0

0
0

文字

分享

0
0
0

迪拉克錐現「聲」塑膠材料

NanoScience
・2012/07/03 ・877字 ・閱讀時間約 1 分鐘 ・SR值 593 ・九年級

西班牙物理學家聲稱製作出「聲學版」的神奇材料石墨烯(graphene),他們在塑膠板上鑽出排列成六角形的孔洞並在此塑膠表面傳遞聲波,從測量結果觀察到「迪拉克錐」(Dirac cone)。雖然「聲學版石墨烯」目前尚未有實際應用,但未來可望用來改良聲學系統或者用來對模擬石墨烯進行相關研究。

自從石墨烯於 2004 年問世後,此具蜂巢晶格的平面碳材料並不斷以其特殊的電子性質驚豔科學界。這是因為石墨烯是零能隙的半導體,而且在導帶與價帶交接處附近的色散關係式(電子能量與動量間的關係)遵守迪拉克方程式,亦即能帶形成迪拉克錐,也因此電子能以極高速度穿梭於石墨烯間。

上述聲學版石墨烯是由瓦倫西亞科技大學(Polytechnic University of Valencia)的 Daniel Torrent 與 Jose Sanchez-Dehesa 所發現。他們計算了聲波在鑽有六角排列孔洞的樹脂玻璃(Plexiglas)表面上的傳輸性質,特別是描述聲波能量與動量間關連的色散關係式,結果顯示迪拉克點及迪拉克錐的存在。此外,該模型也預測了表面聲波具有一特定的迪拉克頻率與迪拉克速度,在此條件下的聲波可在材料中傳輸而不發生散射。

為了進行實驗驗證,研究人員在長 300 mm 寬 100 mm 的樹脂玻璃上鑽有 1113 個直徑 3 mm 深度 2.88 mm 的孔洞,洞距則為 3.33 mm。他們將揚聲器連接至此樣品,並在兩不同位置以麥克風收音。為涵蓋了預測的迪拉克頻率,他們使用中心頻率 22 kHz 寬度約 5 kHz 的脈衝聲波。研究人員發現兩測量點間的相位延遲(phase delay)在 22 kHz 時顯著下降,對應到迪拉克錐的頂點。他們也發現由實驗數據計算得到的聲波色散關係在 22 kHz 附進形成能量與動量成線性關係的迪拉克錐,與理論預測相符。

-----廣告,請繼續往下閱讀-----

研究人員表示,目前此具有聲波迪拉克錐的材料尚未有實際用途,不過將來可能應用於聲學透鏡上,在無反射損失的情況下收集聲波。Torrent 與 Sanchez-Dehesa 現在正進行實驗以驗證聲波能暢行無阻地在材料中傳遞,如同石墨烯內的迪拉克電子。他們認為類似的樣品可藉由聲波來模擬石墨烯的電子性質,其中一項優點在於樹脂玻璃的晶格常數能輕易改變。詳見 Phys. Rev. Lett. Vol. 108 174301。

譯者:劉家銘(逢甲大學光電學系)
責任編輯:蔡雅芝
原文網址:Acoustic analogue to graphene announced—physicsworld [2012-05-02]

本文來自 NanoScience 奈米科學網 [2012-06-24]

文章難易度
NanoScience
68 篇文章 ・ 3 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

0

4
0

文字

分享

0
4
0
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
193 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
為何電子元件已經做了塗膠防護處理,仍會發生腐蝕甚至導致產品失效?
宜特科技_96
・2023/12/22 ・5635字 ・閱讀時間約 11 分鐘

電子元件發生腐蝕
圖/宜特科技

像電動車、充電樁使用於車用、工業用與戶外級別的電子產品,因應使用環境電子元件都需要採用三防膠塗佈保護,才能防止污染、腐蝕等問題。但為什麼,產品即便已經做了塗膠防護處理,仍會發生硫化腐蝕最終導致故障呢?原因可能就出在「膠」選得不對!

本文轉載自宜特小學堂〈為何已採用三防膠塗佈的電子產品,仍然發生硫化腐蝕失效〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

選對三防膠材材有效 影片
點擊圖片收看影片版

近年來,伴隨環保概念提升與綠能意識抬頭,燃油類設備機具減少、電子產品數量增加,生活中最常見的就是電動車和充電樁變得越來越多。由於這類電子硬體設備會長期待在室外環境,加上日趨嚴重的空氣污染威脅,腐蝕性氣體、水分、污染物、懸浮微粒會直接或間接地造成產品中的元件生鏽或腐蝕,就會發生故障影響產品的使用壽命。而三防膠就是為了加強保護電子元件、延長設備壽命、確保安全性與可靠性所誕生的一種塗料。

一、 什麼是三防膠(Conformal Coating)?哪些產品特別需要使用三防膠?

