0

0
1

文字

分享

0
0
1

抗生素的扶龍命格?越戰越強大的超級細菌是怎麼出現的?——《下一個物種》

PanSci_96
・2019/07/31 ・3488字 ・閱讀時間約 7 分鐘 ・SR值 560 ・八年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 編按:當醫師指示我們服用抗生素時,我們都知道必須嚴格遵守醫師的醫囑,按時服藥並完成整個療程,不可以不經醫師的允許就自行停藥,然而,這究竟是為什麼呢?現在,就讓我們來談談,抗生與細菌之間的恩怨情仇吧!

透過飲食,牲畜與人體的病菌一起串聯

人類疾病發展抗生素抗藥性的速度之快,導致我們面對這些自己親手培育出來的新疾病,恐怕很快就要束手無策。醫藥界的挫敗源自人們在飼料中添加抗生素,幫助牲畜對抗疾病。因為集約畜牧方式飼養的豬、雞和牛隻生存空間過度擁擠,所以容易生病。然而,這些作為卻創造出對抗生素免疫的超級病菌  (superbug) 。

病菌之所以產生抗藥性,通常是因為醫生開藥的劑量不足以殺死病菌,或者你沒有按照處方服用規定的藥物劑量,導致病菌逐漸強大,在你後續服藥的過程中,病菌受到藥物的影響愈來愈小。撐過第一次抗生素治療而存活下來的細菌會繼續增殖,並對後續的治療產生抗性。編註

倘若我們攝取的肉品源自於服用過抗生素的動物,我們體內的病菌也會因此發展出抗藥性。所謂集約畜牧,就是在非常狹小的空間裡把動物養得肥肥胖胖,供應肉品市場所需,對這些動物而言,疾病是個不容忽視的問題。在動物飼料內添加抗生素固然可以減輕疾病帶來的威脅,並且促進動物生長,然而有些科學家發現,人類疾病發展出抗藥性,一部分是因為我們吃了受到抗生素污染的動物農產品。

在狹窄空間內的集約畜牧。圖/pixabay

讓牛、雞和豬隻服用低劑量的抗生素,等於替人類疾病培養抗藥性。事實上,食物中未受監測的低劑量藥物依然會選汰出具有抗藥性的菌株。這些生存下來的細菌繼續增殖,變得愈來愈強大。

散佈在環境中的抗藥性細菌與抗生素

在使用抗生素來解決過度擁擠引發動物生病問題的集約畜牧場裡,具有抗藥性的細菌可能擴散至空氣中,進而影響附近居民。當動物糞便被沖往下游,具有抗藥性的細菌也藉此汙染人們游泳、玩水的水域。科學家甚至在佛羅里達州海灘上的沙粒當中發現海鷗帶來的抗藥性細菌。近來,美國食品藥物局宣布一項新的規範,強烈要求藥物公司和農產業者逐步停止在家禽和家畜身上使用某些抗生素,然而,這項規範並沒有強制性。根據奧斯佛的說法,這絕對無法終結細菌繼續發展抗藥性。許多使用在家畜身上的抗生素並未受到規範,微生物也將繼續針對抗生素演化出抗藥性。

不過,我們要擔心的可不是只有由農場動物引發的抗藥性問題。卡瑞研究所的水生生態學家艾瑪.羅希-馬歇爾 (Emma J. Rosi-Marshall) 研究的主題是個人健康照護產品中的抗微生物化學藥品究竟如何滲入環境中。羅希-馬歇爾表示,在牙膏和護手霜中加入抗生素,對人體健康並無助益,而且也沒有比一般的牙膏或肥皂水來得厲害,但卻提升環境中細菌的抗藥性。

若在健康照護產品中加入抗生素,容易增加環境細菌的抗藥性。圖/pexels

抗藥性是治療淋病、結核病的大敵

淋病和一些常見的疾病已經對青黴素、四環素等許多常用的抗生素產生抗性。淋病是一種性病,透過人與人之間的性行為擴散,因此和農場動物無關。世界衛生組織的報告指出,一九九〇年代末期至二〇〇〇年代初期,細菌開始發展出抗生素抗藥性之後,如今在澳洲、法國、日本、挪威、瑞典和英國,淋病已成為人們最主要的健康威脅之一。不加以治療的話,淋病會導致病人生殖器官嚴重感染和不孕,並提升感染 HIV 病毒、死產、自然流產和新生兒失明的風險。

