0

1
0

文字

分享

0
1
0

火星內有大量水分?

only-perception
・2012/06/26 ・850字 ・閱讀時間約 1 分鐘 ・SR值 496 ・六年級

到目前為止,地球是唯一已知有大量水分貯存在其內部的行星。科學家分析了二顆火星隕石的含水量,那些隕石來自這顆紅色行星內部。他們發現,在火星地幔(mantle)之處的水量遠較先前估計為大,且與地球的類似。這些結果不僅影響我們所知關於火星的地質歷史,而且也關係到水分如何抵達火星表面。資料產生了這種可能性:火星可能維持生命。

這項研究由前 Carnegie 博士後科學家 Francis McCubbin 所領導(現任職於新墨西哥大學)。這次分析是由 Carnegie Institution 研究者 Erik Hauri 等人所進行,並發表在 Geology 期刊上。

科學家分析所謂的輝熔長石無球粒隕石(shergottite meteorites)。這些是相當年輕的隕石,那起源於部份熔融的火星地幔 — 地殼下面那一層 — 並在淺層地下(shallow subsurface)與表面結晶化。它們約在 250 萬年前自火星被拋射出來後來到地球。隕石地球化學(Meteorite geochemistry)向科學家透露許多有關這顆星球所經歷過的地質過程。

“我們分析二顆隕石,其歷程非常不同,” Hauri 說。”其中一顆在它形成期間與其它元素經歷過可觀的混合,而另一顆則否。我們分析礦化磷灰石(mineral apatite)的含水量,並發現二者之間差異不大,儘管這二起事件的微量元素化學性質大不相同。” 結果指出,水在火星形成期間被併入,且這顆行星在其分異(differentiation)期間能將水分儲存在其內部。

-----廣告,請繼續往下閱讀-----

基於礦物的含水量,科學家估計,產生這些石頭的火星地幔源(mantle source)所包含的水分介於 70 – 300 ppm 之間。比較一下,地球的上層地幔包含大約 50 – 300 ppm 的水。利用一項稱為二次離子質譜儀(secondary ion mass spectrometry,SIMS)的技術,Hauri 等人能以他們開發的新技術與新標準,量化磷灰石中的水分,藉此偵測這些數值。

“指出火星表面有液態水存在的實質證據,已出現一段時間,” Hauri 說。”所以為何先前對於該星球內部的估計會如此乾燥,令人感到疑惑。這項新研究言之有理並且指出,火山爆發也許是讓水抵達火星表面的主要載具。”

McCubbin 下結論表示:”這項研究不僅解釋火星如何獲得水分,還提出一種在所有類地行星形成期間儲存氫的機制。”

原始文獻:

-----廣告,請繼續往下閱讀-----

Francis M. McCubbin, Erik H. Hauri, Stephen M. Elardo,

Kathleen E. Vander Kaaden, Jianhua Wang and

Charles K. Shearer Jr.

Geology, G33242.1, first published on June 15, 2012,

-----廣告,請繼續往下閱讀-----

doi: 10.1130/G33242.1

資料來源:PHYSORG:Extensive water in Mars’ interior[June 21, 2012 ]

轉載自only-perception

-----廣告,請繼續往下閱讀-----
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

2
1

文字

分享

1
2
1
超壓縮的水會變成冰?!二維奈米薄冰能在室溫下穩定存在嗎?有什麼用途?——專訪中研院原分所謝雅萍副研究員
研之有物│中央研究院_96
・2024/03/10 ・4907字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|張琬婷
  • 責任編輯|簡克志
  • 美術編輯|蔡宛潔

水能被擠壓成冰?

水在攝氏零度以下會結冰。然而,當水被擠壓到極限時,會形成二維的奈米薄冰,不僅室溫下穩定存在,還有從未見過的鐵電特性(Ferroelectricity),而石墨烯則是實現這種擠壓條件的關鍵。中央研究院「研之有物」專訪院內原子與分子科學研究所的謝雅萍副研究員,她與我們分享了實驗室如何意外發現這層特殊的二維薄冰,以及團隊如何利用二維薄冰的鐵電特性製作有記憶電阻功能的奈米元件,研究成果發表在科學期刊《自然通訊》(Nature Communications)。

奈米尺度下,物質特性會跟著改變?

