科學家推測宇宙是由「一個時空特異點」突然大爆炸而出現的,而在大爆炸那一微秒之後,這極高溫的世界是甚麼樣子?大強子對撞機將揭開這神秘面紗!
李彥頡
宇宙是怎麼誕生的,如何演化呢?好奇的人類總是不斷的追問大自然這個問題。從宇宙背景輻射(Cosmic Microwave Background)以及許多天文觀測的證據,我們知道宇宙的開端大概是在140億年前,從一個極為炙熱的小火球,快速的膨脹擴張、降溫,演變成我們現在所知的宇宙。在這篇文章中,我們想問的問題是,在宇宙大爆炸1 微秒後,這個極高溫的世界是甚麼樣子呢?我們有沒有辦法利用實驗的方法重現這個世界,來研究早期宇宙的性質呢?
掌管物質的四種作用力
我們知道物質之間有四種作用力:重力、電磁力、強力、弱力。重力把你我安安穩穩的「黏」在地球上,也是掌管地球繞著太陽公轉的力量。電磁力是日常生活中最常見的作用力,我們之所以可以看到這個世界(眼球中的視神經接收光子),可以觸摸到這個世界(我們手指中原子的電子雲與桌子的電子雲重疊,產生排斥),都是因為電磁力的作用。弱作用力管理許多基本粒子之間的轉換,如中子衰變為質子的過程。而四種作用力中最強的強作用力則是掌管原子核中,質子與中子之間的作用。核電廠進行核分裂反應產生大量的能量,太陽進行核融合反應照亮這個世界,都跟強作用力有關係。
在電磁力中,電子帶有電荷,電子之間是以交換光子的方式,來傳遞電磁作用力。而強作用力中,夸克帶有三種「色荷」(通常以紅、綠、藍三種色荷來表示,然而「色荷」與日常生活中的顏色無關),以交換膠子(Gluon)來傳遞強作用力。強作用力與電磁力非常的類似,兩個不同的地方是膠子本身也帶有色荷,與電磁力中的光子不同(不帶有電荷),且色荷有三種,電荷只有一種。從這個角度來看,強作用力顯然要比電磁力擁有更豐富的變化(而且強作用力的強度約比電磁力強100倍!)。然而在我們所見到的世界中,物質的交互作用卻是以電磁作用居多,強作用力卻只存在核反應中,到底為甚麼會有如此大的落差呢?
答案是因為我們所處的世界,跟宇宙大爆炸不久後比起來,是一個非常低溫的世界。夸克與膠子這些帶有色荷的基本粒子,都「凝結」了起來,組成零色荷的強子(如質子、中子、π介子),集中在一個極小的空間裡面(半徑約1費米的球體中)。就像是水在低溫的時候,水分子都凝結起來變成冰塊,沒有辦法自由的移動。因為這個緣故,日常生活中不常見到強作用的蹤跡。這告訴我們,實驗上需要一個非常高溫的環境,才能讓質子與中子「融解」成為夸克與膠子,打破強子之間的籓籬,讓夸克與膠子自由的交互作用。而這樣子的世界,事實上曾經存在!在宇宙剛爆炸的時候,溫度與能量密度非常的高。量子色動力學的計算結果顯示,在溫度達到核子彈爆炸核心溫度的5000倍時,夸克與膠子不再被禁錮在強子中,而是以「夸克–膠子電漿」(Quark Gluon Plasma)的方式存在,可以自由的運動與交互作用。
模擬宇宙初始
如果你身在冰天雪地的阿拉斯加,身邊只有冰塊,沒有火種,也沒有其他可以升溫器具,該如何「加熱」這個世界呢?一個很有創意的答案是:你可以讓兩塊冰塊加速相撞,將動能轉換成位能,用這樣的方式來融化冰塊。我們所生活的宇宙也在很相似的狀況,因為所處的世界溫度很低,所以夸克與膠子都凝結成為強子,要產生宇宙剛爆炸時的能量密度,科學家所使用的方法是讓重離子(Heavy Ion)對撞——把重離子(重元素的原子核,如鉛原子核、金原子核)加速到接近光速的狀態,這時候重離子因為羅倫茲收縮(Lorentz Contraction)的緣故,變成像兩個「煎餅」一樣,這兩個「煎餅」對撞之後,會將大量的動量釋放在一個極小的空間裡面,產生一個超高能量密度的環境,進而重現宇宙大爆炸的狀態(如圖二)。
