0

0
0

文字

分享

0
0
0

用科學的眼睛,看穿這個充滿偽科學與謠言的世界──《晨讀10分鐘:科學和你想的不一樣》

親子天下_96
・2019/07/15 ・1552字 ・閱讀時間約 3 分鐘 ・SR值 533 ・七年級

文/鄭國威

科學都這麼進步了,為什麼還是防不了偽科學謠言?

快速進步的科學與技術,看似滲透到生活中的方方面面,卻也沒辦法遏止偽科學謠言,身為科學傳播從業者,面對滅之不盡、防不勝防的偽科學謠言,有時也不禁覺得疲憊。然而這也正是為什麼,科學從不只是科學家的事,而是一個需要所有人一起參與的志業(Enterprise)。

謠言是一種虛假訊息傳播的「形式」,偽科學則是虛假訊息的一種內容,一種內容可以透過多種形式來呈現,一種形式也可以乘載多元的內容,就像我們可以把紙拿來做成書,也可以做成紙尿布,乘載的內容天差地遠。

謠言是在社交互動的過程中,以非結構的、碎片的,很難溯源的內容來呈現,以前都是靠面對面的口耳相傳,現在當然也透過盛行的社群通訊媒體,像是 FB、LINE、Youtube 等。

-----廣告,請繼續往下閱讀-----
圖/wikimedia

偽科學雖然常透過謠言這種形式來傳播,但也會透過媒體、書籍、課程、演講活動等其他比較有結構、有脈絡、有清楚出處的方式來傳播,同樣的,謠言不一定跟科學或偽科學有關,有時謠言小到只是辦公室或班級裡的感情八卦、有時則大到是國與國之間的宣傳攻防戰。

謠言傳播正是善用了大腦的特性

你的大腦早已經成為情緒駭客的目標,他們利用各種手段讓你迷信盲從,但人為何那麼容易受騙?我們不正是因為大腦優異的性能才成為地球上獨特的存在嗎?看完〈我們容易受騙,是因為大腦漏洞百出〉,以後別隨便說別人腦子有洞,因為你我都有很多洞。

偽科學謠言的生產與傳播者善用「簡化」、「懷古」、「複雜」、「專家」等技巧說故事,讓你聽得津津有味、渾然不覺「這不科學」,但為什麼人總是買故事的單,而忽視數據,不去檢驗證據?看完〈為什麼比起數據,人們更容易相信個案?〉,就別再被名人見證跟代言矇著眼帶著走。

圖/pxhere

新聞媒體是現代絕大多數人接收科學相關訊息的主要管道,因此,能夠理解媒體所報導的科學相關內容,並加以反思,是科學思辨最重要的一環。然而為什麼新聞媒體時常錯誤的報導科學,甚至成為偽科學、假專家的造謠助力呢?看完〈外星人新聞 雙重災難〉與〈跨年夜的捷運改變了地球磁場?那真是比萬磁王還要狂啊!〉你會對新聞呈現科學的狀況與問題更了解。很遺憾,當新聞越來越追求即時、新聞工作者欠缺專業、新聞報導強調因果呈現,也就離科學越來越遠,這是我們得共同面對的社會問題。

最後,媒體上常出現「新的研究發現打臉過去的研究發現」這樣子的新聞,描述得好像先前的科學家都傻傻的搞錯了,但其實我們得明白,科學知識是會演進的,不是一成不變的。能夠持續修正,正是科學最寶貴的價值。有時候是研究設備變得更先進了,有時候是因為時空背景整個都不一樣了。

你也可能會看到不少科學界的糟糕新聞,像是科學家抄襲、造假之類的。主要的原因是這些跟道德瑕疵有關的事件,很吸引媒體與閱聽人,所以會被媒體放大。比較值得擔憂的問題是,那些沒被發現有錯誤的科學,透過媒體放大了,該怎麼辦?也就是當科學研究有錯,但沒人發現,那麼這樣的知識透過媒體傳播開來,我們有辦法察覺嗎?看完〈你看過「狗狗其實不喜歡被抱」的新聞,但你發現問題了嗎?〉這篇,就開始多注意那些簡單直白、譁眾取寵、以及未經重複檢驗的科學新知吧!