謝雅萍的主要研究題目之一就是合成新穎的二維材料,這是奈米科技的領域。奈米是什麼?奈米(nanometer)是長度單位,即 10-9 公尺,一根頭髮的直徑長度約為 1 奈米的十萬倍。奈米尺度之下,很多物質的特性會隨之改變,最常見的例子是「蓮花效應」,因為蓮花葉上具有奈米等級的表面結構,為蓮葉賦予了疏水與自我清潔的特性,髒污與水珠都不易附著在蓮葉上。

電腦模擬圖(左)和實際照片(右),蓮葉上密集的微小突起,讓大顆的水珠和灰塵不易附著,這讓蓮葉具有疏水與自我清潔的特性。
圖|William ThielickeGJ Bulte

奈米材料(nanomaterial)是指三維尺寸的材料,至少有一個維度的尺寸小於 100 奈米。只縮小一維,就是平面的二維材料(2D),例如石墨烯;縮小兩個維度,就是奈米線(1D);三維都縮小,就是零維的奈米顆粒(0D)。

奈米科技(nanotechnology)的概念最早可追溯到 1959 年美國物理學家理查費曼(Richard Feynman)在演講中提出的願景「為什麼我們不能把大英百科全書全部寫在一根針頭上呢?」。1974 年日本科學家谷口紀男則是首度創造「奈米科技」這個詞的人,他認為奈米科技包括原子與分子層次的分離、固定與變形。

-----廣告,請繼續往下閱讀-----

過去有不少科學家嘗試奈米材料的研發,但受限於製造技術不成熟,而無法順利製作出精細製程的奈米材料。1981 年,在掃描隧道顯微鏡(Scanning Tunneling Microscope, STM)發明之後,不僅有助於材料的微觀分析,操縱單個原子和分子也成為可能,奈米科技也逐漸實現。

2013 年 IBM 研究人員使用 STM 顯微鏡將上千個一氧化碳分子製作成原子等級的動畫「男孩與他的原子」,目前是金氏世界紀錄最小的定格影片。

無處不在的奈米科技?

我們生活周遭的奈米科技俯拾即是,從大賣場商品到半導體產業的電子元件都有。謝雅萍舉例:防曬霜之所以是白色,是因為裡面有二氧化鈦的奈米顆粒;許多塗料與噴漆亦會以奈米添加物,來增進耐蝕、耐磨、抗菌與除汙的特性,例如汽車鍍膜或奈米光觸媒;羽球拍或牙醫補牙會使用奈米樹脂,讓球拍和補牙結構更堅固。

至於半導體產業,奈米科技更是關鍵。透過縮小元件尺寸以及調整奈米元件的幾何形狀,以便於在單一晶片上乘載更多電晶體。「當今的電晶體大小皆是奈米等級,製作電子元件就等同在處理奈米科技的問題」,謝雅萍說道。

IBM 展示 5 奈米技術的矽奈米片電晶體(nanosheet transistors),圖中堆疊起來的一顆顆橢圓形結構是電子通道的截面,IBM 設計立體結構以因應愈來愈小的元件尺寸。
圖|IBM

實驗中的難題,反而促成驚奇發現?

鐵電性是什麼?二維奈米薄冰有哪些可能的應用方式?