藉由性行為傳播的淋病,也可能面臨抗藥性的治療危機。Photo by HOP DESIGN on Unsplash

結核病是另一種再度興起的疾病,這種有致命風險的肺部疾病也已發展出抗生素抗藥性。結核病病菌可以藉著病人咳嗽或打噴嚏時產生的飛沫在公共場合傳染給其他人,但主要還是家人間互相傳染為多。過去,在已開發國家,結核病已經非常罕見,然而自一九八〇年代起,世界各地結核病的病例數開始增加。一部分是因為HIV病毒的出現,這種引發愛滋病的病毒會弱化免疫系統,導致人體無法抵擋結核病病菌的攻擊。

為了擺脫結核病的糾纏,患者必須長期服用多種藥物,同時又要面對抗藥性的問題。結核病病菌有許多不同菌株已經對結核病常用藥物產生抗藥性。在俄羅斯的監獄裡,具有多重抗藥性的結核病病菌橫行肆虐,因此囚犯非常容易感染結核病,並把病菌傳染給其他人。結核病病菌已經對許多藥物免疫,並在街友和愛滋病患者身上增殖。

掃描電子顯微鏡下的結核桿菌。圖/WIKI

病菌抗藥性儼然是全球性的嚴重問題。根據估計,目前感染多重抗藥性結核病病菌的病人有六十三萬人;感染多重抗藥性淋病病菌約有八千八百萬人。此外,每年還有四億四千八百萬起感染可治癒性病──包括梅毒、衣原體性病和滴蟲病──的病例,衛生當局正密切注意這些疾病的抗藥性菌株。

未來,傳染病或將成為最大贏家

病菌發展出抗藥性以及物種減少造成新疾病誕生,我們到底該不該擔心?重大的流行性疾病究竟會如何發生?一九一八至一九一九年間,流感大流行奪走五千萬人的性命;一九六八至一九六九年發生的香港流感,約有一百萬人喪生。目前為止,愛滋病已造成約三千萬人死亡。在非洲,愛滋病仍是猖獗的殺手,患者主要是異性戀者。世界衛生組織的報告指出,二〇一二年,六十二萬七千人因瘧疾而死。現在,結核病正強勢回歸。

《禽流感》的作者葛雷格認為,禽流感是地球下一場大災難。過去二十年來,禽流感演化出一種致命的變異株,在亞洲、歐洲和中東地區橫行,感染的禽類死亡率超過五成,有些變異株的殺傷力甚至更強。禽流感的致病病原是病毒,和 H1N1 或其他常見的病毒一樣,可以透過空氣、飛沫傳播。

2014 年香港禽流感。來源:宋祥龍/大紀元

在相當罕見的狀況下,禽流感從家禽傳播至人類,成為有史以來最致命的病毒之一。約有六百起感染禽流感的病例,其中三百五十人死亡,死亡率在六成左右。「如果病毒發生突變,成為非常容易在人類之間傳播的變異株呢?」葛雷格為了著作《禽流感》接受托姆.哈特曼 (Thom Hartmann) 電視專訪時如此問道,「那就像是致命的伊波拉病毒和傳染性最強的流感病毒雜交一樣。」

後抗生素時代:不懼抗生素的超級細菌

一九〇〇年,結核病、肺炎和腸炎是人類三大主要死因。一百多年過去,如今人類的主要死因變成心臟病、癌症和中風。慢性疾病取代傳染病,成為人類最主要的殺手。這也未必是件壞事,畢竟慢性疾病主要影響年長者,因此,就在剛過去的二十世紀,傳染病的減少導致人類平均壽命至少增加了三十年。疫苗接種和抗生素是傳染病減少的重要功臣,受惠最多的主要是受傳染病影響最嚴重的年輕人。

若微生物對藥物產生免疫,藥劑即將失去功能,使傳染病肆虐不已。圖/pixabay

不過,這樣的平衡狀態正在改變。近來,世界衛生組織總幹事陳馮富珍博 (Margaret Chan) 醫師,在日內瓦對一群專家演講時,談到該如何應對抗藥性的問題。「對於我們用來拯救傳染病患者生命的藥物,有些微生物幾乎完全免疫,」她在演講中如此說道,「目前醫藥界正研發少數幾種新型的抗微生物藥物。微生物的抗藥性無可取代,這也是醫藥敗下陣來的原因。如今,我們正進入後抗生素時代,常見傳染病的殺傷力將重新崛起。倘若失去最有效的抗微生物藥劑(抗生素、抗真菌劑、抗病毒劑和抗寄生蟲藥),相信各位都知道,那表示現代醫學全面敗陣。」

