0

1
0

文字

分享

0
1
0

隕落在一戰戰場的兩位科學家:莫斯利與史瓦西——《愛因斯坦冰箱》

商周出版_96
・2019/08/22 ・4137字 ・閱讀時間約 8 分鐘 ・SR值 584 ・九年級

國小高年級科普文,素養閱讀就從今天就開始!!

世界大戰結束一百周年,特別撰寫這篇文章來紀念這兩位在戰爭中不幸喪生的優秀物理學家。

協約國的亨利.莫斯利

By AIP Emilio Segre Visual Archives, W. F. Meggers Gallery of Nobel Laureates, Public Domain

莫斯利(Henry Gwyn Jeffreys Moseley,1887~1915)出生於英國南部海岸的韋茅斯。他自小就出類拔萃,拿到獎學金進入著名的伊頓公學,1906 年得到物理與化學獎。同一年他進入牛津大學的三一學院就讀。1910 年從牛津大學畢業後不久就進入曼徹斯特大學(Victoria University of Manchester)擔任助教;從第二年起,莫斯利開始全力投身研究工作,在當時的實驗物理泰斗拉塞福的指導下從事研究。

莫斯利發現X射線波長與X射線管靶中的金屬元素原子序之間有系統性的數學關係。 一個L→ K的躍遷傳統上被稱為Kα,一個M→K的躍遷稱為Kβ,一個M→L的躍遷名為Lα,以此類推。圖/商周出版提供

莫斯利在 1912 年發現放射性物質像是鐳,在發生貝他衰變的時候會產生高電位,由此莫斯利發明第一個原子能電池,也稱為核電池。

莫斯利的裝置由一個內部鍍銀的玻璃球體組成,鐳發射器安裝在中心的電線尖端;來自鐳的帶電粒子在從鐳快速移動到球體內表面時產生電流。但是真正讓莫斯利在史上留名的卻是「莫斯利定律」(Moseley’s law),這個發現不僅在物理上非常重要,在化學更是重要,讓我們花點工夫瞭解它。

莫斯利定律

1913 年,莫斯利用晶格繞射的方法測量多種金屬化學元素的 X 光光譜,發現 X 射線波長與 X 射線管靶中的金屬元素原子序之間有系統性的數學關係,這就是所謂的「莫斯利定律」。

在量子力學的發展歷史裡,這個定律佔有舉足輕重的角色,因為莫斯利發現剛發表不久的波爾原子模型可以解釋這個神祕的定律,從此之後波爾原子模型才開始受到世人的矚目。

E(kev)=K(Z-1)2。Z是原子序 = 質子數。波爾模型解釋莫斯利定律。圖/商周出版提供

莫斯利定律不僅證實波爾原子模型,開啟後來波濤洶湧的量子革命。也是人類第一次理解到原子核的單位電荷數目,也就是所謂原子序是決定元素化學性質的關鍵。在發現這定律之前,原子序只是一個元素在週期表內的位置,並沒有牽扯到任何可測量的物理量。

莫斯利只從事短短的兩年研究,就得到非常豐碩的成果。1914 年,莫斯利辭去曼徹斯特大學的職位,計劃回到牛津大學繼續他的研究,但八月第一次世界大戰爆發,他不顧家人與朋友的反對,毅然決然放棄牛津大學提供的職位,報名參加英軍的皇家工兵部隊。

他在軍中負責在戰場上架設電話來傳遞命令,這可是非常危險的工作;1915 年 4 月,在加里波利戰役中架設電話的任務中,他被土耳其軍隊的一名狙擊手擊中頭部而當場身亡,年僅二十七歲。

同盟國的卡爾.史瓦西

接下來要紀念的是同盟國這邊的史瓦西(Karl Schwarzschild,1873~1916),他出生於德國美因河畔的法蘭克福的一個猶太家庭。史瓦西十一歲時開始在法蘭克福的猶太小學學習,之後升入當地高中。他在這一時期就表現出對天文學的興趣,常常攢下零用錢去購買透鏡等零件來製造望遠鏡。

他的這份興趣受到他父親的朋友愛潑斯坦(Theobald. Epstein)教授的鼓勵,愛潑斯坦在當地擁有一間私人業餘天文台。史瓦西與愛潑斯坦的兒子保羅.愛潑斯坦(Paul Epstein)終身都是好友,保羅後來成為數學家。

