0

3
0

文字

分享

0
3
0

「魚肉好吃嗎?」人面魚的都市傳說從何而來?我們又為何會在魚身上看到人臉?

臺北地方異聞工作室_96
・2018/11/23 ・6249字 ・閱讀時間約 13 分鐘 ・SR值 492 ・五年級

不知道大家是否聽過「人面魚」的都市傳說?

「人面魚」又稱「人頭魚」,流傳於1994年,距今已20多年。傳說的內容大概是這樣:

某天一群人到溪邊釣魚,其中有人釣到了一條巨大的吳郭魚,眾人立刻將其烤食。當大家吃喝得正高興,忽然聽見一個蒼老的女聲,操著台語問:「魚肉好吃否?」

大家四處尋找聲音的來源,直到聽到第二次問句,才發現竟然是被烤熟的吳郭魚一張一合地開口說話,仔細一看,魚身上還浮現一名老太婆的臉。其中三人當場嘔吐,一人拿相機將魚拍了下來,到了隔天,釣起那條魚的人在睡夢中死去,死因不明。

這則傳說的變體非常多,故事的梗概雖然大致相同,細節卻有許多差異。比如事發地點,有的說是高雄岡山,有的說是嘉義蘭潭,也有說是台南、屏東的;照片拍攝時間,從1994年12月到1995年7月都有;參與人數也有3人、4人、6人、8人的版本,有的還提到其中一人是道士,而主釣者則姓陳,34歲;魚的重量有4台斤、6台斤或4公斤;參與這則傳說的人最後下場也不同,有的如上述只有一人死去,也有全員離奇死亡的版本。

1994年流傳的人面魚相片。source:台北地方異聞工作室

然而不論中間細節如何,最後一定會提到那張有著老太婆臉孔的吳郭魚照片。這張照片不僅登上報紙,還登上了台灣第一個靈異節目《玫瑰之夜-鬼話連篇》[1],成為家喻戶曉的靈異故事。

-----廣告,請繼續往下閱讀-----

然而這真的是靈異照片嗎?人面魚又是否真的存在?雖然當時《鬼話連篇》邀請的靈學專家和攝影專家都予以否定,但今天,筆者將帶領大家,從另一個的角度認識這則都市傳說。

尋找傳說的起源

人面魚傳說之所以家喻戶曉,很大程度要歸功於《玫瑰之夜-鬼話連篇》。該節目是台灣靈異節目的始祖,一開始只是台視的綜藝節目《玫瑰之夜》中的個別單元,具有非常高的收視率,在播映了1500集之後,原班人馬轉戰東森綜合台,又製作了312集。

筆者小時候,父親非常愛看《鬼話連篇》,沒記錯的話應該是東森版本,還會有特派員到鬧鬼地點拍攝,算是相當另類的實境節目。節目是週六晚上十點播出,每次陪著父親看電視,夜晚一個人總是膽顫心驚。

不過,人面魚傳說的出現時間比那早得多。它出現在《玫瑰之夜》時期《鬼話連篇》的第56集,當時的主持人是澎恰恰和曾慶瑜,特別來賓是陶晶瑩。有趣的是,節目不僅僅介紹人面魚的故事,還邀請各領域專家分析這則傳說,包含魚的大小(以烤肉架和墊在底下的報紙當比例尺,可知大約2台斤左右,並不特別巨大),照片拍攝真正的日期(有人找到最原始的那張照片,照片上寫著1994年12月3號),以及該照片是否為靈異照片(靈學專家和攝影專家皆否認)等等。

-----廣告,請繼續往下閱讀-----

《鬼話連篇》雖然將人面魚傳說發揚光大,但看完節目後就會發現,這並非是傳說的起源。事實上,該節目之所以提到人面魚,真正的目的是在闢謠(只是造成了反效果)──當時因為人面魚的傳說,養殖魚業的生意一落千丈,吳郭魚每公斤價格從45元掉到35元,就連釣魚場生意也變得冷冷清清。這表示在節目播出之前,人面魚的傳說早就為人所知。

節目中提到,人面魚的傳說出現在8月11號的報紙。因為這則情報,筆者起了尋找第一篇報導的念頭。本來只是想一睹傳說起源之風采,沒想到找尋的過程卻異常曲折。

雖然知道了是8月11號,但是哪一年的8月11號呢?該集《鬼話連篇》的播出時間是1995年9月9日,所以是1995年?但也可能是去年甚至前年的報紙。而網路上又有1994年和1995年兩種說法。此外,又是哪家報紙刊載了這則報導?《中國時報》?《聯合報》?《自由時報》?