疾病奪走的人命,比不上瘟疫、二戰和愛滋病。然而,倘若懷具抗藥性的新型疾病,碰上不斷增長的人類族群,再加上缺乏食物和適當營養,這些因素組成起來,可能就是造成人類滅亡的配方。

編註:抗藥性的產生,還有一個本文未提及的前提背景是細菌本有的基因多樣性或自然的基因突變;不當使用抗生素會加速篩選出具有抗藥性屬性的菌株。非必要時勿濫用抗生素,有需求則遵守醫囑,仍為減少抗藥性產生的主要法則。

——本文摘自《下一個物種》,2019 年 4 月,臉譜出版

文章難易度
PanSci_96
1013 篇文章 ・ 1231 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

2
2

文字

分享

1
2
2
細菌會說話嗎?來自生物世界最早的聲音!——《傾聽地球的聲音》
商周出版_96
・2022/12/12 ・2595字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

生物的聲音最早來自細菌,向周遭水域釋出幾不可聞的低語,或嘆息或愉悅。

如何聽見細菌的聲音

如今我們能分辨細菌的聲音,靠的是最靈敏的現代儀器。寧靜實驗室裡的麥克風能夠收到來自枯草桿菌(Bacillus subtilis)菌落的聲音,這是土壤和哺乳類動物腸道常見的細菌。這些聲音放大之後,聽起來像從緊閉的閥門逸出的嘶嘶蒸氣。當擴音器對長頸瓶裡的細菌播放類似的聲音,細胞會加速生長,這種現象背後的生化原理仍是個謎。

我們也能「聽見」細菌的聲音,方法是將細菌放在極微小的支柱頂端,當細菌被放置在這個微小支柱上,它的細胞表面的任何振動,都會牽動支柱。

科學家因此可以用雷射光鎖定支柱,記錄並測量這些動態。透過這種方法,我們發現細菌時時刻刻顫動著,製造出持續性的聲波。這些聲波的高峰與低谷,也就是細胞的振動幅度,大約只有五奈米,是細菌細胞寬度的千分之一,比我說話時聲帶振動的幅度小五十萬倍。

細胞會發出聲音,是因為它們持續在動。

它們仰賴數以千計的內在流動與韻律存活,而這些律動都經由化學物質的反應與連結塑造或調節。基於這樣的動態,也難怪它們的細胞表面會產生那麼多振動。我們對這些聲音的無視令人不解,尤其如今的科技已經允許人類的感官進入細菌的領域。

細菌時時刻刻都在震動,持續發生聲波。圖/pexels

細菌是在溝通嗎?

在學習過程中,從來沒有人要求我在實驗中用耳朵聆聽。細胞的聲音不只存在我們的感知邊緣,也存在我們的想像之中,被我們的習慣與先入為主的看法定型。

到目前為止,只有二十多份學術論文探討細菌的聲音。同樣的,我們雖然知道細菌表面的蛋白質可以偵測物理動作,比如切斷、延展與碰觸,但這些感應器如何與聲音產生作用,還需要進一步研究。也許這其中存在著文化偏誤。身為生物學家,我們太沉迷於視覺圖表。

細菌會說話嗎? 它們會藉由聲音跟彼此溝通,就像它們會透過化學物質在細胞之間傳遞訊息一樣嗎? 由於細胞之間的溝通是細菌的基本活動之一,乍看之下聲音似乎是可能的通訊手段。

細菌是群聚生物,它們以緊密交織的薄膜或團塊的形式生活在一起。某些化學或物理攻擊輕易就能殺死單一細胞,卻傷害不了它們。細菌的壯盛仰賴網絡內的團隊合作,而就基因與生化的層級而言,它們彼此始終不斷在交換分子。

只是,儘管它們接觸到與自己類似的聲音時會加速生長,代表它們可能「聽得見」,但到目前為止,還沒有人記錄到細菌間以聲音傳訊的實例。

聲音的通訊或許不適合細菌族群。它們生活的範圍極為狹窄,分子能在幾分之一秒內就從一個細胞抵達另一個細胞。細菌內部有數以萬計的分子,是規模龐大又複雜的現成語言。對細菌而言,化學物質通訊或許比較省力迅速,也比聲波更為精密。

