0

0
0

文字

分享

0
0
0

蛋白質折疊:內摩擦力扮演更重要的角色

only-perception
・2012/05/17 ・1129字 ・閱讀時間約 2 分鐘 ・SR值 628 ・十年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

一個跨國團隊報告,對於一種所知不多的、幾乎發生在我們身體每個細胞的過程,有了新的理解。

蛋白質折疊(Protein folding)是這樣的過程:尚未折疊的胺基酸鍊因呈現(assume)其特定的形狀,因而具有特定的功能。這些功能非常廣泛:在人體內,蛋白質會折疊成為肌肉、荷爾蒙、酵素以及其他各種組成。

“這種蛋白質折疊過程仍是一大謎團,” UC Santa Barbara 物理學家 Everett Lipman 表示,他是「Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy」這篇論文的作者之一。這篇論文發表在 PNAS 上。

Lipman 表示,一個蛋白質的最終形狀主要由未折疊鍊中,胺基酸成份的序列所決定。在此過程中,這些成份彼此相撞,且達到正確的配置時,胺基酸鍊通過其「過渡態(transition state)」並裝配妥當(snaps into place)。

“我們最終想要理解的是,一個蛋白質的化學物質順序如何決定它將要變成什麼,以及變成那樣的速度有多快,” Lipman 說。

利用 UCSB 物理系前畢業生 Shawn Pfeil 所開發的微流體混合技術,這個研究團隊,包括來自蘇黎世大學與德州大學的同僚,能夠監控個別蛋白質分子在折疊時,超級迅速的重新配置(reconfiguration)。

在微流體混合器(mixer)中,一種用來拆解(unravel)蛋白質的「變性劑(denaturant)」 化學物質被迅速稀釋,使得折疊得以在之前無法觸及的自然狀態下觀測到。這些測量證明,內摩擦(internal friction)在折疊過程中所扮演的角色,比先前實驗所能見到的還更加重要,當蛋白質從更密實的未折疊配置(在無變性劑的活細胞內會這樣)開始折疊時,尤其如此。

“在那些尺寸等級下,每樣東西都是由摩擦力所主宰,” Lipman 表示,將水中蛋白質分子的環境比喻成糖蜜(molasses)中的人體。分子間的摩擦力以及其液態環境是個問題,獨立於周遭溶劑的「乾」摩擦也一樣。

內摩擦力藉由減少胺基酸鍊探索不同配置(那也許會導致過渡態)的速率來減緩折疊過程。尋找其天然狀態 — 其最終形態 — 所花的時間愈長,在展開狀態下「卡住(get stuck)」的可能性愈高。

“當它展開時,它更容易陷入折疊錯誤的狀態,或著與其他未折疊的蛋白質聚集,” Lipman 說。錯誤折疊蛋白質的聚集被認為促成了許多類型的疾病,例如:類澱粉斑塊(amyloid plaques)與阿茲海默症有關。另一方面,未折疊以及未使用的蛋白質有可能被細胞再度分解成它的組成胺基酸。

雖然內摩擦力與聚集,或與某蛋白質之任何片段樣式(那會以相同方式影響其他蛋白質片段)間的關聯尚未證實,不過 Lipman 等人卻對於內摩擦力影響蛋白質折疊過程的程度,有更深入的理解。

“這些測量證實,在實際狀態下,內摩擦力在未折疊態的動力學中扮演一種重要的角色。若某個蛋白質折疊過程的模型未將之納入考量,那麼該模型得經過重新考慮,” 他說。

原始文獻:Andrea Soranno, Brigitte Buchli, Daniel Nettels,
Ryan R. Cheng, Sonja Muller-Spath, Shawn H. Pfeil,
Armin Hoffmann, Everett A. Lipman, Dmitrii E. Makarov, and
Benjamin Schuler
PNAS, Published online before print April 6, 2012,
doi: 10.1073/pnas.1117368109

資料來源:PHYSORG:In protein folding, internal friction may play a more significant role than previously thought[April 24, 2012 ]

轉載自only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

5

5
1

文字

分享

5
5
1
料理系動畫頂級湯底素材!——海鮮乾貨超濃郁鮮味從何而來?
Evelyn 食品技師_96
・2022/02/19 ・3346字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/Evelyn 食品技師

每年農曆春節,到以辦年貨聞名的迪化街走一遭,可見南北雜貨行裡琳瑯滿目的海鮮乾貨,如魷魚乾、干貝、魚翅、乾鮑魚、昆布、魚乾或蝦米等,都是年節珍饈少不了的海味。

而說到乾貨,不禁聯想到動畫《中華一番》小當家為了拯救中毒的及第師父和嘟嘟,與下毒者面具廚師李嚴進行了一場攸關生死的料理對決──龍蝦三爭霸,第三回合比的便是龍蝦砂鍋料理。

李嚴用放了 16 年堪稱鮮味超濃縮的「頂級乾貨」作為湯底素材,包括鮑魚、魚翅、扇貝和海膽等做出海龍鍋,對上小當家用山菜做的四川家鄉味寶山飛龍鍋,然而李嚴終究還是不敵主角光環而不幸落敗。

為何用乾貨做料理,鮮味會如此濃郁呢?在這鮮美的乾貨背後,還隱藏了什麼危機?