有三防膠塗佈的電路板。圖/百度百科

三防膠又稱三防漆,跟大家概念中的膠或是漆有點像,它是常用於電路板上的一種特殊塗料。三防膠具有良好的耐高低溫特性,經由三防膠塗佈的電路板會產生一層「透明聚合物薄膜」,就能維持電路板外形並保護好電子元件,達到「防濕氣」、「防污」、「防腐蝕」的效果,因此才被稱為「三防」膠。

前面有談到,因應全球環境變化,電子產品卻越來越多元、越來越精密的條件下,現代電子硬體設備不僅擁有高性能,還需要具備抵抗惡劣環境的能力,像是應用在工業、車用、航太、戶外級別的電子產品,例如:資料中心、工業電腦、電動車、儲能站與低軌衛星等等……。

-----廣告,請繼續往下閱讀-----

這些產品比起一般家電的使用環境更加嚴苛,尤其在面對含硫化氣體污染高的環境,特別容易造成「硫化腐蝕現象」,因此在製程中,電子元件必須做好三防膠塗佈處理、提升產品可靠度是非常重要的事。

什麼是「硫化腐蝕」跟「爬行腐蝕」?

硫化腐蝕(Sulfur Corrosion):當空氣污染物中含有豐富的硫化合物,會導致許多工業器件上各種金屬與合金材料的表面產生嚴重的腐蝕現象,若伴隨其他氣體污染物的存在,會導致氣體協同效應進而產生不同硫化腐蝕的特徵與機理。富含硫的氣體,如硫化氫(H2S)、環八硫(S8)與二氧化硫(SO2)就是一般常見造成電子設備發生硫化腐蝕的氣體。

爬行腐蝕(Creep corrosion):爬行腐蝕是屬於硫化腐蝕其中一種的失效機理,典型的案例在印刷電路板與導線架封裝元件最為常見。由於裸露的金屬銅接觸到環境中硫化物的腐蝕性氣體,會進行反應生成硫化亞銅(Cu2S)的腐蝕產物,一旦電子產品表面清潔度不佳或環境有氯氣存在時,其固體腐蝕物將會沿著電路與阻焊層/封裝材料表面遷移生長的過程,導致相鄰焊盤和電路間的電氣短路失效現象,我們稱之為爬行腐蝕的失效模式。

印刷電路的爬行腐蝕
印刷電路的爬行腐蝕。圖/Barry Hindin, Ph.D, Battelle Columbus Operations
導線架封裝元件的爬行腐蝕
導線架封裝元件的爬行腐蝕。圖/Dr. P. Zhao, University of Maryland

當電子產品發生硫化腐蝕,會導致設備發生短路或開路的故障風險,像發生在印刷電路板或導線架封裝的爬行腐蝕(下圖一、圖二、圖三),或是表面貼裝被動元件的硫化腐蝕(下圖四),都是十分常見的案例。

電路板發生爬行腐蝕及硫化腐蝕失效的照片
(1)與(2)為印刷電路板的爬行腐蝕失效,(3)為導線架封裝的爬行腐蝕失效,(4)為表面貼裝晶片電阻的硫化腐蝕特徵照片。圖/宜特科技

二、 電子產品該選擇哪種方式做防護處理?

為了有效地隔絕惡劣環境對電子設備的影響,除了前面提過三防膠(Conformal Coating)的處理手法,一般也會採用灌封(Potting)來處理。下表是灌封與三防膠的差異比較。

方法灌封三防膠
保護性中-優
加工與
重工性
劣(氣泡殘留、重工困難)
品管檢驗劣(外觀不可視)優(外觀可視)
應用性劣(侷限)優(輕薄)
環保
範例
圖/Epoxyset Inc.
圖/Charged EVs
灌封與三防膠處理方法之比較。表/宜特科技

雖然灌封比三防膠保護性更好,但並非所有電子元件都能用灌封處理,灌封在作業前必須考量電子元件,會因為加工的熱應力、固化收縮應力、氣泡殘留等等產生影響,也要評估較多的產品設計條件,包括:尺寸、外殼、重量、熱管理、加工、重工、檢驗、成本與環保等因素,才能確認該產品是否適合做灌封處理。