人面魚報導的採訪過程。source:截圖自記者蔡立楷先生的部落格。

為了解答上述的疑問,筆者使用了各種關鍵字搜尋。令人驚喜的是,筆者找到了當初撰寫該報導記者的部落格。[2]根據蔡立楷先生的說法,當時的他擔任《自由時報》桃園駐地記者,為了做中元節題材,才使用了人面魚作為報導內容。發稿時間本來是民國84年8月9日(隔天就是中元節),卻因為拿不到照片而延後了一天,直到 8月10日才刊登。

-----廣告,請繼續往下閱讀-----

筆者查了萬年曆,民國84年的8月10日確實是中元節。但令人覺得奇怪的是,該篇報導最合適刊登的時間應該是8月10日中元節當天,若趕不上截止時間而延後一天,正確的刊登時間應該是8月11日才對,這也才符合《鬼話連篇》的說法。不論如何,線索有了,調查範圍也小了很多,只要搜尋民國84年8月10日或11日的《自由時報》就沒問題了。

本來應該是這樣的。

筆者不斷向各圖書館請求協助,希望能找到最初那份報導。source:pxhere

民國84年的《自由時報》並不像《中國時報》或《聯合報》那樣,有完整的電子資料庫,得要翻找紙本版,還好台大圖書館有收錄從民國83年開始的《自由時報》。然而奇怪的是,筆者翻閱民國84年8月11日的《自由時報》,卻怎麼樣也沒找到關於人面魚的報導。

是哪裡搞錯了吧?由於蔡立楷記者的說法相當可信,筆者推測可能只是一些細節有誤,比如該記者可能換過報社,或者單純記錯日期或年份。於是筆者又找了民國84年8月9日、10日的《自由時報》,以及民國84年8月9日、10日、11日的《中國時報》和《民眾日報》,甚至連83年的8月9日、10日、11日這三家的報紙都找了,仍舊沒有。

-----廣告,請繼續往下閱讀-----

難不成那篇部落格是編造出來的?筆者忍不住這麼想。為了調查清楚,筆者不得不在網路上搜尋更多資料,後來才在台視新聞關於人面魚的《熱線追蹤》報導中[3],找到了突破口。該篇報導中採訪了第二個寫人頭魚傳說的記者陳淑芬,該記者提到(雖然字幕省略了),第一篇報導是在《自由時報》的地方版刊載的。

原來如此。

我這時才了解,為什麼我在找報導的時候老是看到大台北地區的新聞了,因為台大圖書館收藏的《自由時報》是台北地方版!而根據蔡立楷記者的部落格,當時他是《自由時報》的桃園駐地記者,所以人面魚的第一篇報導其實應該是刊登在《自由時報》的桃園地方版才對!

然而要找到《自由時報》的地方版並非易事。首先,台大圖書館是絕對沒有的,筆者第一個想到的是國家圖書館,但在致電之後,對方告訴我國家圖書館只收錄全國版。筆者又打去桃園市立圖書館,對方幫忙轉接到桃園文化局,等待一天,得到的結果卻是「有桃園地方版,但只收錄最近的兩年」。

-----廣告,請繼續往下閱讀-----

這樣一來,尋找民國84年8月11日桃園地方版報紙的線索全都斷了,真的要看到人頭魚的第一篇報導,恐怕只能靠當初有留下報紙的收藏家了。最終,筆者這「想一睹傳說起源之風采」的心願,只能不了了之。

不過,這趟搜尋還是有收穫的。

嘉義蘭潭的魚精傳說

在各種與人面魚相關的網路留言中,筆者發現,一直有人提到嘉義蘭潭才是人面魚真正的發生地點。

嘉義蘭潭不斷被提及是人面魚真正的發生地點。source:wikipedia

台視的《熱線追蹤》中,陳淑芬記者也說她曾經調查嘉義蘭潭一帶的溺亡案件,從日治時期到民國84年為止,溺亡人數竟高達1000多人!筆者的朋友是嘉義人,他告訴我蘭潭當地確實很多投潭自盡的故事,一旁的環潭公路也很陰,據說半夜騎車還會遇到鬼打牆直到天亮。