動畫《中華一番》海報,左上方戴面具的即為廚師李嚴。圖/IMDb

連小當家都驚呼的高級素材「海鮮乾貨」濃郁鮮味怎麼來?

海鮮乾貨的鮮味之所以如此濃郁,是因為水產品原本擁有的呈味物質眾多,尤其游離胺基酸的含量非常豐富。一般親水性胺基酸提供食品良好風味,如甜味、鮮味及肉味等;不良風味係由疏水性胺基酸所提供,如苦味。

麩胺酸(glutamic acid)為水產品的主要鮮味來源,以鈉鹽的形式存在,就是具有強烈鮮味的物質,即所謂的「味精」。其次為肌苷酸(inosine 5 ́-monophosphate; IMP),不但可提供鮮味,亦可使味道帶有圓潤感,並抑制酸味及苦味,具有緩衝風味的效果。這兩者共存還具有加乘作用,能使食品風味更加鮮美。

在水產品中,通常各自有某些胺基酸為其味道的主要特徵,如蝦是甘胺酸(glycine),海膽是甲硫胺酸(methionine);丙胺酸(alanine)和甘胺酸是甜味來源,這兩者在貝類及甲殼類含量最多,可能是味道較魚類鮮甜的原因。

因此海鮮經過乾燥這個脫水程序後,使味道更顯濃縮,也能釋放更多上述的呈味物質,在料理上便能發揮很好的調味效果。這些豐富的呈味物質是蔬菜所沒有的,甚至連畜產動物都沒這麼多,所以筆者認為李嚴用海鮮乾貨做的海龍鍋,怎麼可以輸給小當家用蔬菜做的寶山飛龍鍋呢?!  

炒米粉或肉粽都愛用的「蝦米」在 40 年前曾爆發食安危機?!

海鮮乾貨除了動畫愛用,臺灣民眾最常用的乾貨就非「蝦米」莫屬了,在年菜、炒米粉、廣東粥或肉粽等料理都十分常見。然而在 40 年前的臺灣,蝦米就曾爆發食安危機。

根據行政院農業委員會水產試驗所(以下簡稱水試所)的調查報告[3],民國 70 年傳出蝦米含螢光增白劑的消息,引起國內軒然大波。

螢光增白劑係利用化學物質的螢光反應,改變物品顏色使其潔白鮮豔,一般用在造紙、印染、洗滌,不得用於食品或食品的容器或包裝(跟食品有接觸的部分)。另外經許多研究證實,螢光增白劑無致癌性,惟對嬰兒、皮膚敏感者可能會造成皮膚過敏等症狀。

當年水試所立即對國內的蝦乾製品進行調查,幸好結果顯示全數皆不含螢光增白劑,也發現添加螢光增白劑對於蝦乾的色澤不但沒有改進的效果,反而還變差。

筆者推測因為蝦類本身的甲殼素,在紫外光燈(365 nm)下有螢光反應[註 1],被誤認為是含有螢光增白劑,才會傳出不實的資訊,但實際上「有螢光反應」並不等於該物質「含有螢光增白劑」。 

於紫外光燈(365 nm)下之螢光反應,左圖為蝦子甲殼素的螢光反應,右圖之右 2 為含有螢光增白劑的紗布所呈現的螢光反應。圖/參考資料 4

該起事件會如此一發不可收拾,是因當時國內蝦乾皆是以「散裝」的形式出售,不但容易受到污染,消費者亦無法辨識產品來源,一旦發生問題,整個加工業都遭殃,連帶漁民也蒙受無妄之災。

若各家廠商能以適當的小包裝密封供應,並在包裝外註明商號及來源,發生問題時比較容易調查或追究原因,可避免全體受責。

鮮蝦或蝦乾容易發生漂白劑殘留超標的問題

2016 年曾發生蝦子添加過量亞硫酸鹽類(sulfite; SO32-),導致二氧化硫殘留量超標的事件,是因為蝦子死亡後,體內的酵素會催化酪胺酸(tyrosine)代謝產生黑色素,使蝦體(特別是頭部)表面產生「黑變」的現象,易使消費者誤認為產品不新鮮了。

而亞硫酸鹽類會反應產生二氧化硫(sulphur dioxide; SO2),二氧化硫與水反應後轉變為亞硫酸(sulfurous acid; H2SO3),其具強還原性,在食品中能抑制該酵素活性作用,進而防止蝦子黑變發生。

