0

1
0

文字

分享

0
1
0

隕落在一戰戰場的兩位科學家:莫斯利與史瓦西——《愛因斯坦冰箱》

商周出版_96
・2019/08/22 ・4137字 ・閱讀時間約 8 分鐘 ・SR值 584 ・九年級

世界大戰結束一百周年,特別撰寫這篇文章來紀念這兩位在戰爭中不幸喪生的優秀物理學家。

協約國的亨利.莫斯利

By AIP Emilio Segre Visual Archives, W. F. Meggers Gallery of Nobel Laureates, Public Domain

莫斯利(Henry Gwyn Jeffreys Moseley,1887~1915)出生於英國南部海岸的韋茅斯。他自小就出類拔萃,拿到獎學金進入著名的伊頓公學,1906 年得到物理與化學獎。同一年他進入牛津大學的三一學院就讀。1910 年從牛津大學畢業後不久就進入曼徹斯特大學(Victoria University of Manchester)擔任助教;從第二年起,莫斯利開始全力投身研究工作,在當時的實驗物理泰斗拉塞福的指導下從事研究。

莫斯利發現X射線波長與X射線管靶中的金屬元素原子序之間有系統性的數學關係。 一個L→ K的躍遷傳統上被稱為Kα,一個M→K的躍遷稱為Kβ,一個M→L的躍遷名為Lα,以此類推。圖/商周出版提供

莫斯利在 1912 年發現放射性物質像是鐳,在發生貝他衰變的時候會產生高電位,由此莫斯利發明第一個原子能電池,也稱為核電池。

莫斯利的裝置由一個內部鍍銀的玻璃球體組成,鐳發射器安裝在中心的電線尖端;來自鐳的帶電粒子在從鐳快速移動到球體內表面時產生電流。但是真正讓莫斯利在史上留名的卻是「莫斯利定律」(Moseley’s law),這個發現不僅在物理上非常重要,在化學更是重要,讓我們花點工夫瞭解它。

-----廣告,請繼續往下閱讀-----

莫斯利定律

1913 年,莫斯利用晶格繞射的方法測量多種金屬化學元素的 X 光光譜,發現 X 射線波長與 X 射線管靶中的金屬元素原子序之間有系統性的數學關係,這就是所謂的「莫斯利定律」。

在量子力學的發展歷史裡,這個定律佔有舉足輕重的角色,因為莫斯利發現剛發表不久的波爾原子模型可以解釋這個神祕的定律,從此之後波爾原子模型才開始受到世人的矚目。

E(kev)=K(Z-1)2。Z是原子序 = 質子數。波爾模型解釋莫斯利定律。圖/商周出版提供

莫斯利定律不僅證實波爾原子模型,開啟後來波濤洶湧的量子革命。也是人類第一次理解到原子核的單位電荷數目,也就是所謂原子序是決定元素化學性質的關鍵。在發現這定律之前,原子序只是一個元素在週期表內的位置,並沒有牽扯到任何可測量的物理量。

莫斯利只從事短短的兩年研究,就得到非常豐碩的成果。1914 年,莫斯利辭去曼徹斯特大學的職位,計劃回到牛津大學繼續他的研究,但八月第一次世界大戰爆發,他不顧家人與朋友的反對,毅然決然放棄牛津大學提供的職位,報名參加英軍的皇家工兵部隊。

-----廣告,請繼續往下閱讀-----

他在軍中負責在戰場上架設電話來傳遞命令,這可是非常危險的工作;1915 年 4 月,在加里波利戰役中架設電話的任務中,他被土耳其軍隊的一名狙擊手擊中頭部而當場身亡,年僅二十七歲。

同盟國的卡爾.史瓦西

接下來要紀念的是同盟國這邊的史瓦西(Karl Schwarzschild,1873~1916),他出生於德國美因河畔的法蘭克福的一個猶太家庭。史瓦西十一歲時開始在法蘭克福的猶太小學學習,之後升入當地高中。他在這一時期就表現出對天文學的興趣,常常攢下零用錢去購買透鏡等零件來製造望遠鏡。