-----廣告,請繼續往下閱讀-----

而三防膠的加工快速、重工容易與成本較低的優點,既可以提升產品抗腐蝕的能力,又可維持印刷電路板的外形而不影響後續的組裝作業,可以說三防膠的泛用性會比灌封來得更高。

所以當電子設備需要在惡劣的環境運作,或是終端電子設備發生腐蝕失效時,三防膠通常是組裝、系統廠商針對電子產品腐蝕的問題會優先採用的方案,廠商可以直接管控三防膠塗佈製程的品質,能夠針對終端客戶退回產品時進行立即性的改善作業。

三、 原來三防膠有很多種?

目前三防膠的種類主要可分為八大類,包含:Silicone Resin(SR)、Acrylic(AR)、Polyurethane(UR)、Epoxy(ER)、Paraxylylene(XY)、Fluorine-carbon resin(FC)、Ultra-Thin Coatings(UT)與 Styrene Block Co-Polymer(SC)。一般三防膠的種類可依照材質區分種類,然而混合型的三防膠材則是以重量百分比佔高的材質為主,如果三防膠的厚度 ≤12.5um ,膠材將不受材料種類的拘限都被歸類於 UT 型。每一種三防膠都有不同的特性,常見的評估項目有厚度、黏著性、耐溫性、抗化學性、防潮性、加工與重工性、普遍性、疏孔性、耐鹽霧腐蝕性、表面絕緣電阻程度與成本高低等。

四、 為何已經採用三防膠塗佈的電子產品仍發生了硫化腐蝕失效,原因竟是國際規範不足?

一般業界針對三防膠的國際規範,大多是參照國際電子工業聯接協會(Association Connecting Electronics Industries;IPC) 所制定的試驗標準 – IPC-HDBK-830A、IPC-CC-830C 與 IPC-J-STD-001F。這幾項標準都是一般常見於三防膠相關的國際規範,它們定義了三防膠的設計、選擇與應用的準則,用於焊接電氣和電子組件要求,以及用於印製線路組件用電氣絕緣化合物的鑑定及性能。

-----廣告,請繼續往下閱讀-----
常見三防膠相關的國際規範
一般常見三防膠相關的國際規範。圖/IPC-HDBK-830A, IPC-CC830C and IPC-J-STD-001F

而針對三防膠的驗證項目,包括了:種類、厚度、均勻性、缺陷、重工、應用、耐溫溼度環境、耐鹽霧、表面絕緣電阻等。其它與三防膠有關的標準還有 IPC-A-610H、IEC-1086-2、MIL-I-46058C、MIL-STD-202H、Method 106、NASA-STD-8739.1、BS5917、UL94、UL746F 與 SJ 20671……許多的國際規範。

然而在眾多三防膠國際規範的耐腐蝕性項目評估中,卻獨缺了「腐蝕性氣體的試驗」,尤其是在含硫與其化合物相關的腐蝕性氣體。因此,一旦產品的使用環境含有硫或硫化合物相關的腐蝕性氣體,即使電子設備已採用三防膠塗佈,仍會發生硫化腐蝕失效的問題。

此外,電子設備中也不是所有組件皆可以採用三防膠的塗佈,由於膠材具備絕緣的特性,一般均無法塗佈於電性連接、電器接點處,例如:金手指、插槽與連結器等。下圖是有採用與未採用三防膠塗佈的導線架封裝晶片發生與未發生硫化腐蝕的照片。

未採用三防膠塗佈採用三防膠塗佈採用三防膠塗佈
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力不足製程的缺陷(氣泡)導致保護不足
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力不足製程的缺陷(氣泡)導致保護不足
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力優異膠材的抗硫化腐蝕能力優異
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力優異未採用三防膠塗佈
採用與未採用三防膠塗佈的導線架封裝晶片發生與未發生硫化腐蝕的照片。圖/宜特科技

五、 不是有塗或是夠厚就好,透過驗證平台選擇出正確的三防膠材才有效!

