在這例子可以看到傳統對待實驗動物的手法所引起的問題:製造人和動物的對抗,不僅對雙方造成不必要的心理壓力,更帶來更高的受傷風險。另外,動物訓練師Bob Bailey有句名言叫「巴洛夫常在你的肩上(Pavlov is always on your shoulder)」,就是說使用操作式條件制約時,古典條件制約仍然存在。因此,以正處罰及負增強這些涉及厭惡刺激的學習原理為主的對待手法往往令實驗動物學會恐懼人類,造成前一段所述的福利問題。
雖然行為訓練及條件制約可大大改善實驗動物福利,但也有需要注意的事項。首先,實驗動物的飼養是以完成研究為主要目的,因此該座談會的一位講者Dr. John chofield提醒實驗動物照護員,對實驗動物進行行為訓練及條件制約前,必須先與研究員好好溝通。照護員須尋求並遵守研究員的指引,避免訓練對動物造成了實驗外變數(Non-experimental variables)——令動物除了實驗要檢視的不同處造成的影響外,多出了實驗沒有預期的同處所造成的影響——使得研究結果大亂而將整個研究(甚至研究員的研究生涯)毀掉。另外,目前使用行為訓練及條件制約改善實驗動物福利也有其阻力,比如實驗動物管理員常質疑訓練動物(並訓練實驗人員訓練動物)需求更多時間及資源而不願嘗試,然而,若能訓練實驗動物主動合作,一時的額外付出很可能帶外長期的時間及資源節省,因此這個改善實驗動物福利的新方法是大有潛力並值得考慮的。
-----廣告,請繼續往下閱讀-----
參考資料:
Broom, D. M. 2011. A History of Animal Welfare Science. Acta Biotheoretica, 59, 121-137.
Incorporating Behavioural Training and Conditioning into Animal Facility Routines (Symposium organised by ANZLAA on Wednesday 20th June, 2012)
Perlman, J. E., Bloomsmith, M. A., Whittaker, M. A., McMillan, J. L., Minier, D. E. & McCowan, B. 2011. Implementing Positive Reinforcement Animal Training Programs at Primate Laboratories. Applied Animal Behaviour Science.
Sankey, C., Richard-Yris, M.-A., Henry, S., Fureix, C., Nassur, F. & Hausberger, M. 2010. Reinforcement as a Mediator of the Perception of Humans by Horses (Equus Caballus). Animal Cognition, 13, 753-764.
關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。
1. Angle, C., Waggoner, L. P., Ferrando, A., Haney, P., & Passler, T. (2016). Canine Detection of the Volatilome: A Review of Implications for Pathogen and Disease Detection. Frontiers in Veterinary Science, 3. https://doi.org/10.3389/fvets.2016.00047
2. Balsam, P., & Tomie, A. (1984). Context and Learning (1st ed.). Psychology Press.
3. Catala, A., Grandgeorge, M., Schaff, J. L., Cousillas, H., Hausberger, M., & Cattet, J. (2019). Dogs demonstrate the existence of an epileptic seizure odour in humans. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-40721-4
4. Chambers, J., Quinlan, M. B., Evans, A., & Quinlan, R. J. (2020). Dog-Human Coevolution: Cross-Cultural Analysis of Multiple Hypotheses. Journal of Ethnobiology, 40(4). https://doi.org/10.2993/0278-0771-40.4.414
-----廣告,請繼續往下閱讀-----
5. D’Aniello, B., Pinelli, C., Varcamonti, M., Rendine, M., Lombardi, P., & Scandurra, A. (2021). COVID Sniffer Dogs: Technical and Ethical Concerns. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.669712
6. Deng, J., Jin, Y., Liu, Y., Sun, J., Hao, L., Bai, J., Huang, T., Lin, D., Jin, Y., & Tian, K. (2020). Serological survey of SARS‐CoV‐2 for experimental, domestic, companion and wild animals excludes intermediate hosts of 35 different species of animals. Transboundary and Emerging Diseases, 67(4), 1745–1749. https://doi.org/10.1111/tbed.13577
7. Essler, J. L., Kane, S. A., Nolan, P., Akaho, E. H., Berna, A. Z., DeAngelo, A., Berk, R. A., Kaynaroglu, P., Plymouth, V. L., Frank, I. D., Weiss, S. R., Odom John, A. R., & Otto, C. M. (2021). Discrimination of SARS-CoV-2 infected patient samples by detection dogs: A proof of concept study. PLOS ONE, 16(4), e0250158. https://doi.org/10.1371/journal.pone.0250158
8. Gazit, I., Goldblatt, A., & Terkel, J. (2004). The role of context specificity in learning: the effects of training context on explosives detection in dogs. Animal Cognition, 8(3), 143–150. https://doi.org/10.1007/s10071-004-0236-9
-----廣告,請繼續往下閱讀-----
