2

3
4

文字

分享

2
3
4

什麼是「可逆電轉氣儲能系統」?臺灣有機會發展嗎?

台灣科技媒體中心_96
・2022/05/05 ・1883字 ・閱讀時間約 3 分鐘

  • 本文與台灣科技媒體中心合作,內文經泛科學改寫。
  • 本文轉載整合自台灣科技媒體中心《「可逆電轉氣儲能系統」專家意見
  • 資料更新至 2022 年 4 月 18 日,完整文章請見上方連結
圖/envato elements

最近,國際期刊《自然:通訊》發布一篇新研究〈可逆電轉氣系統用於能源轉換於儲存〉(Reversible Power-to-Gas systems for energy conversion and storage)。研究中提到,電轉氣(Power to Gas, PtG)是一個將電力轉為氣體,以更有效儲存能源的技術,可逆電轉氣系統則可在電力不足時,反向提供電力。

過去這項技術因成本較高,而未被視為普遍的儲能系統。因此這項研究開發了一個模型,來確定可逆電轉氣系統的經濟可行性,發現在美國德州當前的氫價格下,可逆電轉氣系統已有經濟競爭力。

一般將餘電用來電解水產生氫氣的系統,稱為電轉氣(PtG);而將氫氣在需要用電時,轉換為電力的系統,稱為氣轉電(GtP)系統。這是使用兩套不同系統的兩種技術,目前氣轉電是成熟的技術,電轉氣則是仍在發展中的技術。而可逆電轉氣技術則是將這兩個系統整合,使單一的系統具有電轉氣與氣轉電兩種功能,是新興發展的儲能技術。

在走向零碳電力的過程中,儲能系統是讓電力調度更有彈性的關鍵,據此,台灣科技媒體中心也邀請專家,解析台灣「電轉氣儲能系統」的技術進展。

台灣為什麼需要「電轉氣儲能技術」?

元智大學機械工程學系教授 鐘國濱元智大學機械系教授暨燃料電池研究中心主任 翁芳柏 說明,因應 2050 國際淨零排碳的共同目標,以國際上與台灣的碳中和規劃時程,未來各國都將會有大於 60% 的高比率再生能源佔比,所以即使可逆電轉氣技術難度非常高,世界各國(包括台灣)仍是爭相投入這項新興儲能技術。

中央大學工學院能源科技研究中心主任暨台灣氫能與燃料電池學會理事長 曾重仁 進一步解釋,台灣在未來 3-5 年內因再生能源佔比不高,PtG 尚不具在大電網中的實用性。但 2030 年後,當再生能源佔比增加至一定比例,PtG 將在部分地區與部分時段具有可行性,例如在與氫氣相關的產業園區中可部署 PtG 系統,將日常工業餘氫再回收利用於調節供電系統,綠電佔比過高時也可逆向轉換為氫氣儲存。

未來電網之儲能需求應不會由單一技術滿足,其中鋰電池在短時間、快速反應方面具有優勢,但 PtG 在大規模與長時間儲能,將扮演更重要的角色。

因應未來再生能源的比例增加,台灣也須發展氫氣產業。圖/envato elements

台灣的電轉氣技術發展到哪裡了?

所謂 PtG 是以多餘的(或是電網無法容納的)電能電解水產生氫氣與氧氣,以氫氣形式儲存能量。當需要用電時再將氫氣之能量以燃氣輪機或燃料電池轉換為電能。

不過,鐘國濱教授 認為,目前台灣再生能源比例偏低,九成以上的氫氣來自石化業的低價灰氫(Gray Hydrogen)。且台灣的電力相對便宜,沒有多餘再生能源電力供應電轉氣,因此電轉氣的綠氫(Green Hydrogen)價格偏高。同時氣轉電的價格也偏高。上述這三點,是台灣近短期發展電轉氣或可逆電轉氣遇到的最大困難。

翁芳柏主任認為,台灣短期內除了政策性的經費補助推廣儲能技術外,還需要進一步突破性發展儲能技術,才可能達成國際訂定的再生能源使用目標。但是台灣政府的能源決策單位,過去對於氫能的示範推廣落後國際,因此,翁教授認為台灣氫能技術還未成熟,應將資源投入氫能研發及其他能源領域的補助。

圖/envato elements

不過,目前國際上最大的固態氧化物燃料電池(SOFC)發電應用公司 Bloom Energy 的量產,是在台灣進行產業代工。這篇論文所評估的 SOC 電轉氣儲能系統與 Bloom Energy 技術相同,國內在研發與產業量產技術,應有國際競爭能力與優勢。