透過上述的說明可以了解,如果只是按照規範去選擇三防膠材後進行塗佈,可能會遺漏腐蝕性氣體或是其他因素的影響,無法讓產品獲得最完善的保護。為了解決窘境,宜特科技所提供的硫化腐蝕驗證平台,可以協助廠商選擇正確的三防膠材,並針對各種採用三防膠塗佈的電子產品,評估產品抗硫化腐蝕的能力並進行壽命驗證。

-----廣告,請繼續往下閱讀-----
透過宜特實驗室的硫化腐蝕驗證平台評估各種三防膠材搭配不同厚度在硫化腐蝕試驗的耐受性
透過宜特實驗室的硫化腐蝕驗證平台評估各種三防膠材搭配不同厚度在硫化腐蝕試驗的耐受性。
圖/Source: Dem Lee…Et al.,“Evaluation of the Anti-Sulfur Corrosion Capacity for Chip Resistor and Conformal Coating by Way of Flower-of-Sulfur(FoS)Methodology”, International Microsystems, Packaging Assembly and Circuits Technology Conference 2018, Section 28, 2018.

上圖為透過宜特實驗室的硫化腐蝕驗證平台,評估各種三防膠材搭配不同厚度條件在硫化腐蝕試驗的耐受性。其中未經三防膠塗佈的抗硫化晶片電阻樣本(黑色),經歷 25 天的試驗後發生失效,但塗佈膠材 C(綠色)與膠材 D(藍色)的樣本,僅僅經歷 5 到 10 天的試驗就發生了失效。

由此可證,並非所有三防膠材都有具備抗硫化腐蝕的能力,抗腐蝕能力主要取決於膠材本身的材料特性,某些特定膠材非常容易吸附含硫與其化合物相關的腐蝕性氣體,即使提高厚度,也無法有效降低硫化腐蝕的發生,即便電子零件本身有做抗硫化腐蝕的設計,一旦選擇不合適的膠材,反而會加速電子產品發生硫化腐蝕失效的風險。

下表是採用相同樣本搭配不同的三防膠材,經硫化腐蝕試驗後,進行橫切面的掃描式電子顯微鏡分析之比較。可以看到,雖然膠材 B 的塗佈厚度比膠材 A 更厚,但是膠材 B 抗硫化腐蝕的能力卻更差。

三防膠膠材 A膠材 B
厚度<30um>100um
電子顯微鏡照片三防膠材A三防膠材B
抗硫化腐蝕的能力
採用相同樣本搭配不同三防膠材料塗佈經硫化腐蝕試驗後進行橫切面的掃描式電子顯微鏡分析之比較。圖/宜特科技

藉由宜特實驗室的硫化腐蝕驗證平台,不但可以協助選擇正確的膠材,亦可針對採用各種三防膠塗佈的電子產品,依照國際規範標準,並以實際終端環境的腐蝕程度搭配模擬使用年限,透過上述客製化的實驗設計,能夠協助廠商評估產品抵抗硫化腐蝕的壽命驗證。

-----廣告,請繼續往下閱讀-----

本文出自 www.istgroup.com。

討論功能關閉中。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

2
3

文字

分享

0
2
3
第三類寬能隙半導體到底在紅什麼?
宜特科技_96
・2023/10/30 ・4510字 ・閱讀時間約 9 分鐘

寬能隙半導體晶片
圖/宜特科技

半導體產業崛起,我們常聽到「能隙」這個名詞,到底能隙是什麼?能隙越寬的材料又代表什麼意義呢?
近幾年 5G、電動車、AI 蓬勃發展,新聞常說要靠第三類的「寬能隙半導體」發展,到底寬能隙半導體在紅什麼?我們一起來了解吧!

本文轉載自宜特小學堂〈第三類寬能隙半導體到底在紅什麼?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

宜特科技 第三類寬能隙半導體到底在閎什麼 影片連結
點擊圖片收看影片版

什麼是能隙(Band Gap)?寬能隙又是「寬」在哪裡?

身為理組學生或是工程師,甚至是關心科技產業的一般人,對於「能隙」兩字一定不陌生,但你了解什麼是能隙嗎?