夸克–膠子電漿產生之後,由於極高的能量密度與壓力,其體積快速的擴張,很快的冷卻碎成許多的強子。這個過程發生的飛快,大概只有10-23~10-24秒的時間。因此要研究夸克–膠子電漿的性質十分不容易。事實上,在實驗中我們只能藉由這些由夸克–膠子電漿冷卻凝結成的強子,以及其他不同的粒子,來了解這種新物質的特性。
位於美國布魯克海文國家實驗室(Brookhaven National Laboratory)的相對論重離子對撞機(Relativistic Heavy Ion Collider, RHIC),是第一個進行高能重離子對撞的加速器。金原子核在加速器中最高被加速到1000億電子伏特,並且進行對撞。在布魯克海文國家實驗室的實驗結果中,第一次證實了夸克–膠子電漿的存在。
到了2010 年的冬天粒子物理學界有了重大的突破,位於歐洲的大強子對撞機(Large Hadron Collider, LHC)成功的完成鉛原子核對撞,並且將鉛原子核加速到1.38兆電子伏特,開創了一個超高能量密度的新紀元。1.38兆電子伏特這個數字或許不太易懂,其實這代表著每一個在鉛原子核中的質子與中子,都帶有相當於蚊子飛行時所擁有的動能。理論計算預測在大強子對撞機中將產生體積更大、溫度更高的夸克–膠子電漿,將對宇宙的起源以及高密度環境中量子色動力學的了解做出的貢獻。
科學之眼—粒子偵測器
為了測量由夸克–膠子電漿冷卻後所產生的各種粒子,我們使用粒子偵測器來測量這些粒子的角度分布、動量以及能量。以緊湊渺子線圈(Compact Muon Solenoid,簡稱CMS偵測器)為例,偵測器主要是由超導磁鐵(Superconducting Magnet)、矽晶軌跡追跡系統(Silicon Tracker)、量能器(Calorimeter)以及渺子偵測器(Muon detector)所組成的。
CMS偵測器使用超導磁鐵產生強大的磁場(3.8 特斯拉)。碰撞中產生的帶電粒子往外飛散時,會受到磁場的影響而轉向,高動量的帶電粒子轉向程度較低,行進的軌跡比較接近直線,而低動量的帶電粒子則是以接近螺線的方式向前移動。CMS偵測器中的矽晶軌跡追跡系統就像是個3D 的數位相機一樣,記錄在對撞中所產生的帶電粒子軌跡,使CMS偵測器能夠測量帶電粒子的動量分布以及數量。電磁量能器是由鎢酸鉛晶體(Lead Tungstate)所組成的,可用來測量光子以及電子的能量。強子量能器可以用來測量中性以及帶電強子的能量,並且用於夸克與膠子噴流(Jet)的重建。由於渺子經過量能器時所損失的能量很低,可以穿過這些偵測器,因此在CMS 的超導磁鐵外層,還裝設了渺子偵測器,用來偵測渺子的訊號。
在CMS偵測器中(圖四),可以看到電中性的光子,不會在矽晶追跡系統中留下軌跡,但是會在電磁量能器中被破壞,留下能量。帶電的電子(反電子)則會在矽晶追跡系統中留下軌跡,並且將能量釋放在電磁量能器中。帶電強子(Charged Hadron)的軌跡同樣可被矽晶追跡系統記錄下來,與電子不同之處是帶電強子不只會在電磁量能器中留下能量,通常也能穿過電磁量能器,到達強子量能器,然後將能量釋放在強子量能器中。帶電的渺子更加特殊。由於渺子不帶有色荷不參與強作用,質量又比電子重約300倍,這些性質使得渺子通過介質時損失的能量較少,因此渺子能夠穿過所有的偵測器以及磁鐵,並且在超導磁鐵外的渺子偵測器中留下信號。這些探測到的高能渺子可用於Z 玻色子(Z Boson)的重建(經由Z 玻色子衰變至渺子與反渺子的管道)。利用CMS這個「科學之眼」,我們可以捕捉碰撞中除了微中子以外所產生的粒子,並且分辨他們。而藉由觀測這些由夸克–膠子電漿冷卻凝結而成的碎片,我們可以推測在碰撞中產生的新物質的特性。