他的這份興趣受到他父親的朋友愛潑斯坦(Theobald. Epstein)教授的鼓勵,愛潑斯坦在當地擁有一間私人業餘天文台。史瓦西與愛潑斯坦的兒子保羅.愛潑斯坦(Paul Epstein)終身都是好友,保羅後來成為數學家。

工作中的史瓦西。圖/wikimedia

卡爾自幼就有數學神童之稱,未滿十六歲就發表兩篇天體力學的論文,登在期刊《天文新聞》(Astronomische Nachrichten)。1891 年,他進入史特拉斯堡大學就讀,學習了兩年實用天文學。1893 年,卡爾進入慕尼黑大學繼續進修,並在 1896 年取得博士學位。卡爾的博士論文題為《均一轉動流體平衡態的龐加萊理論》(Die Poincaresche Theorie des Gleichgewichts einer homogenen rotierenden Flussigkeitsmasse),他的指導教授是當時德國首屈一指的天文學家雨果.馮.澤利格(Hugo Hans Ritter von Seeliger)1

-----廣告,請繼續往下閱讀-----

1897 年起,卡爾在維也納的庫夫納(Kuffner)天文台擔任助理。在那裡卡爾發展一個用來計算攝影材料性質的公式,其中牽涉到一項指數,現在被稱作史瓦西指數。

史瓦西定律

E= Itp。E 是「曝光效果」—即所引發的光敏材料不透明度的變化—的量度(與在倒易律適用區域的曝光值H=It等同),I 是亮度,t 是曝光時間,p 是史瓦西係數。史瓦西的經驗值 p=0.86。

攝影銀版與人眼對不同波段的光感光度雖然不同,兩者對於恆星光度的標度卻可以通過共同的零點聯繫在一起。而人眼觀測與攝影而得的星等的差異可以用來估測恆星的溫度。卡爾藉此在 1899 年發現造父變星的溫度漲落效應。

造父變星是建立銀河和河外星系距離標尺的可靠且重要的標準燭光,因為其變光的光度和脈動週期有著非常強的直接關聯,所以知道它的脈動周期就可以得知它的光度,再與視星等相比就能得知它與地球的距離了2

1901 年,卡爾成為哥廷根大學的教授,開始有機會與一些大師一同工作,包括數學大師大衛.希爾伯特與赫爾曼.閔可夫斯基。卡爾後來還成為哥廷根天文台的台長。

-----廣告,請繼續往下閱讀-----

恆星的二流理論

1904 年,卡普坦提出恆星的二流理論,認為全天的恆星大體上朝著兩個方向流動。這個理論為日後建立銀河系自轉的理論奠定基礎。卡爾對於恆星自行的統計研究正是雅各布斯.卡普坦的二流理論的源流之一。

1906 年,卡普坦提議在天空中均勻、隨機地選出 206 個區域(卡普坦選區),由世界各地的天文台分工協作進行恆星計數。這些工作開創統計天文學的先河,促進恆星天文學和星系動力學的發展,為人們了解銀河的結構起巨大的推動作用。1907 年,卡爾在這一理論的基礎上發現銀河系中恆星運行速度的分布規律,之後在銀河自轉理論的架構內得到確認。

為紀念史瓦西,以他名字命名的卡爾·史瓦西天文台。圖/wikimedia

除了天文觀測之外,卡爾在星體演化的理論也有重要的貢獻。1906 年,史瓦西在恆星大氣層理論中引入輻射平衡的概念。在這種狀態下,恆星大氣層內通過輻射完成的能量交換、對流以及熱導率都可以忽略。他在維恩定律3的基礎上得到輻射平衡的數學理論,並發展相應的恆星大氣層結構模型。這個模型是非對流恆星結構模型的基礎。

維恩位移定律(Wien’s displacement law)是物理學上描述黑體電磁輻射光譜輻射度的峰值波長與自身溫度之間反比關係的定律:一個物體愈熱,其輻射譜的波長愈短(或者說其輻射譜的頻率愈高)。

史瓦西還曾研究過恆星輻射層中粒子平衡理論及其在彗尾中的應用、光學儀器像差、電動力學中的變分原理以及波爾模型中氫原子的斯塔克效應3。他引入的作用量-角度座標4對於哈密頓量守恆系統的研究也是非常重要。

