成,眼淚的溼度和溫度不同,也可能讓有完全相同化學成分的兩滴眼淚在顯微鏡下看起來非常不同。

小知識:明視野 vs 暗視野照明

參考資料:

  1. https://medium.com/micrograph-stories/the-journy-of-imaginarium-of-tears-5f70c8fb6f53
  2. https://www.smithsonianmag.com/science-nature/the-microscopic-structures-of-dried-human-tears-180947766/
  3. https://www.businessinsider.com/what-tears-look-like-under-a-microscope-2015-10
-----廣告,請繼續往下閱讀-----

討論功能關閉中。