0

0
0

文字

分享

0
0
0

廚房裡辦不到的加工技術:認識現代食品加工

社團法人台灣國際生命科學會_96
・2019/10/27 ・3075字 ・閱讀時間約 6 分鐘 ・SR值 524 ・七年級

-----廣告,請繼續往下閱讀-----

  • 作者/朱中亮,財團法人食品工業發展研究所資深研究員

為了生產更天然、新鮮、少添加物使用的加工食品,食品科學家積極研發各種對食品品質破壞較小的非熱加工技術,希望突破熱殺菌的極限。

本期ILSI Taiwan專欄邀請財團法人食品工業發展研究所朱中亮資深研究員介紹現代食品加工技術,包括無菌加工技術、超高溫短時間滅菌技術、冷凍乾燥、欄柵技術、薄膜除菌等殺菌技術,以及製造外觀花俏食品的擠壓加工技術。

無菌加工技術:滅菌之餘美味依舊

隨著食品科技日新月異的發展,許多食品加工技術已非是在廚房中就能辦到的程度。首先要談的「無菌加工」,絕對是能被譽為20世紀食品界重大里程碑的一項技術。

無菌加工是相對於傳統的罐頭加工發展出來的先進技術。罐頭加工將食品原料殺菁後,裝至鐵罐並封口隔絕外界環境,再透過殺菌釜高溫滅菌,將鐵罐內部的微生物都殺死後,才能常溫保存。但是這樣滅菌處理的食品因經過長時間加熱殺菌,風味並不好。

-----廣告,請繼續往下閱讀-----

因此科學家想到,在原料填充至罐頭前先滅菌處理,而包裝容器也同樣先滅菌,使食品與容器都達到無菌狀態,最後才在無菌環境中充填並封罐,如此便能降低滅菌的溫度與時間,讓產品的美味依舊,譬如果汁就是無菌加工中最成功的商品之一。

滅菌技術強調殺菌溫度與時間的權衡,提高溫度就能大幅減少加熱時間。

譬如說罐頭要在 121℃ 下殺菌數十分鐘才能達到的滅菌效果,無菌加工則是將溫度提升至 135℃,只需要數秒鐘即可達到相同的效果,且能保留更多的食品風味。現今食品工廠中製作果汁或乳品等,在全自動化的產線中只需要一兩個人力控制機器,產品全在密閉的管線中輸送滅菌,最後才在無菌環境進行包裝。常見的利樂包、部分的包特瓶裝飲料也都是應用無菌加工技術的產品。

一碗泡麵的誕生,需要運用許多現代食品加工技術,如:蔬菜的冷凍乾燥技術、速食麵條的油炸乾燥技術,以及即食調理包的殺菌軟袋技術等。

當我們飢腸轆轆卻不知該吃什麼時,只要撕開包裝、注入熱水,等待片刻就能享用的泡麵深獲許多人喜愛。別小看一碗簡單的泡麵,背後可是應用了許多現代食品加工技術,如:蔬菜的冷凍乾燥技術、速食麵條的油炸乾燥技術,以及即食調理包的殺菌軟袋技術等。

冷凍乾燥與傳統熱風乾燥相比,能保持食物乾燥前的外觀,其原理是先將食品中的水分凍結,然後控制在真空壓力下能直接將冰昇華為氣態水,因此食物形態能被完整保存,同時在食品中形成許多微孔也造就了食品具有較佳的復水性,冷凍乾燥的食品便能快速吸水沖泡開來;麵條則是煮熟後利用高溫油炸逼出水分,使原本水分存在的地方產生孔洞,同樣達到快速沖泡復水食用的目的。

-----廣告,請繼續往下閱讀-----

經過乾燥後的食品本身水活性低,可以長久保存,因此不需要額外添加防腐劑。但速食麵會添加抗氧化劑,原因在於麵條油炸後含油,若不添加抗氧化劑,會造成油脂酸敗,反倒可能產生對人體有害的物質。另外,碗裝泡麵的容器也須經過高溫溶出測試,確定在熱水中泡一段時間後不會溶出對人體有害的物質,才能當作食品容器,消費者在選購上也可以安心。