-----廣告,請繼續往下閱讀-----

筆者於是針對嘉義蘭潭展開調查,才發現當地竟然有所謂的「魚精傳說」。傳說蘭潭內住著一隻大魚精,每當他的魚兵魚將被釣客抓走,就會抓一條人命來賠,因此每釣起一隻大魚,就會發生一起溺水事件,這被稱為「蘭潭抓交替」。此外,蘭潭還有各種靈異故事,如:巨大泥鰍精、雞頭人身、穿著長袍的無頭老人……等等。不僅如此,到了蘭潭水庫的枯水期,還能看見清朝的古墓。

「魚精傳說」之所以產生,筆者推測有兩個原因。

  • 第一,蘭潭水庫是自殺勝地。蘭潭水庫之所以溺亡者眾,是因為水庫與一般湖泊不同,岸邊與底部的落差大,一旦落水幾乎必死無疑;再加上距離市區很近,一開始是意外,而後口耳相傳,蘭潭便成為自殺勝地。
  • 第二,蘭潭中有許多大魚,而成為釣魚熱點。蘭潭是水庫,營養豐富,水族容易滋長,使得當地有多起目擊大魚的事件。曾有人推測大魚可能是外來種,俗稱魚虎的小盾鱧(Channa micropeltes),體長可超過一公尺[4]。而潭中有大魚,自然也使得蘭潭成為釣魚熱點。

結合以上兩點,就很可能產生所謂「蘭潭抓交替」──「釣到大魚必死人」的聯想,進而誕生「魚精傳說」。

「魚精傳說」的成因分析到此結束,然而調查至此,讓筆者有了個推測──

-----廣告,請繼續往下閱讀-----

也許,「人面魚傳說」是從「魚精傳說」演變而來。

拷貝轉發才能消災解厄?

在之前觀看《鬼話連篇》節目時,筆者就注意到一件相當有趣的事。

節目當中靈學老師提到,有許多人將人面魚照片寄給他,並且告訴他人面魚的故事(雖然版本各不相同)。其中有人告訴他,「拿到這張照片,一定要拷貝一張送出去,這樣才能夠消災解厄。」

《鬼話連篇》製作組和靈學老師曾收過數量龐大的照片。source:pxhere

就和從前E-MAIL剛出現時的詛咒信的原理一樣,(似乎就連LINE也有類似的詛咒訊息?)這種連鎖信利用人類的恐懼滋生,威脅若不將之散佈出去會發生不好的後果,因而一傳十、十傳百。這解釋了為什麼《鬼話連篇》的製作組和靈學老師會收到這麼多照片,這恐怕是因為轉交給專業的第三方單位,對自己要負擔的人情壓力最小吧。

在該期的《鬼話連篇》節目中,澎恰恰展示了一個貼滿人面魚照片的展板,上面的照片少說有二十幾張,據說便是製作單位收到的照片,而那只是其中一部份。這些照片千篇一律,只有解析度不同──因為被轉越多手,照片就越模糊。這大概也是為什麼人面魚故事版本如此眾多的原因,因為每轉交一次,故事就會被複述一次,就像某種傳話遊戲,只不過因為平面媒體與娛樂媒體的宣傳,人面魚故事的梗概大抵還維持一致。

筆者推測,整個人面魚傳說的演變過程大概是這樣:

嘉義蘭潭當地因為成為自殺勝地的關係,有了「蘭潭抓交替」的魚精傳說。知道這則傳說的釣客,在一次釣起吳郭魚烤食的過程中,發現破損的吳郭魚意外形成一張臉,便用相機記錄下來。照片沖印完成之後,不論是覺得害怕或單純惡作劇,使用了「連鎖信詛咒」的手法,將照片散佈出去。

本來這則傳說只有少部分人流傳,結果被記者發覺,成為了中元節隔天的新聞報導。人面魚傳說如同病毒般傳播,對當時的漁業造成一定的影響,《鬼話連篇》因此做了節目闢謠,反而造成更多人知曉這則傳說,而被永遠留在台灣人的心中。

人面魚傳說的考據與推理到此算是正式結束。不過,推論當中提到,「破損的吳郭魚意外形成一張臉」,真的只是單純地意外嗎?

看到人面魚是一種大腦過敏?