台灣的問題與瓶頸,還是在於產官學的整合,以及落後於國際的氫能產業發展政策,以至台灣投資在氫能的研發與示範推廣,大幅落後於已開發國家。

鐘國濱教授補充,雖然台灣短期的大環境不利這個儲能技術的發展,然對於綠(儲)能與綠氫有大量需求的產業,如半導體產業的台積電與鋼鐵業的中鋼,預期將率先於短期內投入採用這個技術,中長期將由儲能業者以此技術取代部分鋰電池儲能。

參考資料

註解

文章難易度
所有討論 2
台灣科技媒體中心_96
46 篇文章 ・ 326 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。

0

7
2

文字

分享

0
7
2
疫情之後,我們的心將變得更加強壯!談談創傷後成長
Bonnie_96
・2021/05/21 ・2407字 ・閱讀時間約 5 分鐘

近日,台灣本土疫情不斷升溫,民眾不免出現無助、憤怒等情緒和想法。許多與疫情相關的調查和研究,也確實發現在這段時間,人們感受到的焦慮、憂鬱的症狀高出過去好幾倍。

疫情不斷升溫,民眾不免出現無助、憤怒等情緒和想法。圖/envato elements

去年8月,美國疾病防制中心(CDC)調查5000多名成年人,發現25.5%有焦慮症狀,24.3%有憂鬱症狀,這個數值比2019年分別增加三和四倍。且今年4月發布的追蹤報告,也發現過去七個月裡,美國有焦慮或憂鬱症狀的成年人,比例從36.4%上升到41.5%。

波士頓大學公衛學者埃特曼(Catherine Ettman)等人的研究則指出,不僅「憂鬱症狀」和「嚴重心理壓力」的盛行率是2018年的三倍。更值得注意的是,去年的盛行率更是高於911恐怖攻擊、卡崔娜颶風等其他重大災難。

不難發現多數的心理學研究,聚焦疫情之下對個人心理健康所造成的負面影響。但有些研究者卻反其道而行,問:「會不會有些人在這段期間,反而形成正向的生命意義等,或是經驗到創傷後成長呢?」這些研究也發現,人們在嚴峻疫情中雖然會感受到嚴重的心理壓力,但在疫情緩和後,卻能讓他們的心理狀態變得更正向!

疫情期間,有焦慮或憂鬱症狀的成年人有顯著成長。圖/Giphy

什麼是「創傷後成長」?

多數我們想到創傷後壓力症候群(posttraumatic stress disorder,以下簡稱PTSD)患者所經驗到的症狀,比較多是負向的症狀,像是難以入睡、注意力不集中、反覆經歷痛苦的夢境,甚至發展成慢性病或情緒相關病症。

除了一部分PTSD的患者,會持續經歷負面心理健康的影響外。大多數患者會逐漸地從創傷中復原,並回到先前的生活狀態。之中,又有一部份的人會經驗到「創傷後成長」(Posttraumatic Growth, PTG)。

創傷後成長最早是由心理學家Richard Tedeschi和Lawrence Calhoun所提出的。主要是指個人經歷創傷事件,或重大生命危機後,開始體驗到心理的正向經驗,或是實現個人的積極成長。 所經驗到的正向成長,可以歸類為三大類,分別是「改變對自我的知覺」、「改變與他人的關係」、「改變人生哲學」。

Richard Tedeschi和Lawrence Calhoun。圖/UNC Charlotte

「改變對自我的知覺」這部分,Tedeschi 與 Calhoun (2004)以「脆弱但更堅強」來形容自我知覺的改變。當我們面對威脅生命的重大事件,可能會讓人意識到自己正被老天「試驗」著,但如果能在這麼大的創傷後依然存活下來,那麼自己一定是相當的堅強。就像諾貝爾和平獎最年輕得主少女馬拉拉(Malala Yousafzai),雖遭到暗殺,但火速送醫,救回一命。也不能限制她持續為女性教育權發聲,並鼓勵更多和她一樣的女性。

雖然這聽起來和復原力(resilience,或韌性)有點像,但其實並不同。復原力指的是從挫折中迅速恢復的人,但不太會經歷創傷後成長。反之,經歷創傷後成長的人,不只是生活回到原來的水平外,且曾忍受認知和情緒層面的掙扎,進一步形成深層的意義,讓個人獲得生命經驗的提升!