食品擠壓加工技術:花俏食品外觀靠這招

擠壓加工或許沒那麼容易理解,它的做法與製作塑膠製品的原理─「塑膠射出成型」有些類似。首先將食品原料填充進擠壓機,接著經過揉合、必要時加熱,食品的特性會變得像泥狀。擠壓加工就是趁著食品在泥狀時,迅速將其噴出成形,常見的應用像是貝殼狀或螺旋狀的義大利麵、各種形狀的零食,或是現在正夯的植物肉等。

欄柵技術:多管齊下保持品質

欄柵技術的原理如同治療愛滋病的雞尾酒療法,如果給予一種藥物無法控制病毒,那就給予多種藥物進行治療,將病毒量控制到最低。罐頭食品是以高溫滅菌,讓食品中的微生物一槍斃命無法存活,但缺點是可能會使食品風味變差,並非適合所有的食品;而欄柵技術則是多管齊下的策略,結合各種控制微生物的因子,如:降低水活性、pH值、添加防腐劑、真空包裝去除氧氣或填充惰性氣體、以及冷藏等,藉由調控多種因子,以維持產品品質並延長保存期限。這項技術可謂知易行難,需要十分良好的製程管控才能辦到,在食品科技中稱為 HACCP (Hazard Analysis and Critical Control Points,危害分析重要管制點),這項技術多年來已廣為食品工廠應用。

薄膜除菌技術:讓飲料好喝又能保存

薄膜除菌技術顧名思義就是使用一種能讓食品中的水與各種成分(如香氣、維生素、蛋白質等)可以通過,但細菌無法通過的薄膜,以達到除菌效果。一般現打的西瓜汁大概放置一天就腐壞不能飲用,但使用薄膜除菌技術包裝的西瓜汁,存放時間能延長到將近兩星期。而為了確定薄膜的有效性,食品科學家用已知最小的細菌測量通過薄膜的量,能減少99.999% 才能稱為有效薄膜,這也是此技術最困難之處。

-----廣告,請繼續往下閱讀-----
薄膜除菌技術示意圖,資料來源:作者提供。

高壓加工技術:超高壓殺死細菌

前述如製作罐頭的熱滅菌技術、利用膜過濾的薄膜除菌技術等都是常見的殺菌方法。但如果不希望食品被過度加熱,也無法通過薄膜時,譬如魚肉這樣的食品該如何殺菌呢?科學家發現可以對食品施以高壓將微生物殺死。

高壓加工技術的原理是藉由施以高壓,改變細胞膜的通透性,導致細胞內物質流出,或是破壞細胞的繁殖功能使細胞死亡。此項技術是將食品包裝在至容器中放入可以耐高壓很厚的鋼管中,我們稱為高壓腔,在高壓腔注滿水後用高壓泵對管內注水加壓,使腔室內部的水壓到達將近 6000 大氣壓(世界上最深的海溝壓力也「只有」2000大氣壓),就可殺死微生物。由於容器內的食物是受到來自四面八方均勻的壓力,因此並不會造成食物形狀的改變,而且加壓是在室溫甚至低溫之下進行,食物的風味也不會被破壞。這是一項可以良好保持食品色香味的技術,但相對的製造成本也比加熱殺菌高出許多。

食品高壓加工技術從發展到成熟歷時將近百年的時間,除了設備的造價高昂之外,科學家們也必須證實這種方法確實能夠殺滅食品中的細菌,並且不會造成食品品質改變,目前在加拿大、美國、英國、歐盟都已經有研究證實。

高壓加工技術示意圖,資料來源:作者提供。

加工食品的美麗與哀愁

食品加工的目的有很多,如:提高食品的食用性、保存性、便利性、嗜好性、衛生安全、營養價值、運輸性、商業價值等,看似都立意良善,那為什麼社會上存有「加工食品就是不好的」、「加工食品就是沒營養」、「加工食品是造成文明病主因」等印象,原因出在哪裡呢?