其實這是有科學解釋的。

人是社會性的動物,辨認他人臉孔的能力相當重要。人類天生就對人臉的結構特別敏感,研究指出,這種「辨認臉孔」的能力,與大腦的「梭狀回臉孔區」(fusiform face area, FFA)有關。[5]

梭狀回位置。source:wikipedia

梭狀回(Fusiform gyrus)是顳葉與枕葉的一部分,位置大概在耳朵上方,接近大腦表層,主要有幾個功能:

  1. 處理顏色訊息
  2. 人臉與身體辨識
  3. 文字識別
  4. 分類識別。

其中「人臉與身體辨識」由梭狀回臉孔區負責,一旦眼睛接收視覺刺激,經過視皮層處理,會再交由梭狀回面孔區分析,以達到分辨人臉的效果。

而一個人的梭狀回面孔區如果受損,就會失去辨識人臉的能力,這被稱為「臉盲症」或「面部辨識能力缺乏症」。此外,內向的人在看到臉孔時,梭狀回臉孔區的活化程度會比外向的人低,自閉症的患者則甚至幾乎不活化。而越吸引人的臉孔,梭狀回臉孔區的活化程度也會越高。

你也看到一個人臉在對你笑嗎? source:twistedsifter

除了對人臉有反應外,梭狀回臉孔區也可以對明明不是人臉的影像,產生「這是一張臉」的認知。也就是說,只要有一些輪廓,我們對人臉過度敏感的大腦,就可以把它看成一張臉。

這聽起來似乎很玄,但卻是我們每個人必定都有的經驗。諸如表情符號之所以能被看懂,烤起司三明治上之所以能看見聖母瑪利亞像,火星塞東尼亞區的丘陵之所以能看見「火星人臉」,房屋的水漬之所以能夠看到幽靈的臉,甚至漫畫之所以用寥寥數筆就能表達人物,都是一樣的道理。

人面魚或許也是如此。

不靈異卻最靈異的故事

於是,我們知道了人面魚不過是人類大腦對於臉孔太過敏感而得到的巧合。然而即使獲得了科學解釋,仍舊無法抹滅人面魚在人們心中的地位。《鬼話連篇》20年前試圖闢謠,只是加深了它在大眾心中的印象,20年後的這篇分析文章,更不過是蚍蜉撼樹。然而筆者從未想要透過分析這些傳說來「破解」人面魚,透過一次次考據,我們反而重溫了20年前那些為人津津樂道的,一個個靈異故事。

相信到了現在,一句「魚肉好吃否?」,依然能夠喚醒某一代人心中最深的恐懼。

  • 本則傳說在2018年成為電影《人面魚:紅衣小女孩外傳》的題材

參考資料

楊海彥/
畢業於台灣大學生化科技學系,而後就讀實踐大學工業設計所,沒念完就跑出來開工作室。目前專注於把台灣文史和民俗元素轉化為故事,設計實境遊戲、桌遊和說。
嗜讀奇幻文學,喜愛電影,比起咖啡更喜歡茶,卻養一隻以咖啡為名的貓。

2018年5月底的一個週日,一名年輕人在大雨中躲入西港國小教室,令他意外的是,教室中早已擠了好幾人。他們看到年輕人進來,不但沒歡迎,還露出緊張、慍怒的神色。他抬頭一看,發現教室的黑板上寫了十個名字,而自己的名字赫然就在其中——

臺北地方異聞工作室全新鉅獻實境角色扮演遊戲,【醮事The Classroom】報名熱烈開跑中!
現在就到【醮事The Classroom】瞭解詳情!

友站延伸閱讀:

-----廣告,請繼續往下閱讀-----
文章難易度
臺北地方異聞工作室_96
23 篇文章 ・ 257 位粉絲
妖怪就是文化!北地異工作室長期從事臺灣怪談、民俗、文史的考據和研究,並將之轉化成吸引人的故事和遊戲。成員來自政大與臺大奇幻社,從大學時期就開始一起玩實境遊戲和寫小說,熱愛書本、電影和實地考察。 歡迎來我們的臉書專頁追蹤我們的近況~https://www.facebook.com/TPE.Legend

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
鱸魚精有抗疲勞的健康食品認證!累了可以依靠它嗎?自己在家也可以做嗎?
Evelyn 食品技師_96
・2023/01/18 ・3215字 ・閱讀時間約 6 分鐘

有沒有聽過開刀手術、懷孕生產過後要喝一碗鱸魚湯補身體呢?每當有親友開完手術時,通常會燉煮一鍋鮮美的鱸魚湯,期望讓術後的患者能快速癒合傷口,恢復元氣[1]

不過現在市面上已經有「鱸魚精」這樣方便又營養的產品,讓消費者免去熬煮魚湯的麻煩,即開即飲,這跟一般在家做的滴魚精有什麼不同呢?