細菌可能「聽得見」彼此的聲音。圖/envato.elements

寂靜的生命世界

大約有二十億年的時間,細菌和外形與它們類似的親族古細菌是地球上僅有的生物。阿米巴原蟲、纖毛蟲和它們的親族這類比較大型的細胞,大約在十五億年前演化出來。這些較大的細胞又稱真核生物,後來演化出植物、真菌和動物。單一的真核細胞就跟細菌一樣,會持續不斷的振動,好像也不靠聲音彼此溝通。酵母菌細胞不對伴侶歌唱;阿米巴原蟲也不會大聲警告近鄰。

最早的動物延續這份沉寂。這些海洋動物的身體像圓盤或褶絲帶,是由一縷縷蛋白質纖維連結而成的細胞所構成。如果我們現在能將牠們拿在手上,觸感會像片狀海帶,又薄又有彈性。牠們的化石殘骸藏身在有五億七千五百萬年歷史的岩石裡。這些海洋動物統稱為埃迪卡拉動物群(Ediacaran fauna),名稱取自這些化石出土的澳洲山區。

埃迪卡拉的動物軀體過於簡單,看不出牠們的來源,也沒有留下任何蛛絲馬跡,好讓我們將牠們歸類於如今已經發現的族群。沒有節肢動物的分段式盔甲;沒有魚類背部的硬質脊柱;沒有嘴、腸道和器官。還有,幾乎也能確定牠們沒有發聲結構。

這些動物的軀體沒有任何部分能製造出連貫性的刮擦聲、爆破聲、重擊聲,或撥弦聲。現今的一些動物外形與牠們類似,結構卻比較複雜,比如海綿、水母和海扇,同樣也不會發出聲音,顯示這些原始動物的聚落一片靜寂。除了細菌和其他單細胞生物的低語,演化只為地球添加了碟狀或扇形軟體動物周遭潑濺回旋的水聲。

生物世界第一道聲響:「纖毛的出現」

長達三十億年的時間裡,生命幾乎靜默無聲,唯一的例外是細胞壁的振動,和早期圍繞動物周遭的渦流。可是在那漫長、靜謐的歲月裡,演化創造出一個後來改變地球聲響的結構。這個創新產物是細胞膜上一根擺動的細毛,它能幫助細胞游泳、前進和搜集食物。

這根細毛又稱纖毛,能夠探入細胞周遭的液體。很多細胞擁有多根纖毛,靠一團團或一片片纖毛的擺動增加游泳能力。我們還不清楚纖毛是怎麼演化來的,不過它們最初可能是細胞內部蛋白質結構的延伸。水中的所有動態都被傳送到纖毛核心內的活蛋白質,再傳回細胞。

這種傳送作用後來變成生命體覺察聲波的基礎。纖毛會改變細胞膜和分子的電荷,藉此將細胞外部的動態轉譯成細胞內部的化學語言。到如今,所有動物都利用纖毛來感知周遭的聲音振動,使用的可能是專門的聽覺器官,或遍布在表皮與體內的纖毛。

如今地球上豐富多樣的動物聲音,包括我們自己的聲音,是源於十五億年前的纖毛的雙重傳承。首先,演化透過纖毛在細胞與動物軀體上的各種配置,創造多樣化的感官體驗:我們人類的耳朵只是聆聽的一種媒介。其次,某些動物第一次覺察到水中的振動後,又經過許久才找到利用聲音彼此溝通的方法。

這兩種傳承――聲音的感知與表達――的交互作用,增加了演化的創造力。當我們為春天的鳥鳴、嬰兒對語言的察覺,或夏季夜晚昆蟲與蛙類活力十足的大合唱驚奇讚嘆,就是沉浸在纖毛的奇妙傳承裡。

——本文摘自《傾聽地球之聲》,2022 年 11 月,商周出版,未經同意請勿轉載。

所有討論 1
商周出版_96
110 篇文章 ・ 343 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

3
1

文字

分享

0
3
1
從基隆進港的深海活化石中,意外發現新物種!——專訪國立臺南大學副教授黃銘志
Heidi_96
・2022/11/29 ・3890字 ・閱讀時間約 8 分鐘

新種具足蟲,發現!

2019 年,國立臺南大學生物科技學系副教授 黃銘志 從基隆漁民手中獲得一批具足蟲。為了鑑定這些小傢伙的種類,黃銘志從日本換來兩隻大王具足蟲(B. giganteus),沒想到卻意外發現前所未見的新種——猶加敦具足蟲(B. yucatanensis)!

