0

0
0

文字

分享

0
0
0

102秒內火速發佈!臺灣第一個地震速報系統的誕生──《地震:火環帶上的臺灣》

春山出版
・2019/11/21 ・1654字 ・閱讀時間約 3 分鐘 ・SR值 601 ・九年級
  • 作者/林書帆、黃家俊、邱彥瑜、李玟萱、王梵

臺灣速報的優勢:利用即時強震訊號自動定位

「當年,沒有一個國家用即時強震訊號做地震觀測,臺灣是第一個!」吳逸民指出,能在一百零二秒內傳出地震速報的關鍵有二:一是善用「即時強地震觀測訊號」,第二是以此資訊做自動定位,並在短時間內提出預警。

圖/GIPHY

此一轉捩點正是一九九五年。在鄧大量的建議下,強地動觀測網(TSMIP)與中央氣象局地震觀測網(CWBSN)共站的加速度型地震儀,利用了同一條傳輸專線把強震資料同步傳回氣象局,相較於七○年代區域性的強震儀陣列,受限於當時僅能以類比訊號傳輸紀錄,後來拜數位發展之賜,一九九五年的強震資料即能藉由數據專線立即傳回臺北,做到「即時」監測。

以此「即時強地動系統」為骨幹,臺灣的地震測報進入「速報」階段。直到九二一地震,當時全臺已有超過六百三十個自由場強震站,其中具有即時傳輸功能者約有六十個, 蒐集地動訊號後即時傳輸回氣象局。

一九九五年阪神大地震,日本首相村山富市在震後一個多小時才收到地震速報,吳逸民解釋,當時日本震度七以上地震必須由人為判斷,才能發布,而臺灣領先的關鍵就在於以自動化加快速報發展。至於自動定位與預警系統如何做到,得從「B 計畫」的故事講起。

本土 B 計畫勝出

圖/pixabay

當時服務於美國地質調查所的顧問李泓鑑提點臺灣可能有發展地震預警潛力,也成為氣象局一九九四年提出臺灣第一部《氣象白皮書》納入「地震預警」的契機。當年,氣象局啟動第一個地震預警的實驗,由加拿大一間商業公司主導,選在地震活躍的花蓮設立十個測站,資料透過專線匯集至花蓮氣象站做即時處理,並將結果傳至臺北的氣象局本部評估、分析,這也是臺灣地震預警系統發展的雛形,在內部被稱為 A 計畫。

當時,傳輸地震訊號的電話線路尚有一半頻寬容量可使用,中研院地球科學研究所院士鄧大量便建議發展 B 計畫做為備案。B 計畫的基礎技術由李泓鑑提供,執行者就是氣象局內的吳逸民,他們隔著太平洋時差一起工作。

當時 A 計畫與 B 計畫都是藉由撰寫程式讓計算流程自動化,藉由強震紀錄的 P 波與 S 波自動定位,計算地震規模,同時能將地動加速度換算成規模。其中自動定位技術,是 A 計畫與 B 計畫競逐的核心目標。

為了縮短時間,必須利用地震初始震動定出規模,但是如何保有一定的準確度,成為技術上最難以克服的瓶頸,這也讓當時國內外許多學者都不看好臺灣發展預警系統。

與時間賽跑的地震預警。圖/GIPHY

由於 A 計畫測站大多僅分布於花蓮狹長的海岸線地帶,雖然可在十幾秒獲得地震訊息,但定位準確度不理想,震央位置平均誤差達二十二公里,規模誤差也達到○.七個規模單位。吳逸民認為,A 計畫在通訊、展示介面跟軟體程式方面表現不錯,但執行團隊缺乏地震學人才,對於地震核心掌握度不足,以至於重要資訊誤差很大,實用性不高。

一九九五年即時強震資訊的啟用,免除需人工電話撥接的時間,吳逸民主責的 B 計畫順利發展出自動挑選 P 波與 S 波的系統,將發布地震時間縮短至五分鐘。以 B 計畫的成功為基礎,吳逸民馬不停蹄投入預警工作,利用宜蘭、花蓮、南投等地共六十至七十個測站的即時強震訊號建立「花蓮子網」預警系統,由於串連多個地區即時強震訊號,覆蓋性較廣,將定位誤差控制在二十公里內、規模誤差○.三單位內,獲得地震資訊的時間大幅縮短至二十秒。

最終,B 計畫淘汰了受限於商業系統而無法修改的 A 計畫,原有測站都併入 B 計畫,成為臺灣第一個成功的地震速報系統。

——本文摘自泛科學 2019 年 11 月選書《地震:火環帶上的臺灣》,2019 年 10 月,春山出版

文章難易度
春山出版
3 篇文章 ・ 2 位粉絲


1

4
0

文字

分享

1
4
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
156 篇文章 ・ 376 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策