對謝雅萍來說,發現二維的奈米薄冰是個意外的驚喜。最初謝雅萍團隊其實是要製作以石墨烯為電極的開關,畢竟石墨烯是實驗室的主要研究項目,理論上當兩層石墨烯很靠近時,分別給予兩端電壓會是導通的「ON」狀態,沒電時就是斷開的「OFF」狀態。

-----廣告,請繼續往下閱讀-----

然而,實驗過程中團隊卻發現當電壓為零時,石墨烯開關仍會導通,甚至要給予負電壓時才會成為 OFF 狀態。這個奇特的現象讓研究團隊苦惱許久,嘗試思考了各種可能性,但都無法完善的說明此現象。

「原本以為實現石墨烯開關應該是一件能夠很快完成的題目,沒想到過程中卻出現了這個意料之外的難題,因此這個研究比預期多花了一兩年」,謝雅萍無奈地笑道。

靈感總是突如其來,某次謝雅萍在與朋友討論研究時,突然想到一個可能的方向:「一直以來都有人猜測水是否為鐵電材料,但都沒有真正證實。臺灣氣候潮濕,開關關不緊會不會就是水的影響?」

設計實驗跑下去之後,謝雅萍團隊終於擺脫了一直以來的疑雲。原來,兩層石墨烯結構中,真的有水分子的存在!「一般水分子用手去捏,還是會維持液體的狀態。但是我們發現,當水被兩層石墨烯擠壓到剩下原子厚度時,水分子就會變成具有鐵電特性的二維薄冰!」,謝雅萍開心地說道。

-----廣告,請繼續往下閱讀-----

換句話說,當極限擠壓之下,水會結成冰,而這層超薄的平面奈米薄冰會轉變成鐵電材料,而且可以在室溫下穩定存在!

示意圖,當水受到兩層石墨烯的極限擠壓之下,會形成單原子厚度的二維奈米薄冰,這層薄冰是鐵電材料,而且可以在室溫下穩定存在。
圖|之有物(資料來源|謝雅萍)

鐵電材料乍聽之下很抽象,謝雅萍表示:「相較於會吸磁鐵的鐵磁材料,大多數人對鐵電材料比較不熟悉,其實概念十分相似」。她說,鐵磁材料經過外加磁場的「磁化」之後,即使不加磁場仍可維持原本的磁性。相對地,鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷極化方向。

謝雅萍團隊發現的二維冰具有鐵電性,這意味著水分子的正負極在外加電場之下會整齊排列,形成一個永久的電偶極,並且在電場消失後保持不變。

鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷排列方向。圖片顯示為順電狀態,極化方向和外加電場相同,箭頭表示每一小塊區域(Domain)的平均極化方向。
圖|之有物(資料來源|Inorganics

接著,謝雅萍發現,二維冰的鐵電性只存在於單層原子,增加多層原子之後,鐵電性會消失,變成普通的冰,這是因為多層原子的交互作用會打亂原本的極化排列。因此研究團隊發現的二維冰,是非常特殊的固態水,不是手搖飲加的冰塊那麼簡單。

因為石墨烯的擠壓和固定,二維冰可以在室溫下穩定存在,不會蒸發。謝雅萍團隊實驗發現,要升溫到攝氏 80 度,被夾住的二維冰才會變成水。如此大範圍的操作溫度,這讓謝雅萍開始思考將二維冰作為鐵電材料使用的可能性。

-----廣告,請繼續往下閱讀-----

於是,謝雅萍團隊嘗試開發新型的電子元件,他們將二維冰與石墨烯整合成機械式的奈米開關。由於二維冰具有鐵電特性,在施加不同外加電壓之後,元件可以維持上次操作的電阻值,並保留至下次操作,有這種特性的元件稱為「憶阻器」(memristor)。

憶阻器這個詞是由記憶體(memory)與電阻(resistor)組合而成,字面上的解釋便是:具備記憶先前電阻值的能力。

謝雅萍表示:「我們可以藉由不同的外加大電壓寫入電阻值,再以微小電壓讀取之前的電阻值,允許快速存取」。而單獨一個二維冰奈米開關可以記住 4 個位元的資料,具備未來記憶體的發展潛能。

此外,二維冰奈米開關也是很好的開關裝置,團隊驗證導通電流和截止電流的比值可以達到 100 萬,開路和斷路的功能極佳,並且允許雙向操作。而開關的功能經過 1 萬次循環還不會衰減,相當穩定。

謝雅萍團隊是全世界第一個證實二維薄冰鐵電性的團隊,並實現第一個以石墨烯為架構的二維冰機械式憶阻器。她的團隊將往新穎二維材料的方向繼續邁進,目前實驗室有和台積電(TSMC)合作,希望透過產學合作,將更多奈米技術的應用落地實現。

-----廣告,請繼續往下閱讀-----
謝雅萍與研究團隊用意外發現的二維奈米薄冰,以石墨烯為架構,做出了全世界第一個機械式的憶阻器。
圖|之有物

與二維材料實驗的相遇?