半導體能帶與能隙示意圖
半導體能帶與能隙示意圖。圖/宜特科技

能隙基本上要用量子物理的理論來跟大家說明,「能帶(Band)」的劃分主要為低能帶區的「價電能帶」(Valence Band,簡稱 VB),與高能帶區「導電能帶」(Conduction Band,簡稱 CB)的兩種,在 VB 與 CB 之間即是一個所謂的能帶間隙(Band Gap,簡稱 BG),簡稱「能隙」

能帶因電子流動產生導電特性
能帶因電子流動產生導電特性。圖/宜特科技

金屬材料能夠導電,主要是因為電子都位於高能的(CB)區域內,電子可自由流動;而半導體材料在常溫下,主要電子是位於低能的(VB)區域內而無法流動,當受熱或是獲得足夠大於能隙(BG)的能量時,價電能帶內電子就可克服此能障躍遷至導電能帶,就形成了導電特性。

-----廣告,請繼續往下閱讀-----

我們都知道功率等於電流與電壓加乘的正比關係,在高功率元件(Power device)的使用上如果半導體材料的能隙越寬,元件能承受的電壓、電流和溫度都會大幅提升。大眾所熟知的第一類半導體材料——矽(Si)能隙為 1.12 eV,具有成熟的技術與低成本優勢,廣泛應用於消費性電子產品;第二類半導體材料——砷化鎵(GaAs) 能隙為 1.43eV,相比第一類擁有高頻、抗輻射的特性,因此被廣泛應於在通訊領域。

為什麼需要用到第三類寬能隙半導體(Wide Band Gap,WBG)?

由於近年地球暖化與碳排放衍生的環保問題日益嚴重,世界各國都以節能減碳、綠色經濟為共同的首要發展方向,石化能源必須逐步減少並快速導入綠能節電的應用,因此不論是日常用品、交通運輸或軍事太空都逐步以高能效、低能耗為目標。

歐洲議會在 2023 年通過新法提高減碳目標,為 2030 年減碳 55% 的目標鋪路。國際能源署(IEA)也強建議各國企業在 2050 年前達到「淨零排放」,甚至有傳聞歐盟將通過燃油車禁售令,不論是考量環保或經濟,全球企業的綠色轉型勢在必行。因此在科技發展日新月異的同時,要兼顧大幅提升與改善現有的能源,已是大勢所趨。

目前半導體原料最大宗,是以第一類的矽(Si)晶圓的生產製造為主,但是以低能隙的半導體材料為基礎的產品,物理特性已到達極限,在溫度、頻率、功率皆無法突破,所以具備耐高溫高壓、高能效、低能耗的第三類寬能隙半導體(Wide Band Gap,WBG)就在此背景之下因應而生。

-----廣告,請繼續往下閱讀-----

現在有哪些的寬能隙(WBG)材料?

那麼有哪些更佳的寬能隙材料呢?目前市場所談的第三類半導體是指碳化矽(SiC)和氮化鎵(GaN),第三類寬能隙半導體可以提升更高的操作電壓,產生更大的功率並降低能損,相較矽元件的體積也能大幅縮小。
Si 與 C 的化合物碳化矽(SiC)材料能隙可大於 3.0eV;Ga 與 N 或 O 的化合物氮化鎵(GaN)或氧化鎵(Ga2O3)能隙也分別高達 3.4eV 與 4.9eV,大家可能沒想到的是鑽石的能隙更高達 5.4eV。

特性Si 矽SiC(4H)
碳化矽
GaN
氮化鎵
Ga2O3(β)
氧化鎵
Diamond
鑽石
能隙(eV)1.13.33.44.95.4
遷移率
(cm2/Vs)
1400100012003002000
擊穿電場強度
(MV/cm)
0.32.53.3810
導熱率
(W/cmK)
1.54.91.30.1420
半導體材料的物性比較。圖/宜特科技

氮化鎵(GaN)或氧化鎵(Ga2O3),雖然分別在 LED 照明或是紫外光的濾光光源,已經應用一段時間,但受限於這類半導體材料的特性,其實生產過程充滿了挑戰。例如:要製作 SiC 的單晶晶棒,相較 Si 晶棒的生產困難且時間緩慢很多,以及 GaN 與 Si 晶圓的晶格不匹配時,容易生成差排缺陷(Dislocation Defect)等問題必須克服,導致長久以來相關的製程開發困難及花費高昂,但第三類半導體市場潛力無窮,對於各國大廠來說仍是兵家必爭之地。

寬能隙半導體運用在那些產品上?