9. Grandjean, D., Sarkis, R., Lecoq-Julien, C., Benard, A., Roger, V., Levesque, E., Bernes-Luciani, E., Maestracci, B., Morvan, P., Gully, E., Berceau-Falancourt, D., Haufstater, P., Herin, G., Cabrera, J., Muzzin, Q., Gallet, C., Bacqué, H., Broc, J. M., Thomas, L., . . . Desquilbet, L. (2020). Can the detection dog alert on COVID-19 positive persons by sniffing axillary sweat samples? A proof-of-concept study. PLOS ONE, 15(12), e0243122. https://doi.org/10.1371/journal.pone.0243122
10. Hardin, D. S., Anderson, W., & Cattet, J. (2015). Dogs Can Be Successfully Trained to Alert to Hypoglycemia Samples from Patients with Type 1 Diabetes. Diabetes Therapy, 6(4), 509–517. https://doi.org/10.1007/s13300-015-0135-x
11. Jendrny, P., Schulz, C., Twele, F., Meller, S., von Köckritz-Blickwede, M., Osterhaus, A. D. M. E., Ebbers, J., Pilchová, V., Pink, I., Welte, T., Manns, M. P., 12. Fathi, A., Ernst, C., Addo, M. M., Schalke, E., & Volk, H. A. (2020). Scent dog identification of samples from COVID-19 patients – a pilot study. BMC Infectious Diseases, 20(1). https://doi.org/10.1186/s12879-020-05281-3
13. Jezierski, T., Walczak, M., Ligor, T., Rudnicka, J., & Buszewski, B. (2015). Study of the art: canine olfaction used for cancer detection on the basis of breath odour. Perspectives and limitations. Journal of Breath Research, 9(2), 027001. https://doi.org/10.1088/1752-7155/9/2/027001
15. Maughan, M. N., Best, E. M., Gadberry, J. D., Sharpes, C. E., Evans, K. L., Chue, C. C., Nolan, P. L., & Buckley, P. E. (2022). The Use and Potential of Biomedical Detection Dogs During a Disease Outbreak. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.848090
16. Molenaar, R. J., Vreman, S., Hakze-van Der Honing, R. W., Zwart, R., de Rond, J., Weesendorp, E., Smit, L. A. M., Koopmans, M., Bouwstra, R., Stegeman, A., & van der Poel, W. H. M. (2020). Clinical and Pathological Findings in SARS-CoV-2 Disease Outbreaks in Farmed Mink (Neovison vison). Veterinary Pathology, 57(5), 653–657. https://doi.org/10.1177/0300985820943535
17. Olsson, M. J., Lundström, J. N., Kimball, B. A., Gordon, A. R., Karshikoff, B., Hosseini, N., Sorjonen, K., Olgart Höglund, C., Solares, C., Soop, A., Axelsson, J., & Lekander, M. (2014). The Scent of Disease. Psychological Science, 25(3), 817–823. https://doi.org/10.1177/0956797613515681
20. Reeve, C., Cummings, E., McLaughlin, E., Smith, S., & Gadbois, S. (2020). An Idiographic Investigation of Diabetic Alert Dogs’ Ability to Learn From a Small Sample of Breath Samples From People With Type 1 Diabetes. Canadian Journal of Diabetes, 44(1), 37–43.e1. https://doi.org/10.1016/j.jcjd.2019.04.020
22. Walczak, M., Jezierski, T., Górecka-Bruzda, A., Sobczyńska, M., & Ensminger, J. (2012). Impact of individual training parameters and manner of taking breath odor samples on the reliability of canines as cancer screeners. Journal of Veterinary Behavior, 7(5), 283–294. https://doi.org/10.1016/j.jveb.2012.01.001
23. Walker, D. B., Walker, J. C., Cavnar, P. J., Taylor, J. L., Pickel, D. H., Hall, S. B., & Suarez, J. C. (2006). Naturalistic quantification of canine olfactory sensitivity. Applied Animal Behaviour Science, 97(2–4), 241–254. https://doi.org/10.1016/j.applanim.2005.07.009
24. Wong, G., Bi, Y. H., Wang, Q. H., Chen, X. W., Zhang, Z. G., & Yao, Y. G. (2020). Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): why is this work important? Zoological Research, 41(3), 213–219. https://doi.org/10.24272/j.issn.2095-8137.2020.031