工作中的史瓦西。圖/wikimedia

卡爾自幼就有數學神童之稱,未滿十六歲就發表兩篇天體力學的論文,登在期刊《天文新聞》(Astronomische Nachrichten)。1891 年,他進入史特拉斯堡大學就讀,學習了兩年實用天文學。1893 年,卡爾進入慕尼黑大學繼續進修,並在 1896 年取得博士學位。卡爾的博士論文題為《均一轉動流體平衡態的龐加萊理論》(Die Poincaresche Theorie des Gleichgewichts einer homogenen rotierenden Flussigkeitsmasse),他的指導教授是當時德國首屈一指的天文學家雨果.馮.澤利格(Hugo Hans Ritter von Seeliger)1

1897 年起,卡爾在維也納的庫夫納(Kuffner)天文台擔任助理。在那裡卡爾發展一個用來計算攝影材料性質的公式,其中牽涉到一項指數,現在被稱作史瓦西指數。

史瓦西定律

E= Itp。E 是「曝光效果」—即所引發的光敏材料不透明度的變化—的量度(與在倒易律適用區域的曝光值H=It等同),I 是亮度,t 是曝光時間,p 是史瓦西係數。史瓦西的經驗值 p=0.86。

攝影銀版與人眼對不同波段的光感光度雖然不同,兩者對於恆星光度的標度卻可以通過共同的零點聯繫在一起。而人眼觀測與攝影而得的星等的差異可以用來估測恆星的溫度。卡爾藉此在 1899 年發現造父變星的溫度漲落效應。

造父變星是建立銀河和河外星系距離標尺的可靠且重要的標準燭光,因為其變光的光度和脈動週期有著非常強的直接關聯,所以知道它的脈動周期就可以得知它的光度,再與視星等相比就能得知它與地球的距離了2

1901 年,卡爾成為哥廷根大學的教授,開始有機會與一些大師一同工作,包括數學大師大衛.希爾伯特與赫爾曼.閔可夫斯基。卡爾後來還成為哥廷根天文台的台長。

恆星的二流理論

1904 年,卡普坦提出恆星的二流理論,認為全天的恆星大體上朝著兩個方向流動。這個理論為日後建立銀河系自轉的理論奠定基礎。卡爾對於恆星自行的統計研究正是雅各布斯.卡普坦的二流理論的源流之一。

1906 年,卡普坦提議在天空中均勻、隨機地選出 206 個區域(卡普坦選區),由世界各地的天文台分工協作進行恆星計數。這些工作開創統計天文學的先河,促進恆星天文學和星系動力學的發展,為人們了解銀河的結構起巨大的推動作用。1907 年,卡爾在這一理論的基礎上發現銀河系中恆星運行速度的分布規律,之後在銀河自轉理論的架構內得到確認。

為紀念史瓦西,以他名字命名的卡爾·史瓦西天文台。圖/wikimedia

除了天文觀測之外,卡爾在星體演化的理論也有重要的貢獻。1906 年,史瓦西在恆星大氣層理論中引入輻射平衡的概念。在這種狀態下,恆星大氣層內通過輻射完成的能量交換、對流以及熱導率都可以忽略。他在維恩定律3的基礎上得到輻射平衡的數學理論,並發展相應的恆星大氣層結構模型。這個模型是非對流恆星結構模型的基礎。

維恩位移定律(Wien’s displacement law)是物理學上描述黑體電磁輻射光譜輻射度的峰值波長與自身溫度之間反比關係的定律:一個物體愈熱,其輻射譜的波長愈短(或者說其輻射譜的頻率愈高)。

史瓦西還曾研究過恆星輻射層中粒子平衡理論及其在彗尾中的應用、光學儀器像差、電動力學中的變分原理以及波爾模型中氫原子的斯塔克效應3。他引入的作用量-角度座標4對於哈密頓量守恆系統的研究也是非常重要。

1909 年起,卡爾擔任波茨坦天文台的台長。這是整個德國天文學界的龍頭。在 1910 年至 1912 年間,卡爾編制精確的 3500 顆視星等高於 7.5 的恆星的目錄,這一統計工作對於估計恆星的溫度以及距離非常重要。這時期,他還推導恆星的絕對星等和視星等與空間密度之間的通用積分方程式。