謝雅萍目前除了是中研院原分所的副研究員,同時也是國立臺灣大學 MY Lab 實驗室的共同主持人,她和人生伴侶 Mario Hofmann 教授共同指導的 MY Lab 發揮了 1+1>2 的效果,創意與想法的激盪和交流,是產生傑出研究的關鍵。

回到碩博士時期,謝雅萍都在臺大物理所,鑽研材料的光電性質與新穎光電元件的機制。她回憶:「當時我們都要向化學系要材料,他們給什麼我們就得用什麼,但難以了解整個材料製造的細節。」後來她體認到,擁有製造材料的調控能力才能真正突破元件設計上的侷限。

謝雅萍在博士班時申請到了千里馬計畫,讓臺灣博士生獲得國科會補助前往國外頂尖研究機構,進行為期約半年至一年的研究。「我認為這個計畫非常好,也可以幫助學生建立重要人脈!」在指導教授引薦下,謝雅萍因緣際會進入美國麻省理工學院(MIT)的二維材料實驗室,自此與二維材料結下不解之緣,她認為:「好材料與好元件是相輔相成的,前瞻材料更是如此。」

「我到了 MIT 之後,深刻體悟到他們做研究的態度與臺灣學生的不同。臺灣學生像是把研究當作一份工作,然而我在 MIT 時就感受到他們學生對於自身研究的熱忱。討論風氣也非常盛行,學生之間會互相分享自己的研究內容,互相幫忙思考、激盪出新想法」,謝雅萍分享自己在 MIT 時期的觀察。

-----廣告,請繼續往下閱讀-----

當年二維材料還在萌芽階段,她所在的 MIT 實驗室已是此領域的佼佼者,她也因此立下了目標:「希望未來我有能力時,能夠自己掌控自己的材料做出好元件!」如今,謝雅萍正走在自己目標的道路上,過去認識的朋友也都是各頂尖大學的二維材料實驗室主持人,直到現在都還會互相幫忙。

從物理到二維材料,身處這些男性為主的學術環境,謝雅萍顯得自在,而且積極參與討論和交流。「我發現女科學人會把自己變得較中性,讓自己融入整個以男性居多的環境中,才不會在團體中有突兀的感覺」,她分享道。

謝雅萍的實驗室 MY Lab,是與臺大物理系 Mario Hofmann 教授共同主持的奈米科技實驗室,他們除了是工作上的夥伴,更是人生中的最佳拍檔!當初兩人就是在美國麻省理工大學 MIT 相識,再一起回到臺灣。

讓「研之有物」團隊好奇的是:這種共同主持的模式與一般實驗室相比,是否有特別之處?

-----廣告,請繼續往下閱讀-----

「從多個面向而論,我認為都是 1+1>2 的」,謝雅萍說道,「實驗室會有兩倍的資源、儀器、計畫與兩倍的人脈。遇到一個題目,兩個人思考時會從不同的觀點切入。即便是夫妻,我們在研究上看的面向也都不一樣,因此可以激盪出許多有趣的想法」。

她補充,不僅對實驗室本身而言,對學生也有很大的好處,「因為學生的研究必須同時說服我們兩個人,代表學生的研究成果會非常扎實,也可以為學生帶來信心。」重要的是,「學生也會得到兩倍的照顧與關愛,我覺得我們的學生是蠻幸福的」,謝雅萍笑笑地說。