-----廣告,請繼續往下閱讀-----

身為一位食品研究者,當社會大眾對健康的需求日益增加時,我們的挑戰是製作出健康、少鹽、少油、少糖、無反式脂肪的食品,且無農藥殘留或毒素。然而過去的確有少數廠商並未花費足夠心力去達到這些目的,反而是為了在市場上取得競爭優勢,使用不正當手段製作產品,這毫無疑問是必須被檢討的。

本文目的是希望能讓讀者了解,市面上還存在許多並非單從字面上的名稱或感覺就能對它做出正確判斷的加工食品,也有許多運用適當的加工技術、用心實在的加工食品供民眾選擇,希望民眾能夠正確分辨出這些加工食品。

延伸閱讀

 

  • 本文轉載自 ILSI Taiwan-2019 年第 7 期《廚房裡辦不到的加工技術─認識現代食品加工》,歡迎喜歡這篇文章的朋友訂閱支持 ILSI Taiwan 喔!
  • 作者/朱中亮│資深研究員
    德國Hohenheim大學食品科技研究所博士,現任財團法人食品工業發展研究所資深研究員。專長為食品加工與製程,目前研究技術領域為食品非熱加工技術、冷藏食品保存期限預測及溫度管理技術等。
文章難易度
社團法人台灣國際生命科學會_96
28 篇文章 ・ 8 位粉絲
創會於2013年,這是一個同時能讓產業界、學術界和公領域積極交流合作及凝聚共識的平台。期望基於科學實證,探討營養、食品安全、毒理學、風險評估以及環境的議題,尋求最佳的科學解決方法,以共創全民安心的飲食環境。欲進一步了解,請至:ww.ilsitaiwan.org

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

12
3

文字

分享

2
12
3
科學實證「心情不佳真的會造成消化、皮膚發炎、心血管健康問題」,但為什麼?
PanSci_96
・2023/05/28 ・3156字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

你一定聽過安慰劑效應,但到底為什麼會有呢?這個謎團難倒了好幾個世代的科學家,超過百年依舊未解,直到最近,終於揭開了一部分謎底。

生醫圈非常振奮,認為一旦破解祕密,就能知道壓力為什麼會讓人生病!更棒的是,還有機會打造出嶄新療法,治療困擾無數人的疾病和癌症!?難道可以靠「轉念」來治病嗎?

安慰劑效應,指的是患者即使吃到或注射的不是真正的藥,對於外來病原體或體內病變的抵抗力竟然也會變好,讓身體好轉。有很長一段時間,科學家對這個現象背後的原理一無所知。

有兩個問題和解開安慰劑效應之謎有直接關係,乍聽之下都是非常不起眼的問題,可是只要多想兩三秒鐘,就會發現居然回答不出來。

-----廣告,請繼續往下閱讀-----

小感冒、腸躁症、安慰劑,藏著同一個答案

你一定有過這樣的經驗:感冒以後沒食慾、提不起勁、只想攤平在沙發上,為什麼會這樣?不就是因為病原體攻進身體裡才造成我們「覺得」不舒服嗎?但是再仔細想想,細菌或病毒根本沒有直接攻擊到腦部,那為什麼會冒出這些討厭的感覺?

再來,不少人一緊張就容易拉肚子,或是肚子痛、脹氣,也有人相反,一緊張就便祕,這些都是大腸激躁症(irritable bowel syndrome),簡稱腸躁症的常見症狀。但是,為什麼發生在大腦裡面的情緒會直接刺激遠在腹腔裡的腸子呢?

針對第一個問題,2022 年 6 月《Nature》一項研究發現,只要刺激腦部下視丘的特定區域,即使體內沒有病菌,小鼠也會發燒和食慾不振。換句話說,感染會引發免疫細胞攻擊病原體,導致體內發炎,腦部不必碰觸到病原體,只要透過血液等途徑感知到發炎的刺激,就會出現不舒服症狀。

感冒時沒食慾、提不起勁、只想攤平在沙發上。圖/Envato Elements

至於第二個,發表在 2021 年 11 月《Cell》期刊的研究指出,小鼠如果腸道曾經發炎,刺激腦島皮質(insular cortex)就可以使發炎狀態重現;也就是說,大腦會保有免疫系統活動的記憶,以後只要活化同一群神經細胞,就能在腸道重啟一樣的免疫反應。

-----廣告,請繼續往下閱讀-----

2023 年 2 月底《Nature》一篇評論文章說,科學家懷疑這種神經機制是身體為了抵抗可能發生的威脅,事先做好準備,但也會聰明反被聰明誤,在沒有原始觸發因素的時候自行啟動,例如壓力使腸躁症的症狀惡化,說不定就屬於這類情況。

這些發現透露了什麼線索呢?