目前亞硫酸鹽類是合法的食品添加物,具有漂白、保存、防止氧化之功能,法規規定其殘留量(以二氧化硫計)在蝦類、貝類的限量為 0.1g/kg 以下。

雖然二氧化硫在限量標準內是不必擔心,且人體內具有可以代謝的酵素,可隨著尿液排出體外,但對某些特殊體質者而言,有可能會引起哮喘等呼吸道過敏反應,必須注意。

除了糖果、零食外,海鮮乾貨也常添加人工合成的著色劑

著色劑泛指添加於食品、飲料或其他應用而產生顏色之物質。由於消費者主觀的認知,著色劑常應用於回復加工過程中損失的顏色、改變食品外觀及提升整體感官品質。

根據國立臺灣海洋大學近期研究[7],針對國內各地區市場中販售的魚乾、魚卵及蝦米進行檢驗,結果發現三者皆有檢出著色劑,包含:

  • 食用黃色四號 tartrazine(俗稱檸檬黃)
  • 食用黃色五號 sunset yellow FCF(俗稱日落黃)
  • 食用紅色六號 ponceau 4R
  • 食用紅色四十號 allura red AC

以上為合法食用的人工合成著色劑,然而魚卵和蝦米還檢出非法用於食用的著色劑,分別為酸性橙 7(orange II)和偶氮玉紅(azorubine),其中偶氮玉紅在我國雖非法,但在歐盟、日本或美國卻是合法著色劑,易因規範不同而造成違法事件,也凸顯出目前非法著色劑濫用問題仍然存在。

有研究指出,若長期食用這些合成著色劑可能會造成消化不良、貧血、過敏反應、生長遲緩及學齡前兒童過動症等健康危害。

值得注意的是,目前我國法規合法使用的著色劑,皆可於各類食品中視實際需要適量使用,並無最大使用量限制。但這些著色劑毒性很低微,也尚未有那些著色劑對人體直接有害的證據,是不需過於擔憂,比較需要擔心的是不肖業者添加了非法著色劑的風險。 

建議購買包裝標示清楚、完整的乾貨產品,並注意保存方式避免發霉

雖然法規規定上述的食品添加物一定要在包裝上標示,但對於一些散裝、來路不明的乾貨來說,可能就沒有標示可讀了,這就是一大風險!所以建議消費者盡量購買包裝標示清楚且完整的產品。

另外由於台灣氣候濕度高,乾貨可能會有發霉的疑慮,購買乾貨一定要確實密封好,並保存在陰涼乾燥處,能冷藏、冷凍更佳,也不建議購買像李嚴那種放了 16 年的乾貨喔!(他保存在甕裡都不會壞,筆者覺得害怕…)

購買魚乾這類乾貨食品時,務必保存在陰涼乾燥處,避免發霉。圖/Pixabay

註解

  1. 螢光反應:物質受到紫外線照射時,其中某些化學鍵被紫外線激發,而轉換成肉眼可見的可見光釋出,這就稱為「螢光反應」,如植物的葉綠素或蝦蟹的甲殼素,在紫外光照射下都會有該反應。

參考資料

  1. Muse 木棉花,2021。中華一番(舊版小當家)第 26 話【致勝王牌!輕狂的惡魔】
  2. 黃宛儀,2014。探討臺灣產褐臭肚魚(Siganus fuscescens)及其加工品於不同季節、地域之呈味成分與鮮度變化。國立臺灣海洋大學食品科學所碩士學位論文。基隆。
  3. 陳聰松、黃文政、鄭溪潭,1981。台灣地區蝦乾螢光物質調查。行政院農業委員會水產試驗所 33: 429-440。
  4. 新北市政府衛生局。螢光增白劑
  5. 陳建元,2018。食用食物添加物(五版)。臺中市:華格那出版有限公司。
  6. 衛生福利部食品藥物管理署,2017。食品添加物使用範圍及限量暨規格標準。衛生福利部,台北市。
  7. 賴昱維,2018。高效液相層析搭配二極體陣列檢測器與四極軸軌道捕捉式質譜儀多重分析魚乾、魚卵及蝦米中 23 種人工合成著色劑。國立臺灣海洋大學食品科學所碩士學位論文。基隆。
所有討論 5
Evelyn 食品技師_96
16 篇文章 ・ 13 位粉絲
一名食品技師兼研發專員,對食品科學充滿熱忱。有鑒於近年發生許多食安風暴,大眾對於食品安全的關注越來越高,網路上卻充斥著不實資訊或謠言。希望能貢獻微薄之力寫些文章,讓更多人有機會認識食品科學的正確知識!想獲得更多食品營養資訊可追蹤作者的粉絲專頁喔!https://www.facebook.com/profile.php?id=100066016756421

0

2
4

文字

分享

0
2
4
為何新冠病毒突變之後傳染力更強?——關鍵在於變異株的棘蛋白結構
研之有物│中央研究院_96
・2022/01/25 ・5088字 ・閱讀時間約 10 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 美術設計/林洵安

為何新冠病毒突變之後傳染力更強?