-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

5
3

文字

分享

0
5
3
星光,指引地球的未來——《困惑的心》推薦跋
時報出版_96
・2023/07/17 ・4372字 ・閱讀時間約 9 分鐘

  • 潘康嫻/中研院環境變遷研究中心博士後研究員

人類是天生的科學家。我們生來就想知道為何星星會閃爍,想知道為何太陽會升起。


加來道雄

地球上有一群人總喜歡抬著頭,看著夜空中點亮大地的星燈,這些星光夾藏著宇宙的祕密,穿透無數個光年,抵達藍色的星球。除了欣賞夜色之美,這一群人更試圖從中看出點端倪,這些熠熠星光是怎麼來的?宇宙是什麼樣子?為什麼會有地球?生命從何而來?還有其他如地球般的星球嗎?那裡也有文明嗎?好多個「為什麼」是大自然帶來的啟發,而人類尋找答案的行動,卻是宇宙裡不可思議的精彩。

好多個「為什麼」是大自然帶來的啟發,而人類尋找答案的行動,卻是宇宙裡不可思議的精彩。圖/envatoelements

向遙遠的星系發送信號 尋找未知的外星文明

人類的世界觀從曾經的地球放眼到太陽系,隨著科學與科技的進步,二十世紀的物理學開創宇宙論的發展,至二十一世紀天文觀測的黃金年代,不停歇地向深邃的星空探索,走出新的視野。近二十多年的諾貝爾物理獎,多達三分之一肯定天文學的貢獻,例如 2019 年獲獎的三位學者,一位建構宇宙大霹靂理論模型,另兩位發現一顆繞著另個太陽類型恆星公轉的系外行星。宏觀的宇宙視野,加上相對微觀的行星視角,近代的天文學一再刷新人類對宇宙演化及地球定位的認知。

天文望遠鏡和太空科技的進展,讓現代的天文學家得以挖掘宇宙暗藏的驚奇,透過紅外線觀測,我們看到隱藏在可見光背後恆星誕生的搖籃,也發現了宇宙考古學的線索。2019 年諾貝爾物理學獎得主之一詹姆士・皮博斯(James Peebles)花費大半輩子,帶領我們梳理宇宙 137 億年演化的歷程,如今我們知曉實質物體的總質量佔宇宙的 5%(其餘為 68% 的暗能量,與 27% 的暗物質)。在這 5% 的質量中,粗略估計大大小小星系中的星點,加總起來約略有 1027 顆恆星。假使每顆恆星誕生時也伴隨著行星系統的發展,在如此龐大的總數下,是否也有另一顆適合生命發展的星球?

放眼望去,茫茫星海,僅吾唯一?以地球人的角度思考外星生命的可能性,德雷克公式(Drake equation)將文字的問號轉成可運算的概念,考慮環境因素和發展文明的可能性,估計銀河系中存在著少則一千,多則一億的文明數量。但這些年,沒有人聯絡我們,我們也沒有找到對方,費米悖論提醒了估算與現實的落差。天文學家藉著太空科技的發展得以主動探尋,1972 年的先鋒號和 1977 年的航海家,帶著人類寫給外星人的科學密碼信函,至今持續在星際間航行。除了寫信,還可以像發電報一樣,1974 年的阿雷西波訊息(Arecibo message),對著遠在 25,000 光年外的 M13 球狀星團發送訊號,寄望能在高齡星團中找到找到高智慧文明存在的可能性。然而,這一去一回,收到回音得等上五萬年,已不知道是人類幾代以後的事了。

-----廣告,請繼續往下閱讀-----
1977 年的航海家,帶著人類寫給外星人的科學密碼信函,至今持續在星際間航行。圖/wikipedia

一如 15 至 17 世紀的大航海時代,歐洲船隊面對大海,莫不引頸期盼能在望遠鏡裡看到遠方的陸地。行星猶如當時的目標,由於行星不會自行發光,尋找行星的難度如同在千里之外的明亮燈塔旁邊瞧見一隻蚊子,然而技術的困難並未讓人退卻,科學的精彩就在於想辦法突圍。