金目鱸魚,其體背與各鰭皆為褐色,腹部為淡褐色,尾鰭圓形不分叉,可用來製造鱸魚精。圖 / 農委會

在家做的滴魚精和工廠做的鱸魚精之差異

一般在家裡自製的滴魚精,不外乎就是將魚肉放進密閉容器中,以類似蒸箱的方式加熱,讓這些肉滴出具有營養價值的精華——蛋白質和少量支鏈胺基酸(branched-chain amino acid, BCAA)。

支鏈胺基酸包含纈胺酸(valine)、白胺酸(leucine)及異白胺酸(isoleucine),是骨骼肌主要胺基酸成分,也是重要的能量來源。補充支鏈胺基酸除了可延長肌肉耐力外,亦能促進肌蛋白合成並減少分解作用,有助於組織建構及修復[2]

-----廣告,請繼續往下閱讀-----

魚肉雖然是優質的蛋白質來源,但大分子蛋白質還是必須經過胃腸道消化,分解成小分子胺基酸才能被身體吸收。

所以飲用魚精,能讓無法正常咀嚼、飲食,僅能飲用流質食物的人,或是對蛋白質、胺基酸有額外需求者(例如消化功能不良、大手術病患、懷孕等),得以迅速補充營養。

但其實滴魚精的支鏈胺基酸含量並不如一般市售的鱸魚精來得多。因一般市售的鱸魚精的加工方式更為嚴苛,能夠從肉中萃出更多的支鏈胺基酸及胜肽。

那麽鱸魚精是用什麼特殊加工技術製造的呢?

-----廣告,請繼續往下閱讀-----
自家製與工廠製的鱸魚精,作法差在哪裡呢? 圖/GIPHY

超高壓加工所萃出的支鏈胺基酸含量可提高十倍

鱸魚精產品以「品純萃」為例,其採用「超高壓加工[註]輔助酵素水解法」,將處理好的鱸魚肉放入密閉的軟性包材中,加入蛋白分解酵素,同時對它施加 0.2~400 MPa 的壓力(近 4,000 大氣壓)。

如此極大的壓力,增加了酵素與蛋白質的作用及水解效果,使鱸魚精中游離支鏈胺基酸的含量提高至 279 mg / mL。

相較於傳統熱萃取的方式(也就是在家自製的方式)僅能萃出 21 mg / mL 的游離支鏈胺基酸,超高壓加工輔助酵素水解法約提高 10 倍的營養成分萃取,使原料的利用率與產率大幅提升[3, 4, 5]

而這項優秀的萃取技術已經完成了專利申請。

-----廣告,請繼續往下閱讀-----

雞精也是似類似的道理,雖然沒有用到 HPP 技術,但它也是透過長達 10 小時「高溫高壓」的隔水蒸煮,將雞肉中長鏈的蛋白質,轉化為人體易吸收的支鏈胺基酸和小分子胜肽[6]

這些嚴苛的加工條件,不是在家自己 DIY 能夠輕易達成的。

白蘭氏有公開其製造加工雞精的流程影片,可點下方的影片直接觀看。

白蘭氏雞精製作過程。/ YouTube

鱸魚精和雞精的營養差異

所以喝魚精或雞精,主要就是在補充支鏈胺基酸,有助於減少運動所產生之身體疲勞。除了可延長肌肉耐力外,亦可降低運動後會造成疲勞的血液生化指標,如肌酸激酶活性、乳酸去氫酶活性及乳酸等,以維持較佳的運動表現[7]

-----廣告,請繼續往下閱讀-----

當然上述兩項產品皆通過健康食品「抗疲勞」認證,擁有小綠人標章,筆者依衛生福利部審核通過之健康食品資料查詢,將擁有健康食品認證的鱸魚精與雞精做個比較。

其中雞精除了抗疲勞,還多了一項免疫調節的保健功效,研究發現,支鏈胺基酸也有助於促進免疫細胞增生的功能,或促進吞噬細胞及自然殺手細胞的活性[2]

不過,根據 110 年「超高壓輔助鱸魚副產物之發酵水解物對調節血壓功能性與產品開發的評估」報告,超高壓加工輔助商業酵素水解發酵鱸魚副產物經動物試驗及體外試驗的結果顯示,具有調節高血壓的效果[8]

所以這些蛋白質水解物不只可抗疲勞,還具有免疫調節或調節高血壓的功效,說不定鱸魚精未來還會再多一項「輔助調節血壓功能」的健康認證。

-----廣告,請繼續往下閱讀-----
品純萃鱸魚精(左)和白蘭氏雞精(右)的營養標示,兩者皆標示出保健功效之相關成份含量。圖 / 品純萃大買家

哪些人不適合喝魚/雞精?