-----廣告,請繼續往下閱讀-----

1909 年起,卡爾擔任波茨坦天文台的台長。這是整個德國天文學界的龍頭。在 1910 年至 1912 年間,卡爾編制精確的 3500 顆視星等高於 7.5 的恆星的目錄,這一統計工作對於估計恆星的溫度以及距離非常重要。這時期,他還推導恆星的絕對星等和視星等與空間密度之間的通用積分方程式。

1912 年,卡爾更上一層樓成為地位崇高的普魯士科學院會員。1914 年,第一次世界大戰爆發後,儘管他已年過四十,依然選擇入伍服役,進入遠程炮兵指揮所工作,研究炮彈軌跡計算。1915 年,他將有關軌跡修正的報告(解密後於 1920 年發表)寄給普魯士科學院,並因此獲得普魯士軍人最高榮譽的鐵十字勳章。

史瓦西解

1915 年,卡爾在東線服役時寫了兩篇關於相對論的論文。當時愛因斯坦剛剛發表廣義相對論,其中的重力場方程式是非線性的耦合方程式,所以愛因斯坦利用微擾法得到近似解,進一步解釋水星的進動。

然而史瓦西得到一般性重力理論方程式的第一組嚴格解:一個球對稱不帶電荷的質點產生的重力場的解;第二篇則是質量均勻分布的球狀物體周圍中靜態的、均向性的重力場的解。這個解被稱為「史瓦西解」。

-----廣告,請繼續往下閱讀-----
兩個自由物體分別在古典重力(左圖)和史瓦西度規(右圖)運動的情形。圖/wikimedia

史瓦西解後來在黑洞的研究上扮演非常重要的角色。愛因斯坦對卡爾在這麼短的時間內就找到這麼複雜方程式的嚴格解感到非常驚訝,對他的數學能力也是讚嘆不已。之後愛因斯坦協助將他的結果發表在普魯士科學院會刊,然而發表當時卡爾已經在俄國前線的戰壕中染上一種自身免疫性疾病天皰瘡。1916 年 3 月,病重的卡爾被送回德國,5 月 11 日終於不敵病魔,與世長辭;葬於哥廷根的中央墓地,享年只有四十二歲。

一百年就這樣過去了,過去浴血奮戰的戰場早已成為遊客如織的景點,成排的十字架在高明的攝影師手下甚至成了奇景。無名戰士墓的衛兵換哨更成了吸引觀光客的節目,然而對莫斯利與卡爾,我只想引用羅伯特.勞倫斯.畢昂的〈致戰歿者〉詩句表達我的哀悼與景仰之情:

「當我們化為灰塵時,眾星依然明亮,
在天上的平原上成列運行;
閃爍在我們這個黑暗時代閃亮的眾星啊!
到最後,到最後,他們仍然健在。」

注釋:

  1. 澤利格的主要研究是對波昂星表和天文協會波昂部分星體目錄的恆星統計,以及所導致的宇宙結構的結論。他還通過對土星環反照率變化的研究證實了馬克士威有關土星環構成成分的理論。
  2. 造父變星脈動的原因被稱為「愛丁頓閥」。氦是過程中最活躍的氣體。雙電離(缺少兩顆電子的氦原子)的氦比單電離的氦更不透明。氦愈熱,電離程度也愈高。在造父變星脈動循環最暗淡的部分,在恆星外層的電離氣體是不透明的,所以會被恆星的輻射加熱,由於溫度的增加,恆星開始膨脹。當它膨脹時,開始變冷,所以電離度降低並變得比較透明,允許較多的輻射逃逸。於是膨脹停止,並且因為恆星重力的吸引而收縮。這個過程不斷重覆,造成星球半徑不斷變化,亮度也跟著變化。
  3. 史塔克效應(Stark effect)是原子和分子光譜譜線在外加電場中發生位移和分裂的現象。分裂和位移量稱為史塔克分裂或史塔克位移。
  4. 在古典力學裡,作用量-角度坐標(action-angle coordinate)是一組正則坐標,通常在解析可積分系統時有很大的用處。應用作用量-角度坐標的方法不需要先解析運動方程式,就能夠求得振動或旋轉的頻率。作用量-角度坐標主要用於完全可分的漢密爾頓-雅可比方程式。

——本文摘自泛科學 2019 年 8 月選書《愛因斯坦冰箱》,2019 年 7 月,商周出版。

-----廣告,請繼續往下閱讀-----
文章難易度
商周出版_96
119 篇文章 ・ 362 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

101
2

文字

分享

0
101
2
時間與空間的顛覆!如何用簡單的方式了解「相對論」?——《物理角色圖鑑》
azothbooks_96
・2024/09/16 ・2086字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

時間不再絕對?牛頓與愛因斯坦的時間觀差異

川村老師,請用簡單的方式告訴我「相對論」是什麼?