更清晰地遙望遠方 用太空望遠鏡在地球上一起遨遊宇宙

1995 年米歇爾・麥耶(Michel Mayor)迪迪爾・奎洛茲(Didier Queloz)藉由分析恆星光譜中的都卜勒效應(目標物遠離觀測者時,其光譜會往長波方向拉長稱作紅移,反之靠近則往短波壓縮稱之藍移),在飛馬座找到繞著太陽類型的恆星公轉的第一顆系外行星飛馬座 51b(51 Pegasi b),為系外行星大發現時代展開序幕,也讓他們在 2019 年共享諾貝爾物理獎的殊榮。至今近 25 年觀測資料的累積,尤其有了克卜勒太空望遠鏡和接續的凌日法系外行星巡天衛星(Transiting Exoplanet Survey Satellite,TESS),系外行星數量自 2014 年開始大幅增加,截至今年 2023 年 6 月統計,約有 5,500 顆系外行星,依據型態將系外行星分成四類:氣體巨行星(又稱熱木星)類海王星超級地球類地行星。天文學家從統計數量和行星形成動力學模型中獲得豐富的訊息,也讓太陽系的形成與演化有了更進一步的認識。以一個系統中的行星質量做序列可以分成四種:由小至大(太陽系即為此類)、由大至小、混合、和大小相似,科學家發現像太陽系八大行星的排序反而非常稀有,像 TRAPPIST-1 系統中七顆行星大小雷同的類型倒是常見,人們才驚覺原來太陽系與其八大行星的組合是如此與眾不同。這個獨特也包含太陽系的氣體行星木星,有顆大質量的木星在外,像吸塵器一樣讓闖入太陽系的天體轉向(例如 1994 年的舒梅克-李維彗星撞擊木星事件),減少外來者體撞擊內太陽系的機會,使得位在適居帶的地球有足夠安全的環境與時間孕育生命。原來要有機會誕生生命,先決條件也要天時地利「星」和。

有沒有一種可能,其實有外星訊號,只是現今的科技還無法察覺和解讀? 二十一世紀的新視野多來自百年前科學家所闢的路,例如愛因斯坦在廣義相對論提出對重力的新見解,物體質量造成的空間扭曲,只是改變的幅度之小不易測量,直至 2015 年天文學家終於在絞盡腦汁精細設計之下,成功打造觀測重力波的天文望遠鏡(Laser Interferometer Gravitational-Wave Observatory,LIGO),2017 年人類首次觀測到雙中子合併事件,解開化學元素週期表上的重金屬形成之謎。在天文學的領域,一個計畫從靈感發想、規劃藍圖、開工建造、出發觀測、收集資料到計畫結束,從開始到最後的時間跨度,往往超過科學家本身的職業生涯。科學家年輕時的構思,常須藉由後生晚輩接棒執行,有生之年不一定看得到科學成果,而這一路上牽起了一代又一代的傳承,一起讓科學的進展跑得更遠,跑向遠在未來的新發現。本篇文章談及的計畫,在筆者的學生時代,早已如火如荼地展開,伴隨著計畫的執行和觀測資料的回傳與分析,是前輩們的堅持與努力,也是帶給新生代天文學家的禮物和邀請:現在的成果來自於我們過去的努力,而未來要由現在的你們來開創。

太空望遠鏡的升空協助天文學家得以更清晰地遙望遠方,讓系外行星的發現轉為低風險的冒險之旅,安全地帶著大家想像另一個世界的雛形,正當書中的主角,天文生物學家拜恩教授,為兒子羅賓說起異星見聞時,好似向星空開啟一扇扇門,父子倆得以一起遨遊宇宙。