1912 年,卡爾更上一層樓成為地位崇高的普魯士科學院會員。1914 年,第一次世界大戰爆發後,儘管他已年過四十,依然選擇入伍服役,進入遠程炮兵指揮所工作,研究炮彈軌跡計算。1915 年,他將有關軌跡修正的報告(解密後於 1920 年發表)寄給普魯士科學院,並因此獲得普魯士軍人最高榮譽的鐵十字勳章。

史瓦西解

1915 年,卡爾在東線服役時寫了兩篇關於相對論的論文。當時愛因斯坦剛剛發表廣義相對論,其中的重力場方程式是非線性的耦合方程式,所以愛因斯坦利用微擾法得到近似解,進一步解釋水星的進動。

然而史瓦西得到一般性重力理論方程式的第一組嚴格解:一個球對稱不帶電荷的質點產生的重力場的解;第二篇則是質量均勻分布的球狀物體周圍中靜態的、均向性的重力場的解。這個解被稱為「史瓦西解」。

兩個自由物體分別在古典重力(左圖)和史瓦西度規(右圖)運動的情形。圖/wikimedia

史瓦西解後來在黑洞的研究上扮演非常重要的角色。愛因斯坦對卡爾在這麼短的時間內就找到這麼複雜方程式的嚴格解感到非常驚訝,對他的數學能力也是讚嘆不已。之後愛因斯坦協助將他的結果發表在普魯士科學院會刊,然而發表當時卡爾已經在俄國前線的戰壕中染上一種自身免疫性疾病天皰瘡。1916 年 3 月,病重的卡爾被送回德國,5 月 11 日終於不敵病魔,與世長辭;葬於哥廷根的中央墓地,享年只有四十二歲。

一百年就這樣過去了,過去浴血奮戰的戰場早已成為遊客如織的景點,成排的十字架在高明的攝影師手下甚至成了奇景。無名戰士墓的衛兵換哨更成了吸引觀光客的節目,然而對莫斯利與卡爾,我只想引用羅伯特.勞倫斯.畢昂的〈致戰歿者〉詩句表達我的哀悼與景仰之情:

「當我們化為灰塵時,眾星依然明亮,
在天上的平原上成列運行;
閃爍在我們這個黑暗時代閃亮的眾星啊!
到最後,到最後,他們仍然健在。」

注釋:

  1. 澤利格的主要研究是對波昂星表和天文協會波昂部分星體目錄的恆星統計,以及所導致的宇宙結構的結論。他還通過對土星環反照率變化的研究證實了馬克士威有關土星環構成成分的理論。
  2. 造父變星脈動的原因被稱為「愛丁頓閥」。氦是過程中最活躍的氣體。雙電離(缺少兩顆電子的氦原子)的氦比單電離的氦更不透明。氦愈熱,電離程度也愈高。在造父變星脈動循環最暗淡的部分,在恆星外層的電離氣體是不透明的,所以會被恆星的輻射加熱,由於溫度的增加,恆星開始膨脹。當它膨脹時,開始變冷,所以電離度降低並變得比較透明,允許較多的輻射逃逸。於是膨脹停止,並且因為恆星重力的吸引而收縮。這個過程不斷重覆,造成星球半徑不斷變化,亮度也跟著變化。
  3. 史塔克效應(Stark effect)是原子和分子光譜譜線在外加電場中發生位移和分裂的現象。分裂和位移量稱為史塔克分裂或史塔克位移。
  4. 在古典力學裡,作用量-角度坐標(action-angle coordinate)是一組正則坐標,通常在解析可積分系統時有很大的用處。應用作用量-角度坐標的方法不需要先解析運動方程式,就能夠求得振動或旋轉的頻率。作用量-角度坐標主要用於完全可分的漢密爾頓-雅可比方程式。

——本文摘自泛科學 2019 年 8 月選書《愛因斯坦冰箱》,2019 年 7 月,商周出版。

文章難易度
商周出版_96
90 篇文章 ・ 340 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商業出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
1

文字

分享

0
0
1
邏輯是絕對的,但情緒是彈性的:淺談物理學家狄拉克與情緒的故事——《情緒的三把鑰匙》
大塊文化_96
・2022/10/01 ・3512字 ・閱讀時間約 7 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