COVID-19 至今仍深深影響全人類,新冠病毒持續演化,例如曾經造成臺灣大規模社區感染的 Alpha 變異株、傳染力更強的 Delta 變異株,近期出現的 Omicron 變異株等,它們逃避免疫系統的能力都不一樣,關鍵就在不同的棘蛋白(spike protein)結構。「研之有物」專訪中央研究院生物化學研究所徐尚德副研究員,他的團隊陸續解析各種新冠病毒變異株的棘蛋白結構,不但能釐清新的突變帶來的威脅,後續也可作為研發人造抗體的指引。

徐尚德手上拿著新冠病毒的棘蛋白模型,顯示棘蛋白與兩種不同抗體結合的情況。圖/研之有物

解析新型冠狀病毒棘蛋白

COVID-19 的病原體是一種冠狀病毒,和 SARS 病毒是近親,正式命名為 SARS-CoV-2,中文常稱作新型冠狀病毒。為了知道病毒如何感染人體細胞,以及如何逃避免疫系統的辨識,我們需要進一步瞭解冠狀病毒表面的棘蛋白結構。

結構為什麼重要?因為結構會影響蛋白質功能。蛋白質是由不同的氨基酸所組成的長鏈,實際作用時會摺疊形成特別立體結構,而冠狀病毒的蛋白質中,又以棘蛋白最為關鍵。

徐尚德強調,棘蛋白是冠狀病毒暴露在表面的蛋白質之一,絕大多數被感染者的免疫系統所產生的抗體都是辨識棘蛋白。因此現今臨床使用的蛋白質次單元疫苗、腺病毒疫苗以及 mRNA 疫苗,都是以棘蛋白為基礎來研發。

Cryo-EM 讓蛋白質結構無所遁形

工欲善其事,必先利其器。解析蛋白質結構的方法很多,早期的 X 光晶體繞射(X-ray diffraction),就像將影片定格截圖,但不一定為蛋白質實際作用的狀態。

再來是核磁共振(Nuclear Magnetic Resonanc,簡稱 NMR),這是徐尚德留學深造時的專業,可以重現蛋白質在水溶液中的結構及動態,更接近實際作用的形態,可惜不適合分子量較大的分子。

目前結構生物學最具潛力的新技術是:冷凍電子顯微鏡(Cryogenic Electron Microscopy,簡稱 Cryo-EM),Cryo-EM 可以拍出原子尺度下高解析度的三維結構,此技術於 2017 年獲得諾貝爾化學獎。中研院則於 2018 年開始添購 Cryo-EM 設備,而 Cryo-EM 正是徐尚德用來解析棘蛋白結構的主要利器!

在 COVID-19 疫情爆發初期(2020 年 1 月),徐尚德就率先啟動新冠病毒的結構分析,當時他的研究團隊剛好已分析過感染貓科動物的冠狀病毒,對於解析棘蛋白結構有一定經驗,可說是贏得先機。

具體來說,如何用 Cryo-EM 解析新冠病毒的棘蛋白結構?

首先要大量培養新冠病毒、再分離、純化得到棘蛋白。接下來,將大量蛋白質樣本鋪成薄薄一層液體,之後以 -190℃ 急速冷凍,讓蛋白質分子保持凍結前的形態,最後用程式重建棘蛋白的三維影像。徐尚德譬喻,就像一匹馬在高速移動時,連續拍攝許多照片,再將照片疊加起來,重建馬的形狀。

棘蛋白的體積已經算大,假如又與其他蛋白質結合,體積將會更大。能解析如此龐大結構為 Cryo-EM 一大優點,但是也會創造很大的資料量。徐尚德強調,用 Cryo-EM 分析蛋白質結構不只做實驗,也要協調資料處理等疑難雜症。

冷凍電子顯微鏡可以紀錄同一時間下、不同狀態的蛋白質三維立體結構。圖/研之有物

關鍵 D614G 突變,讓新冠病毒棘蛋白穩定性大增

儘管已有貓冠狀病毒的經驗,徐尚德研究團隊初期仍經歷一陣摸索,一大困難在於,做實驗時發現不少棘蛋白壞掉,不再保持原本的結構。

這是因為一般取得蛋白質樣本後會置於 4°C 冷藏,但 4°C 其實不適合保存棘蛋白。接著徐尚德細心觀察到,具備 D614G 突變的棘蛋白,保存期限竟然比沒突變的棘蛋白要長,可以從 1 天增加到至少 1 週。

什麼是 D614G 突變呢?武漢爆發 COVID-19 疫情的初版新冠病毒,其棘蛋白全長超過 1200 個胺基酸,D614G 突變的意思就是:第 614 號氨基酸由天門冬胺酸(aspartic acid,縮寫為 D)變成甘胺酸(glycine,縮寫為 G)。