這到底是怎麼回事呢?別急,在我們看下去前,先告訴你一個具足蟲的小秘密。

具足蟲又稱為深水蝨,是居住在深海的甲殼類活化石。你可能沒聽過這兩個名稱,但如果你看過《風之谷》或是《星際大戰》(Star Wars),肯定對王蟲和黑武士有印象,而他們的原型就是具足蟲!

在宮崎駿動畫《風之谷》中,王蟲是守護腐海的生物。當他們憤怒時,眼睛會由藍轉紅。圖/スタジオジブリ
《星際大戰》系列電影的角色——黑武士的面具原型也是具足蟲!圖/Star Wars

既然不小心撈到了,那就抓來研究吧~

小秘密說完了,讓我們原地跳一下,回到 2019 年看看事情發生的經過。

當年七月,黃銘志在基隆正濱漁港採集到俗稱「金絲猴」的紅頭龍蝦,登錄為臺灣新記錄種「海神後海螯蝦(Metanephrops neptunus)」。此後,黃銘志就有和當地漁民保持聯繫。

臺灣新記錄種「海神後海螯蝦(Metanephrops neptunus)」。圖/TaiBNET

後來,有船長告訴黃銘志:「我抓到十隻具足蟲,你要不要?」

在基隆,具足蟲的漁獲量並不多,通常是拖網捕蝦附帶的戰利品。雖然東北角有很多販售具足蟲料理的店家,具足蟲吃起來也像龍蝦,但民眾還是喜歡吃真正的蝦子,所以具足蟲銷不出去,黃銘志就整批買了下來。

這時,問題來了!臺灣沒有具足蟲專家,而黃銘志本身也不是分類學家,要怎麼鑑定呢?沒辦法,只好自行摸索。

於是,黃銘志和日本新江之島水族館交換兩隻大王具足蟲,但這兩隻越看越不對勁,「⋯⋯怎麼其中一隻腰身比較細?難道是牠比較瘦、吃比較少嗎?」

「背景不同的人,就會用不同的視角看事情!」

後來,黃銘志想起赴日深造時,研究魚類基因演化、解析人體基因結構的經驗,就決定分析具足蟲的基因。從黃銘志的專業背景——分子生物學的角度來看,至少要採用兩種分析方法才夠,因為每個基因演化速度都不同,像具足蟲演化得很慢,基因差異不太明顯,就很難區分。

經過細胞色素 c 氧化酶亞基 1(COI)和 16S rRNA 分析後,黃銘志赫然發現很多 DNA 片段都不同。起初還以為是分析出錯,或是樣本破損,但重複試驗多次後的結果都一樣,黃銘志不禁感到困惑:「奇怪了,歐美研究大王具足蟲長達 140 年,有超過 1000 隻樣本,怎麼沒發現裡面可能有基因結構不同的個體?」

細胞色素 c 氧化酶亞基 1(COI)分析結果:第一行是猶加敦具足蟲,第二行是大王具足蟲。圖/Journal of Natural History
 16S rRNA 分析結果:第一行是猶加敦具足蟲,第二行是大王具足蟲。圖/Journal of Natural History

為了進一步梳理這些數據,黃銘志找來兩位分類學家助拳,一位是日本國際螯蝦學會的會長——甲殼類專家川井唯史(Dr. Kawai Tadashi),另一位則是澳洲昆士蘭博物館的無脊椎動物榮譽研究員——具足蟲專家尼爾.布魯斯(Dr. Niel L. Bruce)

不是這個專業,所以才能做到這件事

在三人正式合作前,黃銘志就大致完成這篇新種具足蟲的論文了,但後來,布魯斯發現了一個天大的錯誤,那就是黃銘志引用了某位印度專家錯誤的研究。

過去,也有中國學者引用這篇印度論文,指出印度洋海域有肯氏具足蟲(B. kensleyi)。黃銘志原先也以為是這樣,畢竟順著前人的研究比較不會有爭議,沒想到卻因此得出錯誤的推論。

第一次研究具足蟲,就要指正其他專家的研究,「老實說,我算哪根蔥?」黃銘志苦笑道。

為了修正錯誤,具足蟲的細部結構就交給布魯斯研究,再讓川井逐一比對、鉅細靡遺地畫下來。具足蟲演化較慢,所以每一種長得都很像,必須仔細觀察才能看出差異,比如鼻子的形狀、尾扇棘刺的數量、身體兩側的彎曲程度等等。

詹姆斯具足蟲(B. jamesi)和猶加敦具足蟲(B.yucatanensis)的身體(a)、頭部(b)、鼻子(c)和頭部側視圖(d)。圖/Journal of Natural History