保羅.狄拉克(Paul Dirac)是二十世紀最偉大的物理學家之一,他不僅開創量子力學,也是反粒子理論等領域的研究先鋒。身為量子力學先驅,狄拉克毫無疑問是形塑現代世界的關鍵要角,舉凡主宰當前社會的電子學、電腦、通訊及網路科技,無不以他的理論為基礎。

延伸閱讀:開創了量子電動力學──狄拉克誕辰│科學史上的今天:8/8

保羅.狄拉克是二十世紀最偉大的物理學家之一。圖/Wikipedia

狄拉克在邏輯與理性思考方面的天賦,使他躋身百年來最偉大思想家之列;然而,年輕時的他在與旁人交流時幾乎沒有情緒、極度缺乏親和力,這點也同樣異於常人。他直言自己對其他人、甚至對「人」的感受毫無興趣。

「我從小就不懂喜歡或愛為何物。」狄拉克對朋友如此表示。

即使長大成人,他亦不尋索這類情感。

「我的人生主要關注事實,而非感受。」他說。

狄拉克一九○二年生於英國布里斯托,[1]母親是英國人,父親是瑞士人、也是一名以壞脾氣著稱的學校老師。狄拉克和他的手足、母親成天被父親言語霸凌,他父親甚至堅持三個孩子必須以他的母語「法語」和他交談,不准說英語。

狄拉克一家總是分開用餐:父親和狄拉克在餐室,說法語;母親和另外兩名手足在廚房,講英語。狄拉克法語說得不流利,每次犯錯必遭父親責罰;於是他很快就學會盡可能少開口,這種沉默寡言的性格一直延續到青年時期。

擁有極高的天賦卻缺乏情緒

儘管狄拉克學術天分極高,但這份天賦在處理日常瑣事和挑戰方面幾乎派不上用場。人類演化至今並非單靠理智思維行事,而是在情緒的引導及啟發之下進行理性思考;但狄拉克身上僅有冰冷的智力活動,嚴重缺乏喜悅、希望與愛。

狄拉克身上僅有冰冷的智力活動,嚴重缺乏喜悅、希望與愛。圖/Pixabay

一九三四年九月,狄拉克造訪普林斯頓高等研究院(Institute for Advanced Study)。到訪那天,他信步走進一家名為「巴爾的摩午餐館」的餐廳用餐,在那兒遇見了匈牙利籍、同為物理學家的尤金.維格納(Eugene Wigner)。

與尤金同桌的還有一名正在抽菸、打扮入時的女子——她是維格納的妹妹瑪姬。瑪姬剛離婚,帶著兩個年幼的孩子,她個性活潑,對科學一竅不通。多年後,瑪姬回憶道,當年的狄拉克骨瘦如柴,失魂落魄,看起來有點悲傷又焦慮脆弱,令她有些不捨,於是她請哥哥邀狄拉克一道用餐。

瑪姬可謂狄拉克的「反粒子」——她是個性情中人,健談、浮躁,有些附庸風雅;反觀他則安靜、客觀,慎思熟慮。不過在那日午餐之後,狄拉克與瑪姬不時相約晚餐,兩人的友情即隨著多次「冰淇淋蘇打與龍蝦美饌之約而日益深刻」(狄拉克的自傳作者葛拉漢.法梅洛〔Graham Farmelo〕如此寫道)。數月之後,瑪姬返回布達佩斯,狄拉克也回到倫敦。

瑪姬慢慢喚醒狄拉克的情緒

回國之後,瑪姬每隔幾天就寫信給狄拉克。一封封長信滿是各種新聞消息、流言八卦,但最多的還是心情絮語。狄拉克大概幾週才回信一次,寥寥數語。

「恐怕我不像您這麼會寫信。」他寫道。

「或許是我的感受過於貧乏之故吧。」

回國之後,瑪姬每隔幾天就寫信給狄拉克。圖/Pixabay

兩人的溝通不良令瑪姬倍感挫折,狄拉克卻不明白她因何苦惱。他倆繼續維持柏拉圖式的關係,書信往返、偶爾見面,彼此的羈絆也越來越深。

某次從布達佩斯拜訪瑪姬回來以後,狄拉克寫道:

「那天離開妳以後,我覺得很難過,此刻也仍然非常想念妳。我不明白自己怎麼會這樣。通常我跟別人分開以後,不太會想念對方。」

在那之後不久,兩人於一九三七年一月結為連理,狄拉克也領養瑪姬的兩個孩子。狄拉克在婚姻生活中體會到他曾以為不可能擁有的幸福快樂。狄拉克一家和樂融融,直到一九八四年狄拉克過世;那時,他和瑪姬的十五周年結婚紀念日才剛過不久。

狄拉克在某封信上寫道:

「瑪姬,我親愛的,妳是我最心愛的人。妳把我的人生變得十分美好,使我更像個人。」

狄拉克在婚姻生活中體會到他曾以為不可能擁有的幸福快樂。圖/Pixabay

狄拉克對瑪姬的情感喚醒了他的心。早年,無法觸及情感的他頂多只是「半個人」,然而在找到瑪姬、找回他自己的情感以後,他看世界的眼光不同了,跟其他人的互動方式改變了,也為自己的人生做了不一樣的決定。據同事所言,狄拉克簡直變了一個人。[2]

找回情緒後狄拉克的改變

一旦找回情緒,狄拉克開始喜歡與人作伴,而且——就本書討論的主題而言,最最重要的是,他也察覺情緒對他的專業思考是有好處的。

這是狄拉克在精神層次的重要頓悟。往後數十年間,曾有許多舉世聞名的物理學家向這位大師請益,請教他物理研究的成功祕訣。狄拉克怎麼回答?法梅洛那本厚達四百三十八頁的狄拉克傳記便是以這段問答劃下句點。

法梅洛寫道,狄拉克建議後生晚輩:「最重要的是:聽從你的情感。」[3]

狄拉克這話是什麼意思?冷冰冰的理論物理邏輯何以受惠於情感?在人類所從事的各行各業中,若要一般人選出他們認為最不需要摻雜情緒的工作,理論物理想必名列前茅。邏輯與精確無疑是在這個領域成功發展的必要條件,但情感扮演的角色同等重要。

若是擁有高超的邏輯分析技巧便足以成功駕馭物理學,那麼物理系應該只需要電腦,用不上物理學家。各位或許以為,物理學不過就是一堆「A+B=C」的方程式,然而在做研究的時候,物理學家經常會碰上「A+B」可能等於C、也可能等於D或E的情形,端賴他們選擇哪一種假設、或如何取近似值而定。其實就連該不該探討「A+B」本身也是個選擇題——也許該換成「A+C」,或試試「A+D」。又或者根本應該放棄這套辦法,另覓其他更簡單的研究方式。

情緒引導著你的思考

我在第二章提過,人類思維的根本基礎受制於固定腳本,情緒則是更有彈性、能應付各種新處境的後起之秀——這套觀念同樣適用於物理學:情緒能引導你根據一些記載了目的和經驗的意識及潛意識思考過程(你可能從未察覺這些是怎麼記錄下來的),選擇用哪一條數學路徑來探討問題。

就像古時候的探險家大多憑藉知識結合直覺尋路、橫越曠野,物理學家不僅仰賴數學理論,也依從感覺:偉大的探險家在決定繼續推進時,通常拿不出像樣的理由支持他的選擇,而物理學想必偶爾也會受到一些「非理性」衝動的刺激,繼續跟那些艱澀的數學計算周旋到底。

就像古時候的探險家大多憑藉知識結合直覺尋路、橫越曠野,物理學家不僅仰賴數學理論,也依從感覺。圖/Pixabay

如果最精確、將分析算計發揮到極致的思考活動都需要情緒調和,方能成功,那麼,若說你我的日常思考與決定也同樣深受情緒影響,想來就不令人意外了。在我們的一生中,鮮少有清晰明確的途徑或行動可供選擇,我們多半根據種種複雜的環境條件、事實、風險、可能性和不完整的資訊做出抉擇。

我們的大腦會處理、分析這些數據資料,算出心智與身體的應對方式。正如同我父親那晚在鐵絲圍籬前猶豫是否該加入同伴,大多數人在做決定時,也會相當程度受到情緒影響、做出很難單憑邏輯解釋的結論。接下來,我們會讀到情緒對心智解析的重要影響——其影響有好(如狄拉克的例子)有壞(請見下一則故事)——,明白箇中含意。

參考資料

  1. 狄拉克的生平故事大多出自葛拉漢.法梅洛(Graham Farmelo)The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom (New York: Perseus, 2009), 252–63.
  2. Ibid., 293.
  3. Ibid., 438.