D614G 突變誕生後,存在感持續上升,2020 年 6 月時已經成為全世界的主流,隨後新冠病毒 Alpha、Delta 等變異株,皆建立於 D614G 的基礎上。

儘管序列僅有微小差異,許多證據指出 D614G 突變會增加新冠病毒的傳染力。有趣的是,它也能大幅增加棘蛋白在體外的穩定性。因此在研究用途上,變種病毒的棘蛋白反而容易保存,徐尚德更指出,對抗變種病毒的蛋白質次單元疫苗(subunit vaccine)穩定性也會增加。

圖片為徐尚德實驗室提供的新冠病毒模型與三種不同的棘蛋白模型,棘蛋白的主體為白色,棘蛋白的受器結合區域(receptor binding domain,RBD)為藍綠色。圖/研之有物

新冠病毒棘蛋白的「三隻爪子」:受器結合區域

徐尚德參與的一系列新冠病毒結構研究,除了棘蛋白本身,還包含棘蛋白與細胞受器 ACE2 的結合、棘蛋白和人造抗體的結合。

既然要解析結構,儀器「解析度」能看清楚多小的尺度就很重要!蛋白質結構學的常見單位是 Å(10-10 公尺),原子與原子間的距離約為 2 Å,Cryo-EM 的極限將近 1 Å,不過棘蛋白大約到 3 Å 便足以重建立體結構。

冠狀病毒如何感染宿主細胞,和結構又有什麼關係?棘蛋白位於冠狀病毒的表面,直接接觸宿主細胞受器 ACE2 的部分,稱為受器結合區域(receptor binding domain,簡稱 RBD),結構可能展現「向上」(RBD-up)或是「向下」(RBD-down)的狀態。向下,RBD 便不會接觸宿主細胞的受器,缺乏感染能力,;向上,RBD 方能結合受器,引發後續入侵。

徐尚德團隊透過冷凍電子顯微鏡,拍攝新冠病毒 Alpha 株的棘蛋白結構,其中有三類棘蛋白的 RBD 為 1 個向上(佔 73%),有一類(類別3)的棘蛋白 RBD 則是 2 個向上(佔 27%)。圖/Nature Structural & Molecular Biology

新冠病毒表面的棘蛋白有「三隻爪子」(3 RBD),RBD 有可能同時向上(3 RBD-up),也可能只有 1~2 個向上,結構會影響病毒的感染能力。更詳細地說,棘蛋白某些胺基酸位置的差異,會影響結構的開放與封閉程度。

棘蛋白向上或向下是動態的,假如能保持穩定性,延長向上的時間,也有助於新冠病毒的感染。這正是徐尚德一系列研究下來,實際觀察到不同品系的變化。

截至 2022 年 01 月 18 日的新冠病毒品系發展歷史,其中 Delta 變異株擁有最多品系,而 Omicron 變異株則開始興起。雖然 Omicron 的品系並不多,但已逐漸成為主流。圖/Nextstrain; GISAID

一網打盡所有高關注變異株的結構變化

和武漢最初的新冠病毒相比,D614G 突變帶來什麼改變呢?簡單說:棘蛋白向上的比例增加了,導致整個結構變得更加開放,增加新冠病毒對宿主受器的親合力(affinity)。

以 D614G 為基礎,接下來又獨立衍生出數款品系,皆具備多個突變,傳染力、抵抗力更強 。影響最大的是首先於英國現身的 Alpha(B.1.1.7)、南非的 Beta(B.1.351)、巴西的 Gamma(P.1),以及更晚幾個月後,於印度誕生的 Kappa(B.167.1)與 Delta(B.167.2)。Alpha 一度於世界廣傳,導致包括臺灣在內的嚴重疫情,不過隨後不敵優勢更大的 Delta。

對於上述品系,徐尚德率隊一網打盡。 Alpha 的棘蛋白結構解析已經發表於 《自然-結構與分子生物學》(Nature Structural & Molecular Biology)期刊,其餘新冠病毒變異株的論文仍在等待審查,目前能在預印網站 bioRxiv 看到,該研究一次報告 38 個 Cryo-EM 結構,刷新紀錄。

圖 a 顯示新冠病毒 Alpha 變異株棘蛋白的突變氨基酸序列,一共有 9 處突變, D614G 突變以紫色表示。
圖 b 顯示突變的氨基酸在立體結構中的位置。
圖/Nature Structural & Molecular Biology

Alpha 變異株的 RBD 向上結構穩定

一度入侵台灣造成社區大規模感染的 Alpha 株有何優勢?其棘蛋白除了 D614G,還多出 8 處胺基酸突變,徐尚德發現 N501Y(天門冬酰胺變成酪胺酸)、A570D(丙胺酸變成天門冬胺酸)的影響相當關鍵。