-----廣告,請繼續往下閱讀-----

穿越都市的水泥叢林,遠離學校與人群,當我讀到書中拜恩教授帶著羅賓前往國家公園露營,徜徉在大自然的聲音與光影,兩個人在星光下深度傾聽彼此,為人生的焦慮與困惑尋找方向,令我不禁想起,曾經只是為了想看星星,所以去登山的自己,無意間在山林尋回自己的心。臺灣的山勢陡峭地形多變,得要十分專注在腳下的步伐與眼前的山徑,此刻陪伴自己的只有呼吸和心跳。踩著吃力的腳步,一瞬間,世界難得寧靜,只聽得見自己的聲音,「離目標還有些距離,繼續是前進,回頭是放棄。若是堅持,不知還有多少難關?若是放棄,我能接受放棄的自己嗎?難道是走錯路或迷路,所以才這麼難行,那麼路又在何方?」為一睹繁星,在光害日趨嚴重的情況下只得越走越深山,不只用腳感受臺灣地貌的鬼斧神工,還要感官全開地觀察瞬息萬變的天氣,多認識她才能做出適當的應變確保登山安全。白天的路上觀察自然的氣息,與重建內在的自己,晚上終見美麗的星空,走在一條條的山岳路線,整頓人生朝著目標向前行。

書中拜恩教授帶著羅賓前往國家公園露營,徜徉在大自然的聲音與光影,兩個人在星光下深度傾聽彼此,為人生的焦慮與困惑尋找方向。圖/envatoelements

回首看看我們腳下的地球

天文學總是背對著地球往外尋找新的未知,試圖解讀新收到的觀測資料與訊息,然而來自腳下的訊號呢?地球也是行星,是離我們最近的行星,她孕育了這世界的美好,但她的語言,我們真的懂了嗎?羅賓對外界的反應多來自於他所觀察到的地球,作為父親的拜恩教授要怎麼回應孩子呢?

當我們汲汲營營想向外拓展新知識、新世界時,可曾留意腳下正在發燙?若將地球的呼喊換成人類的語言,環境變遷的種種跡象就是地球發燒的訊號。以往科幻災難片當中的賣座奇觀,漸漸成為生活新聞,熱浪、野火、水災旱災、劇烈天氣變化,讓全球不只要解決眼下的困境,也要未雨綢繆地做永續經營的規劃,即刻採取行動已是迫在眉睫。

2021 年,聯合國政府間氣候變遷專門委員會(IPCC)公布第六回的全球氣候變遷評估報告,提及全球暖化現象在冰河面積、海平面上升、全球氣溫,及海洋酸化等等的科學研究報告中,出現許多令人擔憂的新紀錄,並指出二氧化碳與溫室氣體排放量的關聯性,巨變的環境讓各類生物物種面臨生存威脅。因應這場危機,全球達成共識目標於二十一世紀的地球平均氣溫,相比十九世紀最多僅能上升攝氏 1.5 度,並且在 2050 年達成全球淨零碳排放。今日世界各國包含臺灣正積極發展替代能源減少碳排放,同時開發技術增加碳匯,企圖集結眾人的力量把大氣中的碳存回大地。但我們能在有限的時間內力挽狂瀾嗎?假使目標如期達成,是否就高枕無憂了呢?地球和我們的日子就美好了嗎?

二氧化碳與其他溫室氣體排放帶來的環境巨變,讓各類生物物種面臨生存威脅。圖/envatoelements

從人類張開眼睛認識日月星辰,建立了神話、曆法和文明,發展農耕,再到科學與工業革命,一路解析宇宙和地球的起源、歷史、環境、命運。星星帶給人類的啟發,讓人類的足跡已從地球走向太陽系,從更高的視野回頭凝視地球那令人屏息的湛藍,離開地球的探索,讓我們重新看見地球。文化藝術與科技文明的發展一直以來與大自然息息相關,進步固然帶給人類生活和思維的改變,然而過度的開發讓環境失衡,讓現在的我們必須啟動地球生命保衛戰,永續經營之前要先理解,如何理解則引發更多的提問,解答提問的過程中人類將深刻感受地球的脈動,為身為地球人感到驕傲。BE-WILD-ER-MENT 的故事在過去已開始,現在的行動是創造機會、還是命運?未來,讓我們和這顆有心跳的藍色星球一起來回答吧。

-----廣告,請繼續往下閱讀-----

——本文摘自《困惑的心》,2023 年 7 月,時報出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。