「改變與他人的關係」則是在創傷個案身上,發現與他人有更多的連結。不僅會對其他正在受苦的人更有同理心外。甚至也更願意揭露負向自我,或負向經驗。

「改變人生哲學」則發現有些創傷個案,會重新排列生命的優先順序等。像是有些人可能以前會以工作、賺錢為優先考量,但在遭逢重大事件後,開始陪伴家人、注意飲食等為重。且也會對以前可能不會注意到的小事(天氣等),更加欣賞。

而從以上三大類別,Richard Tedeschi等人再細分五項因素。包含與改變對自我的知覺相關的「發現新的可能性」、與改變他人關係相關的「與他人關係」,以及和改變人生哲學有關的「個人成長」「人生鑑賞」「靈性成長」。這五個因素,也常被用在許多創傷後成長的研究中。

創傷後成長主要是指個人經歷創傷事件,或重大生命危機後,開始體驗到心理的正向經驗,或是實現個人的積極成長。圖/envato elements

新冠肺炎疫情之下,有些人正在經驗「創傷後成長」!

耶魯大學心理學家Robert H. Pietrzak等人,對超過3000名退伍軍人進行調查,發現有12.8%的退伍軍人自陳有和新冠肺炎疫情相關的PTSD症狀。而有8%的人考慮自殺。

但是,也有43.3%的退伍軍人表示,他們在疫情期間獲得正向的心理健康影響。包括更滿意現在的生活、有更親密的人際關係,以及在個人成長方面也有提升。

另外一項研究,則是英國和葡萄牙心理學家雙雙聯手,在第一波疫情期間(去年1月- 6月)針對兩地385名6-16歲的兒童照顧者,進行調查。

雖然有50%參與者表示自己在這段期間的收入減少,且甚至有19.5%的家庭成員是疑似或確診病例。儘管這些參與者在生活中承受龐大壓力,但還是有高達88.6%的人認為疫情之下還是帶給自己積極、正向的意義。其中,包含人際關係的改善、發現自己新的可能等。

在不斷升溫的疫情期間,我們仍會對未知的情勢感到焦慮、憂鬱,甚至覺得壓力山大等。但在疫情過後,我們會慢慢地回到原本的狀態。而根據現有調查資料,也有不少人在這次疫情中,在心理健康上得到正面的影響!

參考資料

  1. McGinty EE, Presskreischer R, Han H, Barry CL. Psychological Distress and Loneliness Reported by US Adults in 2018 and April 2020. JAMA. 2020;324(1):93–94. doi:10.1001/jama.2020.9740
  2. Tedeschi, R. G., & Calhoun, L. G. (1995). Trauma and transformation: Growing in the aftermath of suffering. Thousand Oaks, CA: Sage.
  3. Tedeschi, R. G., & Calhoun, L. G. (2004).Foundations and Empirical Evidence.Psychological inquiry, 15(1), 1-18
  4.  蕭仁釗、 李介文(2014)。創傷與創傷後成長。國教新知;61卷1期,P54 – 61。
  5. Pietrzak RH, Tsai J, Southwick SM. Association of symptoms of posttraumatic stress disorder with posttraumatic psychological growth among US veterans during the COVID-19 pandemic. JAMA Netw Open. 2021;4(4):e214972.
  6. Stallard, P., Pereira, A., & Barros, L. Post-traumatic growth during the COVID-19 pandemic in carers of children in Portugal and the UK: Cross-sectional online survey. BJPsych Open. 2021; 7(1), E37.
Bonnie_96
21 篇文章 ・ 31 位粉絲
喜歡以科普的方式,帶大家認識心理學,原來醬子可愛。歡迎來信✉️ lin.bonny@gmail.com

0

0
0

文字

分享

0
0
0
奈米微粒可催生氫氣
NanoScience
・2012/07/21 ・642字 ・閱讀時間約 1 分鐘 ・SR值 577 ・九年級

美國研究人員研發出一種新的催化劑,非常適合用於產氫反應(hydrogen evolution reaction, HER)。此催化劑是由石墨烯(graphene)與其上的二硫化鉬(molybdenum disulphide, MoS2)奈米微粒所構成,將來可望取代昂貴的鉑金屬,應用於氫氣的量產技術以供應工業以及民生需求。

圖片來源:nanotechweb.org

相較於石化燃料,氫氣屬於對環境較為友善的替代能源,特別是氫氣可由取之不盡的海水中以電化學反應生成。然而,目前 HER 反應效率最佳的催化劑鉑族金屬卻有價格居高不下的問題。

史丹佛大學的 Hongjie Dai 等人最近證明了具彈性的石墨烯氧化物可作為二硫化鉬奈米微粒的理想基板,而這種混合物的電催化活性遠優於無石墨烯的二硫化鉬微粒。研究人員利用溶劑熱反應(solvothermal reaction)製作此催化劑,反應中石墨烯氧化物會被還原形成 RGO(reduced graphene oxide)。