病得輕重、多快復原,是腦在掌控

安慰劑效應和前面這兩個問題都指向一個方向,三個現象裡不斷出沒的——免疫系統。

科學家發現,目前所有的證據都指出,大腦和遍佈全身的神經,實際上是用一種還不太清楚的方式和免疫系統綁在一起。

-----廣告,請繼續往下閱讀-----

也可以換一種說法:喜怒哀樂的情緒及正負面心態究竟是如何和身體連結,已經發現至少有一條路徑是透過神經系統和免疫細胞的緊密互動。

2022 年 5 月底,《Nature》刊登一篇報告,介紹了美國哈佛大學醫學院的研究團隊利用「光遺傳學」和其他技術,畫出小鼠腦部和全身的白血球如何「互動」的地圖,這讓我們有機會進一步揣測人體裡發生的事。

所謂的光遺傳學,可以簡單想像成把設計好的蛋白質基因植入想要觀察的神經元細胞裡,這種蛋白質一旦照到特定波長的光就會啟動,刺激神經細胞跟著活化,這樣就可以非常精細地一次只操作單一種神經細胞,畫出解析度相當高的大腦圖譜。

身心透過神經系統和免疫細胞緊密互動。圖/Envato Elements

團隊很驚訝地發現,腦部透過兩種方式指揮免疫系統,一種是大腦控制身體動作的運動迴路(motor circuits)發出訊號刺激骨骼肌,釋出能吸引嗜中性白血球這種免疫細胞的細胞因子,誘導原本在骨髓裡的嗜中性白血球快速移動到感染或受傷的部位。另一個則是腦部的下視丘腦室旁核(paraventricular hypothalamus)會分泌特定的化學分子,命令腎上腺分泌激素,快速引導單核球和淋巴球從淋巴結、脾臟、血管等位置移動到骨髓。

-----廣告,請繼續往下閱讀-----

無獨有偶,2022 年 4 月底,德國和其他歐洲科學家組成的跨國團隊也在《Nature》上發表研究結果,直接表明動脈發生粥狀硬化的過程可能部分受腦部控制;也就是說,他們發現了神經、免疫和血液循環這三個系統是怎麼樣融合在一起的。

動脈粥狀硬化是血液裡的膽固醇堆積在血管內側,形成斑塊,在局部區域會有慢性發炎,血管也會愈來愈窄。斑塊一旦剝落就變成血栓,是造成中風、心絞痛和心肌梗塞的關鍵因素,目前還沒有醫療技術可以逆轉病人的動脈硬化。

研究團隊發現,小鼠動脈血管壁外層的神經纖維會傳訊號到腦部,也會接收腦部發來的訊號,免疫細胞會大量聚集在神經末梢周圍,人體也有類似的現象。他們以小鼠做試驗,用化學方法或手術切斷神經聯繫,免疫細胞迅速就地解散,血管斑塊的堆積速度也跟著減慢。

懂得向大腦求助

大腦能指揮身體抵抗病痛,這合理的解釋了你我大概都有過的切身之痛,那就是當滿腦子塞滿消極的情緒如壓力、焦慮的時候,特別容易生病,例如感冒、腸胃炎、皮膚癢等等。

-----廣告,請繼續往下閱讀-----

更有趣的是,反過來說,如果創造出積極的情緒,對於抵禦疾病是不是也有用呢?答案可能也是肯定的。

積極的情緒有利於對抗疾病。圖/Envato Elements

過去就有報告指出,加入支持團體和接受一些心理療法的乳癌患者,可以延長存活時間,在其他幾種癌症像是肺癌、惡性黑色素瘤、胃腸道癌症研究上也有提出類似的現象。

因此,現在世界各地有多個研究團隊正在鑽研如何善用「身」和「心」的力量,結合起來一起治好病痛。

例如癌症腫瘤會以釋放神經訊號、分泌化學物質等方式,造成患者的新陳代謝機制和睡眠大亂,美國紐約冷泉港實驗室的團隊發現刺激罹癌小鼠下視丘的特定區塊,可以把代謝和睡眠週期「喬」回來,有助於幫助癌症病人的復原過程變舒服。