新物質—夸克–膠子電漿
實驗物理學家常將電子射向想研究的物質,利用電子偏折的角度來研究物質的結構。然而重離子對撞所產生的夸克–膠子電漿存在時間極為短暫,且體積微小,因此測量這種新物質的性質非常不容易,也是實驗中最具挑戰性的問題。基本上測量夸克–膠子電漿的方法大致可以分為兩類:第一種是測量夸克–膠子電漿散開後所產生的粒子。從這些粒子的數量,角度分布以及能量大小,來推測夸克–膠子電漿的性質。第二種方法是在碰撞中,利用與夸克–膠子電漿同時產生的高能量夸克、膠子以及光子,讓這些粒子穿過夸克–膠子電漿,然後觀察電漿如何改變這些高能量的粒子。
圖五是CMS偵測器所記錄下來的一個鉛對撞事件,由圖中可以看出,成千上萬的粒子在碰撞中產生,並且在軌跡追跡系統中留下信號。經由電腦人工智慧辨識,可以重建出碰撞中所產生的帶電粒子軌跡(圖中位於核心、顏色較淡的細絲線狀)以及動量大小。從強子的數量估計,我們發現在大強子對撞機中鉛對撞所產生的夸克–膠子電漿,能量密度比日常生活中常見的其他原子核的密度還要高5~10 倍。換句話說,在一個質子大小的空間裡,要擠下5~10倍質子的能量。因此很顯然的,這種物質不太可能是由質子與中子等強子所組成,而是由更高密度的夸克與膠子所組成。圖中也可以看到許多正方體,所顯示的是電磁量能器所測量到的能量大小。而在最外圍的長柱狀體則顯示強子量能器所測量到的能量。利用量能器所測量到的能量大小,也可以推出與帶電粒子相同的結論,我們在對撞中確實產生了極度緻密的物質。而且所測量到的總能量,大約是在前一個實驗「相對論重離子對撞機」(Relativistic Heavy Ion Collider)的金原子核對撞中總能量的2~3 倍。
聰明的你也許會問:「如何證實在碰撞中,一個達到熱平衡的夸克–膠子電漿真的產生了呢?也許這麼多的粒子只是原子核中許多質子與中子之間
的對撞疊加在一起所造成的,彼此並不相干!」如果在鉛對撞中,所產生的粒子真的是由許多互不相干的核子對撞所造成的,偵測器所偵測到的粒子角度分布會是對稱的。但如果在碰撞中所產生的物質,是已達到熱平衡的夸克–膠子電漿,這時候由夸克–膠子電漿冷卻所產生的粒子由於壓力的作用,會產生不對稱的角度分布。壓力較大的方向,所測量到的能量及粒子數量較多,而壓力較小的方向則會觀測到比較少的粒子。
在CMS實驗中,由矽晶追跡系統以及量能器所測量到的粒子能量分布,真的可以見到角度的不對稱性,這證實了所產生的新物質的確達到熱平衡,而且與相對論性流體力學(Relativistic hydrodynamics)的理論計算結果相符合。實驗數據顯示,這種新物質甚至比水還更接近理想液體。這個有趣的現象首度在相對論重離子對撞機中被發現,而且再度在大強子對撞機實驗中被確認。而且在大強子對撞機的實驗中,甚至在每次碰撞中,都可以直接看到粒子能量分布的不對稱性(如圖六)。
更進一步—電漿性質的精密測量