實驗中測得的塔弗斜率(Tafel slope,反映電化學反應速率)為 41 mV/decade,大幅超越先前的 MoS催化劑。這是因為 MoS奈米微粒邊緣有大量的催化面積以及微粒與石墨烯網路耦合效果良好的緣故。

除此之外,此複合催化劑亦具有小過電位(overpotential)、大電流密度與歷經千次循環仍不減活性等優點。Dai 表示,傳統催化劑如鉑與鈀儘管催化效率很高,但價格非常不具競爭力,因此未來有可能會被低成本且高效率的 MoS2/RGO 複合催化劑取代。他們目前正著手改良催化劑,並將其整合入光電化學反應中。詳見 J. Am. Chem. Soc.|DOI: 10.1021/ja201269b。

譯者:翁任賢(成功大學物理系)
責任編輯:劉家銘
原文網址:Nanoparticles for hydrogen production—nanotechweb.org [2011-04-28]

本文來自 NanoScience 奈米科學網 [2012-04-06] 

NanoScience
68 篇文章 ・ 3 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

0

0
0

文字

分享

0
0
0
氫氣驅動機器水母誕生!
NanoScience
・2012/06/28 ・773字 ・閱讀時間約 1 分鐘 ・SR值 544 ・八年級

美國研究人員研發出一種能模仿水母運動的機器水母(Robojelly),具有由奈米碳管(carbon nanotube)所打造的人工肌肉並且可使用外部氫氣能源。其廣泛的用途涵蓋了科學、軍事以及商業海洋運輸等。

這個由維吉尼亞理工學院以及德州大學達拉斯分校共同設計製作的機器水母,是第一個成功藉由外部氫氣作為燃料來源的水下機器。以氫氣為能源的優點在於燃燒後僅會產生水,而對遠洋載具尤其有利的是,氫氣可利用太陽能從海水中取得。

機器水母的核心部位是採用市售鎳鈦形狀記憶合金(shape-memory alloy, SMA),這是一種形變後可利用加熱恢復原狀的材料。此 SMA 以奈米碳管層包覆,而其上所鍍之鈦粒子則作為氫氧反應的催化劑。氧化反應所產生的熱能可讓 SMA 恢復原狀,而質輕、強韌又多孔的奈米碳管可使氫氣與氧氣易於接觸催化劑,且其優良的導熱性讓熱能得以迅速進出 SMA 系統。

此機器水母的傘狀結構巧妙地模擬一般水母的推進方式,其鐘形軀體由矽膠構成並以 8 條彈性鋼肋所支撐,細繩從鐘形軀體邊緣沿著鋼肋直抵中心的滑輪,然後進入裝有 SMA 致動器的管子。在其中一個設計中,所有細繩皆連接至一個中心 SMA 致動器,另一種設計則是有 8 個獨立的致動器控制各細繩,後者的優點在於能操縱機器水母往不同方向移動。

此機器水母的運動機制是藉由通入固定量的氫氣與氧氣使其反應,SMA 受熱後造成合金形變並拉動細繩,導致鐘形軀體拍動而推進。當 SMA 冷卻時,記憶合金的恢復力則會使其往另一方向拍動,整個循環過程耗時不到 10 s。該團隊測量此鐘型軀體的形變率約為 14%,相形之下以電能驅動時可達 29%,而真實水母更高達 42%。該團隊目前正著手優化系統效能,詳見 Smart Materials and Structures 21, 045013 (2012)。

譯者:莫偉呈(茂迪太陽能)
責任編輯:劉家銘
原文網址:Robot jellyfish fuelled by hydrogen—physicsworld.com [2012-03-21]

本文來自 NanoScience 奈米科學網 [2012-04-08]

NanoScience
68 篇文章 ・ 3 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

2

3
4

文字

分享

2
3
4
什麼是「可逆電轉氣儲能系統」?臺灣有機會發展嗎?
台灣科技媒體中心_96
・2022/05/05 ・1883字 ・閱讀時間約 3 分鐘

  • 本文與台灣科技媒體中心合作,內文經泛科學改寫。
  • 本文轉載整合自台灣科技媒體中心《「可逆電轉氣儲能系統」專家意見
  • 資料更新至 2022 年 4 月 18 日,完整文章請見上方連結
圖/envato elements