雖然三人至今都沒有見過彼此,但當初為了辨別出不同的形態,他們互相傳了上千封信討論,才終於達成共識。回想這漫長的過程,黃銘志說:「那些圖都確認過十幾次了,意見不合也是常有的事,比如尾扇棘刺的數量要從哪裡開始數?」

黃銘志也提到,每種生物都有「種間變異」和「種內變異」。只要有變異,一定有不同的地方,但這些不同的地方可以直接判斷成不同種嗎?假如尾扇棘原本有 13 根,卻因為互相打鬥而斷了一兩根,是不是就要分成不同種?

詹姆斯具足蟲(B. jamesi)和猶加敦具足蟲(B.yucatanensis)的尾扇棘(c)。圖/Journal of Natural History

在這種情況下,由於形態非常接近,按照傳統分類學的做法,其實很容易將一整群可能摻雜不同種的樣本全都混為一類。因此,黃銘志認為最好的做法是從基因著手,用分子生物學的方法鑑定,而不是用個體的外觀差異判斷。

當分類學家多次比對不同樣本的外形,認為這不是大王具足蟲,而基因定序的結果也和資料庫既有的物種都不匹配的時候,就可以確認牠是未經發表的新種。

延伸閱讀:新種形成——秘中之秘

根據論文發表的結果,黃銘志最後將來自新江之島水族館的新種,以發現地墨西哥灣猶加敦半島(Yucatán Peninsula)為依據,命名為猶加敦具足蟲(B.yucatanensis)。

鑑定深海物種,有助於我們更認識深海

在十八、十九世紀時,科學家非常好奇深海到底有沒有生物,而如今,具足蟲就是活生生的鐵證,因此歐美國家非常重視具足蟲的學術價值。這些深海小傢伙證明了一件事:即使在光線微弱、水壓極高、溫度極低、幾乎沒有食物的環境下,還是有生物存在。

目前,我們對於月球的了解甚至還比深海多。布魯斯表示,陸生生物即使雜交,只要能產生有生殖能力的後代,原則上都可以算是同種,但水生生物並不完全遵循這個原則。

比方說,現在有很多鱘龍魚是雜交種,而且是不同種交配生下的、具有生殖能力的後代,這些不同的後代,都各自稱得上是新物種。按照這個邏輯,海洋時刻都有新物種誕生,是我們探索不完的神秘區域。

本篇論文的第三作者:尼爾.布魯斯。圖/ResearchGate

不過,相對於西方國家多半將具足蟲作為研究用途,東方國家比較在乎的反而是「這可以吃嗎?要怎麼料理才能變得更好吃?」

在日本,有一種零食就是將具足蟲磨成粉後加進仙貝,讓仙貝吃起來有蝦子的味道。黃銘志笑著說:「這很暢銷!」但也補充道,他在東京大學做研究時,實驗室有個傳統,那就是「當你研究某種生物的時候,你就不吃牠們,代表你對這種生物的敬意。」

關於具足蟲,還有哪些待解之謎?

這份耗時三年的研究,不但指正了前人的研究、改變了具足蟲近百年來的分類,也暗示著既有的「群模式樣本」或許有很大的問題。換句話說,目前已知的具足蟲種類不多,可能是分類錯誤造成的結果,說不定早就有很多種摻雜在其中了!

延伸閱讀:怎麼把牠們當成一樣的物種!物種分類出錯怎麼辦?——分類學家偵探事件簿(三)

在日本,鳥羽水族館有一隻具足蟲長達五年沒進食。目前仍沒有科學家著手細探背後的原因,而牠們的食物來源、繁衍方法,以及牠們如何在極端惡劣的深海環境生存,都是接下來必須進一步探究的課題。

舉例來說,紅色在深海是一種隱性色,而深海的甲殼類生物(比如甜蝦、天使紅蝦)體內通常帶有蝦紅素,使得體表呈現紅色,可以保護牠們不被天敵發現。可是,具足蟲的分布範圍深達數千米,體內卻沒有蝦紅素,煮熟後也不會像蝦子那樣變紅。

延伸閱讀:煮熟的龍蝦為什麼會變色呢?