——本文摘自《情緒的三把鑰匙:情緒的面貌、情緒的力量、情緒的管理-情緒如何影響思考決策?》,2022 年 8 月,網路與書出版,未經同意請勿轉載。

大塊文化_96
5 篇文章 ・ 10 位粉絲
由郝明義先生創辦於1996年,旗下擁有大辣出版、網路與書、image3 等品牌。出版領域除了涵括文學(fiction)與非文學(non-fiction)多重領域,尤其在圖像語言的領域長期耕耘不同類別出版品,不但出版幾米、蔡志忠、鄭問、李瑾倫、小莊、張妙如、徐玫怡等作品豐富的作品,得到讀者熱切的回應,更把這些作家的出版品推廣到國際市場,以及銷售影視版權、周邊產品的能力與經驗。

2

7
3

文字

分享

2
7
3
宇宙到底從哪來?從量子力學和相對論來看「宇宙起源」,解釋完全不一樣!——《宇宙大哉問》
天下文化_96
・2022/09/25 ・2200字 ・閱讀時間約 4 分鐘

  • 作者/豪爾赫.陳、丹尼爾.懷森
  • 譯者/徐士傑、葉尚倫

宇宙從何而來?

每當仰望滿天星斗絢爛壯麗的夜空,或驚嘆微觀世界錯綜複雜的美景時,你不禁會問:「這一切從何而來?宇宙為什麼存在?是什麼東西或是誰負責這一切?」

長期以來,人們一直不斷臆測,讓人驚嘆不已的宇宙真實起源。當然,這比起我們擁有物理學或漫畫的時間要長得多。瞭解宇宙起源很重要,因為有可能會解釋我們存在的來龍去脈。我們想知道我們是怎麼來的,因為這問題的答案可能揭露:我們為什麼在這裡,以及我們應該如何度過時間。如果你知道宇宙從何而來,你的生活方式可能會改變。

因此,在所有問題中最大的問題是,物理學究竟可以告訴我們什麼?

在一開始的時候

在我們問宇宙從何而來或它是如何形成之前,我們需要先退一步想想。我們首先要問的應該是「宇宙是誕生出來的,還是本來就一直存在?」

你可能會驚訝的發現,物理學對這個問題有很多論述。可惜的是,很多論述內容並不是很一致。事實上,量子力學和相對論這兩個偉大的理論,在宇宙主題上指出了兩個截然不同的方向。

量子宇宙

量子力學表明宇宙遵循著我們不熟悉的規則。根據量子力學,粒子和能量以奇怪和不確定的方式表現。這可能令人非常困惑,但幸運的是,這跟我們手上的問題並不相關。因為量子力學對宇宙的過去和未來實際上是一清二楚的。

量子力學用量子態來描述事物。量子態告訴你,與量子對象交互作用時,事情可能發生的概率。例如,它可能會告訴你粒子位置的機率。你可能不知道粒子現在在哪裡,但你可以知道它可能在哪裡。

量子態很有趣,因為如果你知道今天量子物體的狀態,你可以用它來預測明天、兩週後,或者十億年後的狀態。量子力學中最著名的方程式是薛丁格方程式,跟貓和盒子無關。薛丁格方程式告訴你:如何利用你對宇宙的瞭解並將宇宙向未來投射。它也可以反推,可以利用你對現在的瞭解,告訴你宇宙在過去是什麼樣子。

根據量子力學,這種預測能力沒有時間限制。它的基本原則是:量子資訊不會消失,只是轉變為新的量子態。也就是說,如果你知道宇宙今天的量子態,就可以計算出它在任何時間點的量子態。量子力學告訴我們,宇宙在時間上永遠向後和向前推展。

這代表一個非常簡單的事實:宇宙一直存在,並將永遠存在。如果我們對量子力學的理解是正確的,那麼宇宙就沒有起始點。

相對論宇宙

然而,愛因斯坦相對論卻告訴我們一個截然不同的故事。量子力學有個問題,它通常假設空間是靜態的,就像一個固定的背景,你可以在那裡懸掛粒子和場。但是相對論告訴我們,這觀念大錯特錯。