-----廣告,請繼續往下閱讀-----

而以色列理工學院團隊則把焦點放在位於中腦的腹側被蓋區(Ventral Tegmental Area, VTA)。VTA 是腦部的獎勵中心,含有分泌多巴胺的細胞,和期望、動機、喜好等情緒有關,也就是讓我們會感到快樂、振奮而去做出實際行動的腦部區域。該團隊發現,刺激 VTA 可以驅動免疫系統,使小鼠肺部和皮膚的腫瘤縮小,他們現在要把成果從小鼠用到人身上。

也有一個團隊是從迷走神經(vagus nerve)下手。迷走神經是副交感神經系統的主要成員,從腦一路向下走過心、肺、胃,一直延伸到大腸,已知和調節免疫反應有關。有一家新創企業 SetPoint Medical 運用他們的技術,研發一種大小像膠囊的神經刺激裝置,植入脖子的迷走神經旁邊,可以無線充電、還可以用 iPad 的程式調整刺激強度,目標是治療類風濕性關節炎、克隆氏症(Crohn’s disease)等自體免疫疾病。

「身心一體」除了個人感受,也有生理學上的意義。圖/Envato Elements

「身心一體」,用比較感性的話來說就是:心靈受苦,身體也受苦。原來,這件事不只是主觀的個人感受,其實它有生理學上的道理。

或許,更重要的是,讓明明覺得不舒服卻一直檢查不出病因的人知道,自己的感受並非無病呻吟,也不是想逃避壓力或做錯事情,而是一體的身心真的在發出警報,或許這就是最大的安慰了。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 2

0

7
3

文字

分享

0
7
3
當壓力比山大,你需要安靜的力量!
雅文兒童聽語文教基金會_96
・2023/04/24 ・2200字 ・閱讀時間約 4 分鐘

  • 文/王冠雅(雅文基金會聽語科學研究中心 助理研究員)

翻開行事曆,總有開不完的會、做不完的報告,真的是壓力山大。雖然身旁的人都輕聲說話,周遭的環境也沒有過度喧鬧,但不知為何,就是什麼聲音都不想聽到!

沒錯,當我們身心充滿壓力、腦袋滿載的狀態下,腦中的思緒(或是雜訊)總喋喋不休,即便是平時熱愛的旋律都會聽不下去。在無法緩和壓力的狀況下,身心壓力就持續拉高。此刻,或許可以問問自己:

「今天,你累了嗎?」

不過咖啡或能量飲料可能都不是正解,你需要的,是去感受「安靜的力量」。

靜不下來,有時是周遭的聲音,有時可能是腦海中喧囂的壓力。
圖/freepik

壓力來襲,全身心都要一起扛

首先,讓我們先來一起認識「壓力」究竟為何物!

-----廣告,請繼續往下閱讀-----

壓力其實是生理或心理受到脅迫的狀況下所引發的個體狀態。任何的壓力對我們的身體來說都可能是一種威脅。當接收到「壓力」的訊息,大腦就如同一個中央指揮中心,會本能地激發身體激素,開啟戰鬥或逃跑的生存機制。

像是在開車時,路邊的小巷子突然衝出一台疾駛的摩托車,我們能隨即透過身體調適壓力的本能,而瞬間激發出一連串的荷爾蒙,迅速地做出迴閃的反應行為,並敏捷地應對突如其來的意外威脅。

除了係關生命安全的壓力,那些會對我們日常生活、工作有所影響的壓力也會被身體視為一種威脅。特別是在數位科技的黃金時代,在過度追求速度、效率、產值,或是在處理家庭和人際關係、工作及課業問題所積累出的情緒,都容易成為長期的慢性壓力。

想耳根清靜,多半是聆聽也成了一種壓力

當我們備感壓力時,哪怕是冷氣的滴水聲,或是慣常的風扇運轉聲,都可能變得難以忍受,更別說是有點大聲的說話音量,更容易讓人倍感刺耳。

-----廣告,請繼續往下閱讀-----

事實上,壓力與聽覺是密切關聯。

長期研究壓力的科學家 Dan Hasson 和他的研究夥伴,對具有慢性情緒衰竭(Emotional Exhaustion,意指在長期壓力下身心俱疲的精神狀態)的受試者進行誘發壓力的實驗,包括 208 名女性和 140 名男性(年齡區間為 23-71 歲,分別具有低、中、高的情緒疲憊程度)。