直覺地想,棘蛋白的外層結構才會與受器接觸影響傳染力,立體結構中第 570 號胺基酸的位置比較裡面,乍看並不要緊。但是徐尚德敏銳地捕捉到,A570D 突變會改變局部的空間關係,令「RBD 向上」的結構更加穩定。徐尚德形容為「腳踏板」(pedal-bin)── A570D 突變的效果就像踩著垃圾桶的腳踏板,讓桶蓋(也就是 RBD)穩定保持開啟。

事實上,棘蛋白總體向上的比例,Alpha 還比單純的 D614G 突變株更少,不過 A570D 增進的穩定性似乎優勢更大。研究團隊製作缺乏 A570D 突變的人造模擬病毒,嘗試體外感染人類細胞,發現感染力明顯減少,證實 A570D 突變頗有貢獻。

新冠病毒 Alpha 株棘蛋白的「A570D 突變」,會改變棘蛋白內部的空間,讓「RBD 向上」的結構更加穩定,就像踩著垃圾桶的腳踏板,讓桶蓋保持開啟。圖/研之有物(資料來源/徐尚德、Nature Structural & Molecular Biology

Alpha 變異株的棘蛋白親近宿主細胞,干擾抗體作用

另一個重要突變是 N501Y,不只 Alpha 有,Beta 等許多品系也有,Delta 則無。N501Y 在眾多品系獨立誕生,似乎為趨同演化所致。N501Y 能為病毒帶來哪些優勢?

第 501 號胺基酸位於棘蛋白表面,會直接與宿主受器 ACE2 結合。此一位置變成酪胺酸(tyrosine,縮寫為 Y)後,和受器的 Y41 兩個酪胺酸之間,容易形成苯環和苯環的「π–π stacking」鍵結,從而大幅提升棘蛋白對細胞的親合力。

新冠病毒 Alpha 株棘蛋白的「N501Y 突變」,讓 RBD 的胺基酸與宿主細胞受器 ACE2 形成「π–π stacking」鍵結,大幅提升棘蛋白對宿主細胞的親合力。圖/Nature Structural & Molecular Biology

另一方面,N501Y 突變也會干擾抗體的作用。中研院細胞與個體生物學研究所的吳漢忠特聘研究員,率隊研發一批針對棘蛋白的人造抗體,測試發現有一款抗體 chAb25 對 D614G 突變株相當有效,但是對 Alpha 株無能為力。徐尚德由結構分析發現:N501Y 改變了棘蛋白表面的形狀,讓抗體 chAb25 無法附著。

好消息是,另外有兩款抗體 chAb15、chAb45,依然能有效對抗 Alpha 病毒,不受 N501Y 影響。這兩款抗體會附著在棘蛋白 RBD 的邊緣,避免棘蛋白和宿主細胞接觸。而且抗體 chAb15、chAb45 會各占一方,可以同時使用,多面協同打擊病毒。

雖然新冠病毒 Alpha 株的棘蛋白表面讓某些抗體難以附著,還好仍有兩款抗體 chAb15(綠色)、chAb45(黃色)能有效「卡住」棘蛋白,干擾棘蛋白與宿主細胞結合。抗體 chAb15、chAb45 附著的位置,正好就是棘蛋白與宿主細胞結合的地方。圖/Nature Structural & Molecular Biology

棘蛋白結構不只胺基酸,還要注意表面的醣

有了 Alpha 的經驗,接下來分析 Beta、Gamma、Kappa、Delta 便順手很多。這批新冠病毒的棘蛋白變化多端,但是「RBD 向上」的整體比例皆超過 Alpha 和 D614G 突變株,可見適應上各有巧妙。徐尚德也發現,要釐清棘蛋白的結構,不能只關心蛋白質,還要考慮棘蛋白表面的醣基化(glycosylation)修飾。

蛋白質在完工後,某些胺基酸還能加上各種醣基。病毒蛋白質表面的醣基可以作為防護罩,干擾抗體和免疫系統的辨識。醣基化修飾就像替病毒訂作一套迷彩外衣,不同變異株的情況都不一樣,假如醣基化的位置和數量,由於突變而改變,便有可能影響立體結構,有助於它們閃躲抗體。例如和武漢原版新冠病毒相比,Delta 株棘蛋白少了一個醣化修飾,Gamma 株棘蛋白則多了兩處醣化。

還好從結構看來,並沒有任何突變組合能完美逃避抗體。例如由美國的雷傑納榮製藥公司(Regeneron)製作並通過緊急使用授權的抗體;以及中研院吳漢忠率隊研發,有望投入實用的多款人造抗體,對變異品系依然有效。這場人類與病毒的長期抗戰中,同時使用多款抗體的「雞尾酒」療法,仍然是可行的醫療方案。