根據相對論,空間是動態的,它可以彎曲、伸展和壓縮。我們可以看到空間在黑洞或太陽之類的重物體附近彎曲。愛因斯坦的理論還描述了整個空間如何膨脹。空間不僅僅是平坦的空虛;它被重物局部扭曲,並且愈來愈大。

這個瘋狂的想法最初來自於相對論中的數學,但現在我們有實驗能加以證明。透過望遠鏡,我們可以看到星系每年愈來愈快的遠離我們。宇宙中的一切似乎都變得愈來愈分散和愈來愈冷,就像氣體在膨脹時冷卻一樣。

對宇宙的起源來說,這代表什麼含義呢?呃……如果把時鐘倒轉,我們的觀察預測出宇宙曾經更熾熱、更密集。如果回溯足夠遠的時間,宇宙就會到達一個特殊的點:奇異點。

此時,宇宙的密度實在是太大了,甚至讓相對論的計算結果顯得有點荒謬。相對論預測宇宙變得非常緊密,空間又異常彎曲,最終達到了一個無限密度點。

按照相對論的觀點,宇宙在某種程度上確實有個開端,或者說至少有個「特殊時刻」。我們所看到的一切,包括所有空間,都來自奇異點。可惜的是,相對論不能告訴我們那一刻發生了什麼,但我們知道它與之後的任何時空點都不一樣。它就像一堵無法跨越的牆,無法用相對論解釋。

孰是孰非?

現代物理學的兩大支柱以大相逕庭的觀點來解釋可能的宇宙起源。一方面,量子力學告訴我們宇宙是永恆的,一直存在。另一方面,相對論告訴我們宇宙來自一個發生在一百四十億年前的無限密度點。

我們知道量子力學不可能完全正確,因為它沒有辦法描述關於宇宙的某些事。例如,量子力學沒有辦法描述重力或空間彎曲。但同時,我們也知道相對論並不完全正確,因為它在奇異點處崩潰,並且忽略了宇宙的量子性質。

——本文摘自《宇宙大哉問:20個困惑人類的問題與解答》,2022 年 8 月,天下文化,未經同意請勿轉載。

所有討論 2
天下文化_96
107 篇文章 ・ 592 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
2

文字

分享

0
1
2
被吸進黑洞會怎樣?黑洞和一般的洞,哪裡不一樣?——《宇宙大哉問》
天下文化_96
・2022/09/24 ・2414字 ・閱讀時間約 5 分鐘

  • 作者/豪爾赫.陳、丹尼爾.懷森
  • 譯者/徐士傑、葉尚倫

如果我被吸進黑洞會怎麼樣?

很多人似乎都有這個疑問。

如果路上突然出現一個黑洞,會發生什麼事?圖/天下文化提供

「進入黑洞後會發生什麼事呢?」在許多科學書籍中都有提到,也是我們聽眾和讀者經常提出的問題。但是為什麼大家對這問題特別有興趣呢?難道公園裡處處都是黑洞?或是有人計畫在黑洞附近野餐,但又擔心放任他們的孩子在旁邊跑來跑去會發生問題?

可能不是。這個問題的吸睛度與實際上會不會發生無關,而是源自我們對迷人太空物體的基本好奇心。眾人皆知,黑洞是神祕莫測的奇怪空間區域,是時空結構中與宇宙實體完全脫節的「空洞」,任何東西都無法逃脫。

不過,掉入黑洞是什麼感覺呢?一定會死嗎?和掉進普通洞裡的感覺有什麼不同?你會在洞內發現宇宙深處的祕密,還是看到時空在你的眼皮子底下伸展開來?在黑洞裡面,眼睛(或大腦)能正常發揮功能嗎?