試驗過程會讓受試者承受短期的壓力實驗,並從中了解他們是否對聲音更加敏感。結果發現,身心俱疲程度較高的女性經過誘發壓力後,對聲音會更加無法忍受(男性受試者雖有類似的反應,但在統計上並不顯著)。有一些受試者甚至聽到正常談話的音量(約 60 分貝),便開始覺得聲音太大,而感到不適。

此外,當壓力襲來,身體會非常有感,是因為大腦與身體會企圖去平衡、調適我們所感受到的壓力。

-----廣告,請繼續往下閱讀-----

倘若大腦一直對壓力保持警覺,身體則需要長時間維持高度戒備,且繼續啟動調控壓力代謝的荷爾蒙系統。如果長期處於慢性壓力的狀態,身體便會像空轉的馬達般虛耗運作,並產生過量的腎上腺素到血液,讓耳朵內的血液循環變差。然而,耳朵中脆弱的內毛細胞(Inner hair cells),仰賴充分的血液循環來接收足夠的氧氣與養分,若因日復一日地高壓讓血液循環長期受阻,以至於內耳的毛細胞供血不足,嚴重的話,將會導致聽力受損。


因此,若是身處在壓力風暴中,即便是聆聽一般的說話聲、用腳踩踏的節奏或是空調的低頻聲,都能令人感到煩躁與不耐。這可能是壓力所導致的焦慮及疲憊已經讓感官過載,才無法良好地調整自己,更失去了與他人對話的能量。

走出戶外、接近大自然,可以有效地洗滌日常生活中所積累的壓力與情緒。圖/freepik

心靜自然涼,用六分半分鐘補充「靜能量」

許多研究證實,待在安靜的環境,將有助於恢復我們的神經系統、提升能量並調節身心狀態。不論是待在室內或戶外綠意盎然處,只要安靜地待上六分半鐘,便能有效放鬆身心。在靜謐的自然環境中,我們的身心與意識會出現類似冥想時的泰然,因此在戶外的綠地放鬆,會有更顯著的效果!

在忙碌的現代生活,壓力難免罩頂,若能經由自我的良好覺察,辨識內心的喧囂,進一步理解哪一種外在刺激、內在情緒成了壓力來源,並適時地自我關照、調養,定期放鬆及運動,將能讓身心保持安寧與健康。

-----廣告,請繼續往下閱讀-----

參考文獻

  1. 鄧夙舫。(2008,9月19日)。壓力是什麼?衛生福利部桃園療養院。https://www.typc.mohw.gov.tw/?aid=509&pid=44&page_name=detail&iid=100
  2. Harvard Health Publishing. (2020, July 6th). Understanding the stress response. Harvard Health Publishing. https://www.health.harvard.edu/staying-healthy/understanding-the-stress-response
  3. Hasson, D., Theorell, T., Bergquist, J., & Canlon, B. (2013). Acute stress induces hyperacusis in women with high levels of emotional exhaustion. PloS one, 8(1), e52945. https://doi.org/10.1371/journal.pone.0052945
  4. Teague, T. (2019, May 20th). A Link Between Stress and Hearing Loss. Hearing Consultants. https://hearingconsultants.com/a-link-between-stress-and-hearing-loss/#:~:text=Stress%20can%20Cause%20Hearing%20Loss,of%20oxygen%20and%20other%20nutrients
  5. 簡婉曦。(2021,1月27日)。【焦慮腦學】有一種恐懼,害怕聲音可能存在。VOCUS。https://vocus.cc/article/6011126efd89780001410d53
  6. Zorn, J & Marz, L.(2022). Golden: the power of silence in a world of noise. Harper Wave.
  7. Kirste, I., Nicola, Z., Kronenberg, G., Walker, T. L., Liu, R. C., & Kempermann, G. (2015). Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis. Brain Structure & Function, 220(2), 1221–1228. https://doi.org/10.1007/s00429-013-0679-3
  8. Pfeifer, E., Fiedler, H., & Wittmann, M. (2020). Increased relaxation and present orientation after a period of silence in a natural surrounding. Nordic Journal of Music Therapy, 29(1), 75–92. https://doi.org/10.1080/08098131.2019.1642374
雅文兒童聽語文教基金會_96
56 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。