機器水母的核心部位是採用市售鎳鈦形狀記憶合金(shape-memory alloy, SMA),這是一種形變後可利用加熱恢復原狀的材料。此 SMA 以奈米碳管層包覆,而其上所鍍之鈦粒子則作為氫氧反應的催化劑。氧化反應所產生的熱能可讓 SMA 恢復原狀,而質輕、強韌又多孔的奈米碳管可使氫氣與氧氣易於接觸催化劑,且其優良的導熱性讓熱能得以迅速進出 SMA 系統。
此機器水母的傘狀結構巧妙地模擬一般水母的推進方式,其鐘形軀體由矽膠構成並以 8 條彈性鋼肋所支撐,細繩從鐘形軀體邊緣沿著鋼肋直抵中心的滑輪,然後進入裝有 SMA 致動器的管子。在其中一個設計中,所有細繩皆連接至一個中心 SMA 致動器,另一種設計則是有 8 個獨立的致動器控制各細繩,後者的優點在於能操縱機器水母往不同方向移動。
-----廣告,請繼續往下閱讀-----
此機器水母的運動機制是藉由通入固定量的氫氣與氧氣使其反應,SMA 受熱後造成合金形變並拉動細繩,導致鐘形軀體拍動而推進。當 SMA 冷卻時,記憶合金的恢復力則會使其往另一方向拍動,整個循環過程耗時不到 10 s。該團隊測量此鐘型軀體的形變率約為 14%,相形之下以電能驅動時可達 29%,而真實水母更高達 42%。該團隊目前正著手優化系統效能,詳見 Smart Materials and Structures 21, 045013 (2012)。
C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。
從歷史看未來:AI 技術發展的 3 個高峰
其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。
藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。
第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。
-----廣告,請繼續往下閱讀-----
之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。
走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。
從現在看未來:AI 不僅是工具,也是創作者
隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。
例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。
-----廣告,請繼續往下閱讀-----
而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。
透過歷史解析引起共鳴
在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。
過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。
舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。
除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。
吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。
關於綠建築的標準,讓我們先回到 1990年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於1998年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。
單看字面,DNA-PAINT 給人「以 DNA 作為油漆」的印象。事實稍有不同,這種技術以 DNA 作為「點累積奈米成像術」(PAINT , Point Accumulation for Imaging in Nanoscale Topography)的探針。接上螢光染劑的短小 DNA 片段,可以靈敏標記蛋白質、染色體以及許多細胞內構造。
DNA-PAINT 使用的 DNA 探針片段長度不超過 10 個鹼基,又稱寡核苷酸(oligonucleotides 或oligomers)。這些短小 DNA 片段可以附加上螢光染劑的螢光團分子,成為螢光探針。
DNA 探針的結合對象是另一段互補的 DNA 片段,此互補序列會預先透過抗體與定位目標連結,等待 DNA 探針前來結合。DNA 探針因為具有螢光團,被稱為「成像片段(imager strand)」,而牢固於目標的互補序列則稱為「嵌合片段(docking strand)」。對生物細胞進行 DNA-PAINT 時,嵌合片段與目標分子之間常有抗體或配體做為銜接,需要類似免疫螢光染色的前置作業,目標表面的抗原也可以因應實驗需求進行設計。
因為兩個短小 DNA 片段之間的結合力有限,成像片段與嵌合片段結合後會快速分離。而螢光團只有在結合目標時才容易放光,因此可以形成閃爍的螢光定位標記。經由電腦疊合閃爍的定位影像,DNA-PAINT 可以達成 10 奈米左右的超解析定位,若沒有序列成像的幫助,依然無法突破奈米以下解析度的光學障礙。
因此 uPAINT 必須限縮激發光照射的範圍,對準目標、減少雜訊,例如微調全內反射顯微鏡(TIRF)的角度,形成「高傾斜層光照明」(Highly Inclined and Laminated Optical sheet, HILO)以限定激發範圍。
-----廣告,請繼續往下閱讀-----
同在 2010 年,隆曼與史坦豪爾(C. Steinhauer)嘗試以寡核苷酸為探針,定位 DNA 摺紙構造(DNA origami structure)上的目標,達到了奈米等級的解析度。DNA-based Point Accumulation for Imaging in Nanoscale Topography 正式誕生,善用「不牢固的螢光探針」與電腦運算的輔助,以一般螢光顯微鏡就能突破繞射極限。
無限調色的虛擬油漆:Exchange-PAINT
2014 年,隆曼與同事阿凡達尼歐(M. S. Avendaño)、沃爾斯坦(J. B. Woehrstein)發表 DNA-PAINT 的巧妙變化,除了同時以不同探針標記不同構造,達成精準的多重定位(multiplexed localization),更實現以一種螢光超解析定位多種目標,讓多重標記的潛力加速實現。
這種多重標記被隆曼與同事稱為 Exchange-PAINT,同樣使用 DNA 片段作為探針。在同一個樣本的 10 種不同目標上,連結了 10 種不同的嵌合片段(docking strands),隆曼等人再以 10 種互不干涉的短小 DNA 序列(orthogonal sequences)作為成像片段(imager strands)。