現在知名大廠如意法半導體、英飛凌、羅姆等,對寬能隙材料的實際運用均有相當大的突破,如氮化鎵(GaN)在以 Si 或 SiC 為基板的產品已陸續發表,而我們最常接觸到的產品,就是市售的快速充電器,採用的就是 GaN on Si 材料製作的高功率產品。

除了功率提升,因為溫度與熱效應可大幅降低,元件就可以大幅縮小,充電器體積也更加玲瓏小巧,除了已商品化的快充電源領域,第三類半導體在 AI、高效能運算、電動車等等領域的應用也是未來可期。

-----廣告,請繼續往下閱讀-----

(延伸閱讀:泛科學—快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限)

現行以矽基材料為主的高功率產品,多以絕緣閘雙極電晶體(IGBT)或金氧半場效電晶體(MOSFET)為主,下圖可以看到各種功率元件、模組與相關材料應用的範圍,傳統 IGBT 高功率模組大約能應用至一百千瓦(100Kw)以上,但速度卻無法提升至一百萬赫茲(1MHz)。而 GaN 材料雖然速度跟得上,但功率卻無法達到更高的一千瓦(1kW)以上,必須改用 SiC 的材料。

功率元件與相關材料的應用範圍
功率元件與相關材料的應用範圍。圖/英飛凌

SiC 具有比 Si 更好的三倍導熱率,使得元件體積又可以更小,這些特性使它更適合應用在電動車領域。特斯拉的 model3 也從原先的 IGBT ,改成使用意法半導體生產的 SiC 功率元件,應用在其牽引逆變器(Traction inverter)、直流電交互轉換器與充電器(DC-to-DC converter & on-board charger),能夠提高電能使用效率與降低能損。

特斯拉充電樁
多家車廠加入特斯拉充電網路。圖/特斯拉

在未來更高的電力能源需求下,車載裝置除了基本要具備高功率,還需要極高速的充電能力來因應電力補充,車用充電樁、5G 通訊基地台、交通運輸工具、甚至衛星太空站等更大的電力能源需求,相關的電流傳輸轉換,電傳速度的要求以及降低能損,就必須邁向更有效率的寬能隙材料著重進行開發,超高功率的 SiC 元件模組需求亦會水漲船高。

-----廣告,請繼續往下閱讀-----

寬能隙半導體在開發生產階段,需進行那些驗證分析?

根據宜特的觀察,晶圓代工廠與功率 IDM 廠商正持續努力研究與開發。不過,新半導體材料在開發初期,會有許多需要進行研發驗證的狀況,近年我們已協助多家寬能隙半導體(WBG)產業的開發與生產驗證。

比如磊晶製程相關的結構或缺陷分析,就可以藉由雙束聚焦離子束(Dual beam FIB)製備剖面樣品並進行尺寸量測或成分分析(EDS),亦可搭配穿透式電子顯微鏡(TEM)進行奈米級的缺陷觀察;擴散區域的分析可經由樣品研磨製備剖面後,進行掃描式電子顯微鏡(SEM)觀察以及掛載在原子力顯微鏡 (AFM) 上的偵測模組-掃描式電容顯微鏡(SCM)判別摻雜區域的型態與尺寸量測。

下圖為 SiC 的元件分析擴散區摻雜的型態,我們可以先用 SEM 觀察井區(Well)的分布位置,再經由 SCM 判斷上層分別有 N 與 P 型 Well 以及磊晶層(EPI) 為 N 型。

SEM及SCM分析的量測圖
使用 SEM 剖面觀察 SiC 元件的結構,搭配 SCM 分析 N/P 型與擴散區的量測。圖/宜特科技

另外在摻雜元素及濃度的分析,則可透過二次離子質譜分析儀(SIMS)的技術,下圖 GaN on Si 的元件,先用雙束聚焦離子束(Dual beam FIB)進行剖面成份分析(EDS)判斷磊晶區域的主要成份之後,提供 SIMS 參考再進行摻雜元素 Mg 定量分析濃度的結果,作為電性調整的依據。

-----廣告,請繼續往下閱讀-----
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度。圖/宜特科技

除了上述介紹 WBG 元件結構的解析之外,其它產品也都可以透過宜特實驗室專業材料分析及電性、物性故障分析來尋求解答,包括因應安全要求更高的產品可靠度測試與評估,藉由宜特可以提供更完整與全方位的驗證服務。

希望透過本文介紹,讓大家對第三類半導體有更進一步的了解,近期被稱為第四類半導體的氧化鎵(Ga2O3)也逐漸躍上檯面,它相較於第三類半導體碳化矽(SiC)與氮化鎵(GaN),基板製作更加容易,材料也能承受更高電壓的崩潰電壓與臨界電場,半導體材料的發展絕對是日新月異,也代表未來會有更多令人期待的新發現。

本文出自 www.istgroup.com。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室