只有一種方法可以找到答案,那就是跳進黑洞。所以抓起你的野餐墊,和你的孩子說聲再見(也許是永別),然後牢牢抓緊,因為我們即將深入黑洞公園展開終極冒險。

讓我們跳進黑洞尋找答案吧!圖/天下文化提供

接近黑洞

當你接近黑洞時,注意到的第一件事可能是,黑洞確實看起來就像「黑色的洞」。黑洞是絕對黑色,本身完全不發射或反射光線,任何擊中黑洞的光都會被困在裡面。所以當你觀察黑洞時,眼睛看不到任何光子,大腦會將其解釋為黑色。

黑洞也是個不折不扣的洞。你可以將黑洞視為空間球體,任何進入黑洞的東西都會永遠留在裡面。這是因為已經留在黑洞內的東西所造成的重力效應:質量在黑洞中被壓縮得十分密集,進而產生巨大的重力影響。

為什麼?因為離有質量的東西愈近,重力愈強,而質量被壓縮代表你可以十分靠近質量中心。質量很大的東西通常分布得相當分散。以地球為例,地球質量大約與一公分寬(大約一個彈珠大小)的黑洞等同大小。如果你與這個黑洞距離一個地球半徑長,感受到的重力就如同站在地球表面一樣,都是 1g。

如果你與黑洞距離一個地球半徑長,感受到的重力就如同站在地球表面一樣。圖/天下文化提供

但是當你分別接近兩者中心時,會發生截然不同的狀況。當你愈靠近地球中心點,愈感覺不到地球重力。那是因為地球圍繞著你,把你平均的往各個方向拉。相反的,當你離黑洞愈近,感受到的重力愈大,因為整個地球質量近在咫尺的作用在你身上。這就是黑洞強大的威力,超緊緻質量對周圍事物立即產生巨大影響。

當你離地球中心越近,就越感受不到重力,但當你離黑洞中心愈近,感受到的重力卻越大。圖/天下文化提供

真正緊緻的質量會在自身周圍產生極大重力,並且在一定距離處,把空間扭曲到連光都無法逃脫(請記住,重力不僅會拉動物體,還會扭曲空間)。光不能逃脫的臨界點稱為「事件視界」,在「某種程度」上,事件視界定義了黑洞從何處開始,以此距離為半徑的黑色球體則稱為黑洞。

黑洞的大小會隨著擠進多少質量而發生變化。如果你把地球壓縮得足夠小,會得到一個彈珠大小的黑洞,因為在大約一公分距離內,光再也無法逃脫。但是如果你再壓縮更多質量,黑洞半徑就會更大。例如,你把太陽壓縮變小,空間扭曲程度更高,事件視界更遠,大約發生在距離中心點三公里處,因此黑洞寬度約六公里。質量愈大,黑洞愈大。

黑洞的大小會隨著擠進多少質量而發生變化。圖/天下文化提供

其實,黑洞的大小並沒有理論限制。在太空中我們已探測到的黑洞寬度,最小約有二十公里,最大可達數百億公里。實際上,黑洞形成的限制只有周圍環繞物質的多寡,以及所允許的形成時間。

當你接近黑洞時,可能會注意到的第二件事是,黑洞通常不孤單寂寞。有時你會看到周圍東西掉進黑洞。或者更準確的說,你會看到東西在黑洞周圍旋轉等待落入。

這種東西稱為「吸積盤」,是由氣體、塵埃和其他物質組成。這些物質沒有被直接吸入黑洞,而是在軌道上盤旋等待、螺旋進入黑洞。這景象對於小黑洞而言,可能不是那麼令人印象深刻,但如果是超大質量黑洞,確實值得一看。氣體和塵埃以超高速度飛來飛去,產生非常強烈的純粹摩擦力,導致物質被撕裂,釋放出許多能量,創造出宇宙中最強大的光源。這些類恆星(或稱類星體)的亮度,有時比單個星系中所有恆星的亮度總和還要高數千倍。

超大質量黑洞能釋放出許多能量,創造出宇宙中最強大的光源。圖/天下文化提供

幸運的是,並不是所有黑洞,甚至是超大質量黑洞,都會形成類星體(或耀星體,就此而言,像是吃了類固醇的類星體)。大多數時候,吸積盤並沒有合適的東西或條件來創造如此戲劇化的場景。這也算是一樁美事,否則的話,你一靠近活動劇烈的類星體,可能會讓你在瞥見黑洞之前就氣化了。希望你選擇落入的黑洞周圍有個漂亮的、相對平靜的吸積盤,讓你有機會接近並好好欣賞。

——本文摘自《宇宙大哉問:20個困惑人類的問題與解答》,2022 年 8 月,天下文化,未經同意請勿轉載。

天下文化_96
107 篇文章 ・ 592 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。