最近,國際期刊《自然:通訊》發布一篇新研究〈可逆電轉氣系統用於能源轉換於儲存〉(Reversible Power-to-Gas systems for energy conversion and storage)。研究中提到,電轉氣(Power to Gas, PtG)是一個將電力轉為氣體,以更有效儲存能源的技術,可逆電轉氣系統則可在電力不足時,反向提供電力。

過去這項技術因成本較高,而未被視為普遍的儲能系統。因此這項研究開發了一個模型,來確定可逆電轉氣系統的經濟可行性,發現在美國德州當前的氫價格下,可逆電轉氣系統已有經濟競爭力。

一般將餘電用來電解水產生氫氣的系統,稱為電轉氣(PtG);而將氫氣在需要用電時,轉換為電力的系統,稱為氣轉電(GtP)系統。這是使用兩套不同系統的兩種技術,目前氣轉電是成熟的技術,電轉氣則是仍在發展中的技術。而可逆電轉氣技術則是將這兩個系統整合,使單一的系統具有電轉氣與氣轉電兩種功能,是新興發展的儲能技術。

在走向零碳電力的過程中,儲能系統是讓電力調度更有彈性的關鍵,據此,台灣科技媒體中心也邀請專家,解析台灣「電轉氣儲能系統」的技術進展。

台灣為什麼需要「電轉氣儲能技術」?

元智大學機械工程學系教授 鐘國濱元智大學機械系教授暨燃料電池研究中心主任 翁芳柏 說明,因應 2050 國際淨零排碳的共同目標,以國際上與台灣的碳中和規劃時程,未來各國都將會有大於 60% 的高比率再生能源佔比,所以即使可逆電轉氣技術難度非常高,世界各國(包括台灣)仍是爭相投入這項新興儲能技術。

中央大學工學院能源科技研究中心主任暨台灣氫能與燃料電池學會理事長 曾重仁 進一步解釋,台灣在未來 3-5 年內因再生能源佔比不高,PtG 尚不具在大電網中的實用性。但 2030 年後,當再生能源佔比增加至一定比例,PtG 將在部分地區與部分時段具有可行性,例如在與氫氣相關的產業園區中可部署 PtG 系統,將日常工業餘氫再回收利用於調節供電系統,綠電佔比過高時也可逆向轉換為氫氣儲存。

未來電網之儲能需求應不會由單一技術滿足,其中鋰電池在短時間、快速反應方面具有優勢,但 PtG 在大規模與長時間儲能,將扮演更重要的角色。

因應未來再生能源的比例增加,台灣也須發展氫氣產業。圖/envato elements

台灣的電轉氣技術發展到哪裡了?

所謂 PtG 是以多餘的(或是電網無法容納的)電能電解水產生氫氣與氧氣,以氫氣形式儲存能量。當需要用電時再將氫氣之能量以燃氣輪機或燃料電池轉換為電能。

不過,鐘國濱教授 認為,目前台灣再生能源比例偏低,九成以上的氫氣來自石化業的低價灰氫(Gray Hydrogen)。且台灣的電力相對便宜,沒有多餘再生能源電力供應電轉氣,因此電轉氣的綠氫(Green Hydrogen)價格偏高。同時氣轉電的價格也偏高。上述這三點,是台灣近短期發展電轉氣或可逆電轉氣遇到的最大困難。

翁芳柏主任認為,台灣短期內除了政策性的經費補助推廣儲能技術外,還需要進一步突破性發展儲能技術,才可能達成國際訂定的再生能源使用目標。但是台灣政府的能源決策單位,過去對於氫能的示範推廣落後國際,因此,翁教授認為台灣氫能技術還未成熟,應將資源投入氫能研發及其他能源領域的補助。

圖/envato elements

不過,目前國際上最大的固態氧化物燃料電池(SOFC)發電應用公司 Bloom Energy 的量產,是在台灣進行產業代工。這篇論文所評估的 SOC 電轉氣儲能系統與 Bloom Energy 技術相同,國內在研發與產業量產技術,應有國際競爭能力與優勢。

台灣的問題與瓶頸,還是在於產官學的整合,以及落後於國際的氫能產業發展政策,以至台灣投資在氫能的研發與示範推廣,大幅落後於已開發國家。

鐘國濱教授補充,雖然台灣短期的大環境不利這個儲能技術的發展,然對於綠(儲)能與綠氫有大量需求的產業,如半導體產業的台積電與鋼鐵業的中鋼,預期將率先於短期內投入採用這個技術,中長期將由儲能業者以此技術取代部分鋰電池儲能。

參考資料

註解

文章難易度
所有討論 2
台灣科技媒體中心_96
46 篇文章 ・ 326 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。