回顧將近兩年來的研究之路,徐尚德表示:時間壓力真的非常大!COVID-19 疫情爆發後,全世界投入相關研究的專家眾多,只要稍有遲疑,便會落在競爭者後頭。但是即使跑在最前端的研究者,也只能苦苦追趕病毒演化的速度,一篇論文還在審查時,現實世界的疫情已經邁向全新局面。

人類要贏得勝利,必需全方面認識病毒,而結構無疑是相當重要的一環。

研之有物│中央研究院_96
253 篇文章 ・ 2219 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

2

7
2

文字

分享

2
7
2
英國、南非、巴西……武漢肺炎進入總加速師新階段?
寒波_96
・2021/01/23 ・4311字 ・閱讀時間約 8 分鐘 ・SR值 609 ・十年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

事後回顧,仍然未知起源的 COVID-19(武漢肺炎、新冠肺炎)應該是在 2019 年某個時候適應人類宿主,獲得人傳人的能力;2020 年 1 月在武漢傳開以後出國深造,2 月時在歐洲衍生出傳播力增強的 D614G 品系。

而一年後的 2021 年初,似乎又有傳染力更強的新型號病毒,在英國、南非、巴西三個地方獨立興起。[1, 2, 3]

巴西的瑪瑙斯,是全世界疫情最嚴重的地方之一,200 萬居民可能已經超過 80% 人口得疫,預期的群體免疫,卻無法阻止病毒持續蔓延。在此絕境之下,只能先讓效果可疑,由中國研發的 CoronaVac 疫苗搶先投入戰場。圖/Public Broadcasting Service

傳染力更強的病毒,在英國誕生,愈演愈烈

三處值得注意的新款病毒中,英國款首先被觀察到,有大量新聞報導,至今知名度最高。它有多個名號,常稱作 B.1.1.7(也叫 VUI 202012/01)。之所以受到注意,是由於它的突變特別多。4, 5

導致武漢肺炎的病原體——SARS二世冠狀病毒(SARS-CoV-2),過去一年觀察下來,平均一個月大約累積 2 個突變;但是和近親相比,英國誕生的新品系卻配備高達 17 處突變,8 個位於 S 蛋白質(spike protein)上頭,另外也喪失 ORF8 基因,ORF1ab 基因上還有 3 個胺基酸缺失。

英國在 2020 年 9 月 20 日首度發現 B.1.1.7 以後,它的存在感持續上升。這款新病毒的性質仍需研究,不過初步幾點間接證據,支持它的傳染力確實有所提升。

  • 第一,感染者人數短期內迅速增加,占總感染比例也明顯上升。[6, 7]
  • 第二,感染者再傳染給下一位的比例,新型號病毒為 15%,其餘品系是 10%。
  • 第三,新型號病毒的感染者,上呼吸道的病毒量比較高(由 Ct 值判斷)。[8]
  • 第四,傳播到丹麥、美國以後,存在感增加的幅度和英國類似。[9]
B.1.1.7 在英國誕生以後,存在感節節高升。圖/參考資料2

所幸英國的新型號病毒,在傳染力增加之外,殺傷力暫時沒見到改變。

去年初誕生,S蛋白質上的 D614G 突變,令傳染力上升,但是沒有提升殺傷力。D614G 成為隨後疫情的主要基礎,如今 B.1.1.7 等型號皆由此而來。看來突變強化傳染力的同時,殺傷力似乎更傾向維持現狀。

有專家憂心,新型號病毒的傳染力上升,是否對未成年人影響更大,讓小孩容易更得疫?這方面仍在調查,初步看來,不同年齡的增加幅度沒有明顯差異,暫時不用緊張。[10]

南非、巴西,也和英國一樣

英國之外,南非、巴西也陸續出現特徵類似的新款病毒,在三地的存在感皆明顯上升。由演化關係看來,三地的新品系是獨立誕生,它們和英國的 B.1.1.7 一樣配備許多新突變,而且多數位於基因組上類似的位置。例如三者的 S 蛋白質上,都有 E484K、N501Y 兩個突變。

B.1.351 在南非誕生以後,存在感節節高升。圖/取自 [參考資料2]

南非誕生的新品系名喚 B.1.351(也叫 501Y.V2),S蛋白質上有 7 個突變,ORF1ab 也有 3 個胺基酸缺失。[11]

巴西的新品系名喚 P.1(衍生自 B.1.1.28),在亞馬遜地區,疫情可謂全世界最嚴重的城市瑪瑙斯蔓延;它的 S蛋白質上有 10 個突變,ORF1ab 還有 3 個胺基酸缺失。[12]

值得重視的問題是,眾多突變是否會影響疫苗作用?初步看來某些突變,或許會減弱抗體的效果,不過在現實世界中未必會造成明顯的影響。要掌握狀況,仍需更全面的研究。[13]

P.1 在巴西誕生以後,存在感節節高升。圖/取自 [參考資料2]