在大強子對撞機的實驗中,由於對撞的能量較相對論重離子對撞機提高了17.5倍,超高能量的夸克與膠子,以及不帶色荷的光子與Z玻色子的產生機率大增,我們可以利用這些穿過夸克–膠子電漿的粒子,測量這些粒子如何與電漿反應,進行電漿性質的精密測量。由於光子與Z玻色子不帶色荷,通過夸克–膠子電漿時,理論預測這兩種粒子不會受到強作用力的影響,會直接穿過這種新物質而不被改變。而高能量的夸克與膠子穿過電漿時,由於帶有色荷,會受到強作用力的影響而損失能量,甚至因為介質的推力而改變行進方向。
利用CMS偵測器的電磁量能器與渺子偵測器,實驗已經成功的捕捉到光子與Z玻色子的信號(如圖七:Z玻色子衰變至渺子與反渺子),並且發現這兩種不帶色荷的粒子不受夸克–膠子電漿的影響,首度證實了理論的預測。而在夸克與膠子的噴流分析中, CMS偵測器直接測量到這些噴流損失了很多的能量,這個直接證據告訴我們在鉛對撞中真的有新物質產生。而且當高能夸克與膠子穿過電漿時,受到非常強大的阻力。每前進1個費米的距離,就會損失約數十億電子伏特的能量。然而奇怪的是,雖然高能量夸克與膠子在通過介質時損失了不少能量,但行進方向卻出乎意料之外的沒有任何變化!研究夸克與膠子如何損失能量可與許多理論模型做比較,初步的結果發現這些夸克與膠子所損失的能量遠高於預期,而行進方向卻沒有改變,與在真空中的狀態無異!這些新現象沒有辦法使用目前的模型解釋。許多更進一步的實驗分析正在進行中,如尋找夸克–膠子電漿中的聲波以及底夸克(Bottom Quark)的測量等等,將提供許多以量子色動力學以及弦論所建構的理論模型和許多珍貴的資訊。
揭開早期宇宙之謎
在2010年大強子對撞機成功的加速鉛原子核到1.38兆電子伏特,並且完成人類史上最高能量的重離子對撞實驗。2011年大強子對撞機更提供了比2010年多20倍的鉛原子核對撞。緊湊渺子線圈的實驗結果再度證實夸克–膠子電漿在鉛對撞中產生了,並且首度完成光子、Z玻色子以及高能夸克(膠子)噴流的分析。這種超緻密的物質,也許與宇宙大爆炸後1微秒後的狀況十分類似,也可能存在於中子星的核心之中。
初步的實驗結果告訴我們,如果有一台火箭,在早期宇宙的環境中被發射升空,我們只需要不到1奈米厚的夸克–膠子電漿,就可以將火箭瞬間停下來,而與火箭一起前進的高能量光子,則不受影響,可以順利的穿透夸克–膠子電漿繼續往前傳播。如果有一個高能量的夸克在早期宇宙中「游泳」,這個夸克會受到夸克–膠子電漿的影響而很快的減速,但「游泳」的前進方向卻不會改變!
由於在大強子對撞機中的高能量鉛原子核對撞,許多高能光子、Z玻色子、以及高能量的夸克與膠子與夸克–膠子電漿一起產生,開創了一個全新的研究方向。由於光子與Z玻色子不參與強作用力,因此測量這些不帶色荷的粒子,可以得到夸克–膠子電漿剛產生時的初始狀態,就像是利用微中子可以探測太陽的核心一樣。利用超高能量的夸克與膠子穿過電漿,我們可以進行類似拉塞福(Rutherford, 1871~1937)實驗的研究,只是這次不是利用電子去探測原子核,而是用這些高能夸克與膠子來探測夸克–膠子電漿的結構。
在大強子對撞機有了這些有趣的研究工具,將有助於了解高密度環境下的量子色動力學,並且解答早期宇宙之謎。近年來在弦論模型的計算與發展,更提供了嶄新的方向,幫助我們在夸克–膠子電漿研究中所學習到的知識,運用在各種其他的強交互作用系統(Strongly interacting system)。許多精彩的實驗分析與理論計算,正如火如荼的進行中!
李彥頡:任職歐洲核子物理研究中心
原文發表自科學月刊第四十三卷第五期