此外,透過研究具足蟲,科學家可以更了解全球暖化對深海的影響、陸地上的重金屬和放射性物質沉進深海造成的衝擊,以及這些具足蟲是否可以取代龍蝦,成為新的食物選擇。

最近,南海的船長捕到了 80 幾隻具足蟲,黃銘志買下了形態看起來比較特殊的 10 隻,希望可以篩出更多新種,解開更多有趣的謎底。

延伸閱讀

參考資料

  1. Huang, M. C., Kawai, T., & Bruce, N. L. (2022). A new species of Bathynomus Milne-Edwards, 1879 (Isopoda: Cirolanidae) from the southern Gulf of Mexico with a redescription of Bathynomus jamesi Kou, Chen and Li, 2017 from off Pratas Island, Taiwan. Journal of Natural History, 56(13-16), 885-921.
  2. 交換日本水族館具足蟲 南大發現深水蝨新物種|生活|中央社 CNA
Heidi_96
7 篇文章 ・ 12 位粉絲
PanSci 編輯部角落生物|外語系還沒畢業,潛心於翻譯與教學,試圖淡化語言與知識的隔閡。

0

1
2

文字

分享

0
1
2
人為開墾造成海洋酸化、雨林消失,第六次大滅絕正在上演!——《丈量人類世》
商周出版_96
・2022/10/12 ・2765字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

第六次大滅絕?

人類引以自傲的科技文明迎來了新的人類世,卻疏忽了人類也正在製造大自然中第六次,也是第一次非自然原因的生物多樣性快速消失!

目前地球上約有 1,000 萬到 1,400 萬的物種,其消失速率大約是自然背景滅絕速率的 100-1,000 倍。

大量快速消失的物種

物種在正常時期的滅絕發生率稱為「背景滅絕率」,這是很不容易估計的工作,必須結合所有的化石資料庫,並且要做長期的追蹤。

每個生物族群的背景滅絕率都不一樣,通常是以每年 100 萬物種當中有多少物種滅絕來表示。以哺乳類為例,大約每年 100 萬物種會發生 0.25 次的滅絕事件。換句話說,世界上大約有 5,500 種哺乳類,背景滅絕率預期每七百年會有一種哺乳類消失,一個人的一生應該很難注意到這種改變。

但是現在有約 28% 的瀕危物種,在 21 世紀結束前,包括全世界的大型哺乳類可能都會面臨危急存亡之秋,這樣的數字不可謂不高。

寇伯特(Elizabeth Kollbert, 1961-)在她 2014 年出版的《第六次大滅絕:不自然的歷史》一書中強調:「如果第六次的滅絕事件發生,極可能是人類造成的。」最可能的因素,還是人類殖民式的生活剝奪、侵犯了其他物種的生存棲息地所致。

伊莉莎白.寇伯特。圖/Wikipedia

海洋酸化

寇伯特的書中記錄了許多生物、生態、地質、考古學家第一手的研究結果。以那不勒斯附近火山口周遭海域的調查為例,顯示藤壺、貽貝、珊瑚藻、顆石藻、龍骨蟲、多種珊瑚、海螺、魁蛤、海綿、鯛魚、海膽等都在減少或消失。尤其是海水酸度達 7.8 的海域,69 種動物、51 種植物中約有 1/3 都不見了。

海洋酸化(ocean acidification)是二氧化碳濃度快速上升的直接結果,人類大量燃燒煤與石油,無疑是將自然蘊藏的碳快速釋放到地表環境中的主因。專家指出:二戰後的二氧化碳排放速率是空前的加速上升。當今人類世的暖化作用,比起上一個更新世每一個冰期後的暖化,起碼快了超過一個數量級。地球已經有上千萬年沒有人類世這麼熱,可能連演化都忘了如何選擇能夠耐熱的基因。如果耐熱的 DNA 已經消失,生命已經不復保有這樣的特質,那對人類世就是真正的噩耗。

海水的 pH 值 7.8 或許是海洋生態的酸度臨界點,超過此臨界點,3/4 的消失物種會是鈣化生物。海洋酸化會嚴重地改變海水及其中的生態,譬如微生物族群的組成;獲得關鍵養分的方便程度;光線穿透海水的透光度影響海藻的生態;當然也影響光合作用;聲音傳播的情形將使得海洋更嘈雜;溶解性的金屬化合物也會改變;鈣化生物如海星、海膽、蛤蜊、牡蠣、藤壺、珊瑚等會因為缺鈣而大受影響,尤其是造礁珊瑚的白化現象——珊瑚蟲集體死亡,會使得依靠珊瑚生存的生物多樣性大幅下降。而珊瑚一旦消失,海中生態系必然崩解。