三處獨立發展的病毒,各自出現類似的遺傳變異,而且似乎在傳播上都有優勢,看來不是巧合。情況或許是「趨同演化(convergent evolution)」,也就是不同遺傳支系的病毒,面臨類似環境時,產生不同突變,卻有類似效果。

不過這邊看來,不同支系間至少部分突變是一樣的。若是如此,定義上應該是「平行演化(parallel evolution)」,亦即不同遺傳支系的病毒,在一樣的遺傳背景下各自突變,卻產生相同的新變異,又在環境中產生類似的效果。

話說回來,演化的詳細過程不容易釐清,知道概念比較重要。不要太計較的話,以趨同演化描述,不能說有錯。

分歧演化、平行演化、趨同演化,分子演化上的範例。平行演化是兩個支系,同樣的原料各自演化成一樣的結果;趨同演化是兩個支系,不同的原料各自演化成一樣的結果。圖/Wikipedia

強化病毒來自倒楣的「總加速師」?

突變數目和同類相比特別多的新品系們,是怎麼形成的?這種事的真相大概永遠都無法得知。有些專家猜測,是在免疫力衰弱的慢性病患體內醞釀出來的。[14]

有些罹患嚴重慢性病的患者,免疫力虛弱,體內妖魔鬼怪橫行,各方入侵者競爭激烈,也與免疫系統衝突不斷。SARS 二世冠狀病毒入侵這樣的宿主以後,將面臨很大的壓力;由於刺激多,病毒複製時犯錯,也就是發生突變的機率會增加。

倘若能從如此險惡的環境生存下來,就有機會發展成某方面更強大的新型病毒,這是個「總加速師」的概念。配備許多新突變的病毒離開總加速師,再感染普通人之後,如果能彰顯傳染力的優勢,將更容易傳播,在同類中脫穎而出。

上述推測缺乏明確的證據,不過頗有道理,不管你信不信,反正我先信了。然而,為什麼類似的突變組合包,會在英國、南非、巴西出現,而不是其他地方呢?是其他地方尚未出現,或是有別的原因?

比賽場次少的時候,實力強的隊伍更容易受運氣影響,被弱隊擊敗,實力無法反映到戰績上。圖/翻拍自蘋果日報

規模愈大,適者脫穎而出的機率愈高

想像一下,一支比較強的球隊,若要展現出符合水準的優秀戰績,和弱隊的比賽場次,是少或多場更有可能?答案是場次多。因為場次愈少,愈容易受到運氣影響;隨著場次增加,運氣的相對影響力下降,更有機會反映出應得的戰績。

病毒的傳染也是如此。感染的人數和比賽場次一樣,感染規模愈小,運氣的影響愈大,傳播能力比較強的病毒,未必能發揮優勢,可能受到運氣不好拖累。假如感染的規模變大,天擇更容易發揮作用,讓佔有優勢的品系增加存在感。

到 2021 年 1 月 19 日為止,南非超過 136 萬人確診,幾個月來都是非洲最嚴重的地區。長期同時存在非常大量的感染者,有助於天擇作用,篩選出傳染力更強的病毒。圖/Worldometers

英國、南非、巴西三地的共同點是,疫情幾個月來都非常嚴重,感染人數非常非常多。此一狀況下,除了更容易讓久病的總加速師感染外,如果有傳染力相對優勢的品系出現,比起疫情規模小的地方,脫穎而出的機率將會更高。

三地都觀察到類似結果,表示這套變異組合在當今世道下,很可能確實有傳播優勢。其他地方沒有見到,也許是還在等待倒楣的總加速師,尚未演化出來;或是曾經出現過,但是運氣不好已經消失,沒有廣傳到被發現的規模。

最後還是要提醒讀者們,疫情快速發展之下,能確定的事不多,推論成分很大。

總之,這場瘟疫似乎正在進入下一階段:總加速師的時代。如今智人開始大量使用疫苗對抗,世界各地卻也面臨傳染力更強的對手興起。這場戰爭仍然十分激烈。

延伸閱讀

參考資料

  1. Trevor Bedford 推特,2020 年 12 月 30 日
  2. Trevor Bedford 推特,2021 年 1 月 15 日
  3. New coronavirus variants could cause more reinfections, require updated vaccines
  4. UK reports new variant, termed VUI 202012/01(VUI 202012/01 就是 B.1.1.7)
  5. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations
  6. Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England
  7. Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data
  8. S-variant SARS-CoV-2 is associated with significantly higher viral loads in samples tested by ThermoFisher TaqPath RT-QPCR
  9. Trevor Bedford 推特,2021 年 1 月 19 日
  10. What new COVID variants mean for schools is not yet clear
  11. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa
  12. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings
  13. Fast-spreading COVID variant can elude immune responses
  14. U.K. variant puts spotlight on immunocompromised patients’ role in the COVID-19 pandemic

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 2
寒波_96
175 篇文章 ・ 676 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。