圖/《物理角色圖鑑》

老師:狹義相對論源自相對性原理(Principle of relativity,指物理定律〔Physical law〕適用於所有以等速直線運動的物體) 與光速恆定原理。根據這個理論,時間是相對的,依不同觀察者而有所差異。牛頓力學中的時間是絕對的,愛因斯坦則認為,可依不同的觀察者位置對時間進行不同定義。

圖/《物理角色圖鑑》

老師:之前在討論「力」時,也提過離心力。離心力是「慣性力」的一種,慣性力指物體在加速運動時感受到的與加速方向相反的力。置身在沒有窗戶的電梯中,當電梯向上加速,電梯內的人會受到向下的慣性力(譯注:因看不到外面,使得他無法判斷電梯的運動情況)。若加速度為 g,物體質量為 m,則物體所受慣性力為 mg,與在地面所受的重力 mg 相同。愛因斯坦無法區別這兩種 mg 的差異,所以視為等效。但無論慣性力的方向為何,物體都會往向量合成後的視重力場方向掉落。

時間在任何地方都固定不變嗎?

世界上最快的速度是光速。物體的移動速度若接近光速,它的時間進程就會變慢。也就是說,在接近光速的太空船上,時間會變得悠長。而且,接近光速的物體長度會朝行進方向收縮。

物體只要具有質量,即使在靜止狀態依然擁有能量(其能量 E mc2,稱為靜止能量(Rest energy)。

-----廣告,請繼續往下閱讀-----

提到光的運動,我們已經知道光的路徑會彎曲。

1919 年,天文學家觀測到恆星發出的光線在經過太陽附近時被偏折,這種現象稱為「重力透鏡效應」(Gravitational lens),有助於了解黑洞等宇宙中質量分布的情況。此外,天體物理學家也觀測到時間的延遲。簡而言之,接近地面的時鐘行進速度會比高處的時鐘慢,GPS 也是依據這種效應來進行校正。

圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

時間

牛頓力學中的「時間」(也就是我們一般理解的時間)和相對論中的時間大異其趣。牛頓在《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica,1687)中,假設空間是均勻平坦的;從過去到未來,在任何地方都平均延伸。在牛頓力學中,全宇宙的時間一致。

但相對論否定了這一點。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

光速恆定原理指出,光的速度是固定不變的。這種狀況下,空間中不同地點發生的兩件事,對某個觀測者來說是同時發生,但對另一參考系的觀測者而言則非同時發生。也就是說,時間的前進速度並非在任何地方都相同。因此,時間和空間不能視為各自獨立的兩回事,應該一體化,視為四維空間(時空,Spacetime)。

不過,這是指物體移動速度接近光速時的情況。日常生活中,使用過去的時間觀不會有任何問題。

黑洞

黑洞(Black hole)是一種天體,因為密度極高,重力極強, 不只物質,連光都會被吸進去,無法逃逸。天體是宇宙中所有物體的總稱,具體來說,指太陽、恆星、行星、星團、星雲等。從相對論來看,黑洞周圍空間是扭曲的。照以下方式想像應該會比較容易理解:

把重物放在一大塊展開的薄橡皮布上,放置處就會凹下去,而這塊凹陷會影響到周圍。同樣的,黑洞所在之處會發生猛烈的空間扭曲,經過附近的天體會被極強的重力吸引,落入其中,連光也難逃魔掌。

-----廣告,請繼續往下閱讀-----

銀河系有許多黑洞,但具體數字不詳。2019 年,一個跨國研究計畫團隊首次拍攝到黑洞的「影子」,掀起一陣討論熱潮。

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。