1700 年代到 1990 年代,人類排放的二氧化碳對世界各地海水 pH 的影響。圖/Wikipedia

珊瑚是人類以外也會建造龐大「公共工程」的生命體,例如綿延超過 2,600 公里的大堡礁, 最厚的地方有 150 公尺,這種規模即使是人類最大的工程都望塵莫及。珊瑚礁可能支持了數百萬種海中生命共同生存或賴以捕食的環境,是海洋「撒哈拉沙漠裡的雨林」。這樣的依存關係也許已經存續了許多個地質世代,卻可能在這個世紀慘遭大幅損毀。

大氣科學家考戴拉(Ken Caldeira)是「海洋酸化」一詞的創始人,他認為未來幾個世紀的海洋酸化程度,可能造成超過數億年的影響程度。

實驗還顯示:生活在北極,看起來像是長了翅膀的海螺,以及對海水酸度非常敏感的翼足類海蝴蝶也會瀕臨危機。海蝴蝶是鯡魚、鮭魚、鯨等的重要食物,海水變酸,食物鏈必然受影響。而鈣化生物如笠貝的殼,甚至會出現破洞。此外,1/3 的造礁珊瑚、1/3 的淡水軟體動物、1/3 的鯊魚及魟魚都將消失。而某些增加的物種,譬如超微浮游生物,它們會消耗掉更多養分,使食物鏈上層的生物大受影響,進而使生態結構崩壞。

熱帶雨林的消失

除了海洋外, 嚴重影響生物性下降的原因還有熱帶「雨」「林」的減少。低緯度的雨林是地表生物多樣性最豐富的地方,而亞馬遜雨林因為過度開墾,興起了「破碎森林生物動態研究計畫」(Biological Dynamics of Forest Fragments Project)。這是世界上規模最大、時間最長的實驗之一。

亞馬遜雨林。圖/Wikipedia

從1970 年代巴西政府開始鼓勵農牧業,就規定亞馬遜區必須維持至少一半的森林維持原狀。洛夫喬伊(Tom Lovejoy)就試圖說服農場主人讓科學家決定哪些樹要留下來。在巴西政府的同意下,許多方塊形的「森林群島」就成為森林保留區,裡面有許多生態研究正在進行蒐集物種數量的變化。

依統計數字來看,地球上沒有冰的 1 億 3 千萬平方公里的陸地,已經開發墾殖了 7 千萬平方公里。真正杳無人跡的「荒地」只有沙漠、西伯利亞、加拿大北部和亞馬遜河流域,總面積只有 3 千萬平方公里,這還沒有考慮到許多人為管線穿越、切割這些「荒地」區域的影響。

「破碎森林生物動態研究計畫」發現:破碎森林的生物多樣性隨著時間不斷下降,儘管叢林的多樣性豐富,但是局部地區滅絕可能演變成區域滅絕,最後成為全球性滅絕。亞馬遜的土地墾伐影響到大氣環流,破壞雨林,不僅造成「林」的消失,也可能導致「雨」的消失。

生物多樣性之父威爾森(E. O. Wilson)和昆蟲學家厄文(Terry Erwin)都曾經估算過,破碎森林中昆蟲的當代滅絕率,可能比自然背景滅絕率高出了 1 萬倍!這個數字令人難以置信,當然統計的結果可能沒有考慮到滅絕發生所需要的時間,昆蟲的滅絕率也可能不同於其他生物的滅絕率。

科學家在全球的研究結果發現,對環境最敏感的兩棲類和昆蟲,如蛙類與蜜蜂,幾乎都在快速消失中。兩棲類在 3 億 7 千萬年前,就從海中率先登陸征服了陸地,生命力十分強悍,但如今兩棲綱可能是世界上瀕臨滅絕危機最嚴重的動物。據估計,兩棲類的滅絕率可能比背景滅絕率高出了 45,000 倍。

此外,很多其他族群的消失減損情形也頗驚人,受到影響的物種包括植物、動物的哺乳類、鳥類、爬蟲類、魚類、無脊椎動物等。1/4 的哺乳類、1/5 的爬蟲類、以及 1/6 的鳥類,也正無奈地踏上人類世的滅絕之路。這些不僅發生在森林中、深海中,更發生在我們居住的城市或後院。

——本文摘自《丈量人類世:從宇宙大霹靂到人類文明的科學世界觀》,2022 年 9 月,商周出版,未經同意請勿轉載。

商周出版_96
110 篇文章 ・ 343 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。