魚 / 雞精雖然是健康食品,可以補充營養和體力,但衛生福利部食品藥物管理署不建議以下 4 類族群天天飲用:

  1. 慢性腎臟病患者:魚/雞精內含豐富鉀離子與蛋白質,可能加重腎臟負擔。
  2. 高血壓患者:魚/雞精的鈉含量可能偏高,易造成血壓升高。
  3. 痛風患者:魚/雞精屬普林類食品,可能易導致尿酸升高,不利於痛風控制。
  4. 楓糖尿症患者:此種罕見疾病無法代謝支鏈胺基酸,魚/雞精內所含胺基酸可能導致疾病惡化[9]

我有需要喝魚/雞精嗎?

對於健康的人來說,吃魚/雞肉當然比喝魚/雞精更營養。

以蛋白質為例,鱸魚每 100 克有 20 克的蛋白質,魚精則約含有 2.5 克左右;而去皮的雞胸肉每 100 克有 22 克的蛋白質,雞精則約含有 8 克左右,肉的蛋白質含量會比「魚/雞精」高得多。

且吃魚/雞肉可攝取到更多元的胺基酸、維生素 B 群和鐵等更多成分,營養會更完整且更美味。

-----廣告,請繼續往下閱讀-----

若覺得疲累,喝「魚/雞精」或許有助於改善疲勞,但如果是長期工作壓力累積的的疲勞,喝「魚/雞精」只能治標,不治本,還是得改變不良的生活習慣才能有效改善疲勞喔!

註解

超高壓加工(high pressure processing, HPP):包括動態高壓加工(High Dynamic Pressure Processing, HDPP)與高靜水壓加工(high hydrostatic pressure processing, HSPP)技術。

前者是運用衝擊波使加工原料更為均勻細碎化;後者是以水作壓力介質對原料進行加壓作用。屬非熱加工技術,優點在於食品風味不會受到高溫破壞,與新鮮原料較為相近,也具殺菌的效果。

目前全球已開發應用的產品包括肉製品、果汁和飲料、蔬菜製品、水產品等種類,但因高壓加工的成本遠高於熱加工技術,故在商業化應用的進展較為緩慢[10]

-----廣告,請繼續往下閱讀-----

參考資料

  1. 行政院農業委員會,2009。追溯鱸魚補身的秘密。食農教育資訊整合平臺
  2. 黃桂英、洪可珎、田宛容,2019。雞精~真「滴」營養嗎?。國泰綜合醫院營養通訊 108,1-4
  3. 食力 foodNEXT,2021。【食聞】什麼是「HPP」技術?用來製作鱸魚精,竟能保存更多營養?
  4. 林雨欣、李季樺、林家驊、顏薏貞、莊曜陽、陳冠文,2017。水產食品中超高壓加工技術的應用與發展現況。海大漁推 47,17-32。
  5. 金利食安科技股份有限公司,2017。專利編號 TW I600379 B。臺北市:經濟部智慧財產局。
  6. 白蘭氏,雞精製作過程
  7. Coombes, J. S. and McNaughton, L. S. 2000. Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. Journal of sport medicine and physical fitness 40: 3 240.
  8. 陳冠文,2022。超高壓輔助鱸魚副產物之發酵水解物對調節血壓功能性與產品開發的評估。計畫編號 MOST 108-2221-E-019-040-MY3。臺北市:國家科學及技術委員會。
  9. 衛生福利部食品藥物管理署,2018。送長輩滴雞精,真能讓他們「補身體」嗎?。食藥好文網。
  10. 吳思節、劉育姍、徐源泰,2021。新型態高壓加工技術-蔬果產品加值應用之新契機。農業科技決策資訊平台
-----廣告,請繼續往下閱讀-----
Evelyn 食品技師_96
23 篇文章 ・ 29 位粉絲
一名食品技師兼食品生技研發工程師,個性鬼靈精怪,對嗅覺與味覺特別敏銳,經訓練後居然成為專業品評員(專業吃貨)?!因為對食品科學充滿熱忱,希望能貢獻微薄之力寫些文章,傳達食品科學的正確知識給大家!商業合作請洽:10632015@email.ntou.edu.tw