——本文摘自《晨讀10分鐘:科學跟你想的不一樣》,2019 年 6 月,親子天下出版

文章難易度
親子天下_96
26 篇文章 ・ 25 位粉絲
【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。

0

1
2

文字

分享

0
1
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
3

文字

分享

0
5
3
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

討論功能關閉中。

0

1
0

文字

分享

0
1
0
今天的星座運勢是……不宜相信占星術?——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/07 ・2000字 ・閱讀時間約 4 分鐘

占星術的背後

占星術是極普遍的偽科學,書店架上塞滿了談占星的書,而且幾乎每一份報紙都會發布每日星座運勢。蓋洛普(Gallup)1986 年發布的一項調查報告指出,52% 的美國青少年相信星座,而各行各業中,認同占星學中某些亙古流傳說法的人,也多到讓人難過。我說讓人難過,是因為如果那些人相信占星師和占星術,當你進一步思考他們還可能相信哪些人事物,會讓人不寒而慄。一旦那些人手握大權(比方說雷根總統)、卻根據這類信念行事,特別可怕。

占星術主張,人出生那一刻的各星球牽引力,會影響一個人的個性。但這個論點很難讓人接受,理由有二:(一)占星學完全沒有提到這種牽引(或是其他)力道,到底要透過哪一種生理或神經生理機制運作,更別說解釋了;(二)負責接生的產科醫師施加的牽引力,遠高於各個星球。請記住,一件物體對於身體(比方說,新生兒)施加的牽引力,和物體的質量成正比,但和物體與身體的距離平方成反比。這是否代表比較胖的產科醫師接生的寶寶,會有一組人格特質;比較瘦的產科醫師接生的寶寶,會有另一種不同的人格特質?

占星理論中有很多缺陷,但數盲視而不見。他們不太關心運作的機制,也不太想去比較數值大小。話說回來,即使沒有清晰明瞭的理論基礎,但如果占星術有用、有實務證據撐腰,還是應該獲得尊重。只可惜,一個人的出生日期,與標準人格測驗的得分之間,沒有任何相關性。

圖/envato

一直以來,都有人找占星師做相關的實驗(最近是加州大學的蕭恩.卡爾森﹝Shawn Carlson﹞)。研究人員會給占星師看三個匿名的人格特質側寫,其中一個是當事人的。當事人提供所有占星要用到的數據(透過問卷,而非面對面),占星師必須從人格特質側寫中挑出哪一份是當事人。實驗中總共有 116 位當事人,而負責檢驗的是歐洲與美國 30 位最頂尖(由同業判定)的占星師。實驗結果如下:占星師約有三分之一的機率,可以挑出正確的當事人人格特質側寫,也就是說,和隨機猜測沒什麼區別。

-----廣告,請繼續往下閱讀-----

凱斯西儲大學(Case Western Reserve Univer sity)物理學家約翰.馬蓋文(John McGervey)檢視《美國科學名人錄》(American Men of Science)上,超過 1 萬 6,000 位科學家,以及《美國政治名人錄》(Who’s Who in American Politics)上,超過 6,000 位政治人物的出生日期,發現他們的星座是隨機且均勻分布在十二個月中。密西根州立大學(Mi chi gan State University)的伯納德.西弗曼(Bernard Silver-man)取得密西根州 3,000 對夫婦的紀錄,發現他們的星座和占星師預測相配的星座之間,沒有相關性。

那麼,為何這麼多人相信占星之說?一個明顯的理由是:在通常語焉不詳的占星預言中,人們會去讀他們想讀到的一切,然後為預言添加根本不存在的真實性。他們也比較可能記得有成真的「預言」,過度看重巧合,忽略其他。其他理由還包括,占星術的歷史悠久(當然,人祭﹝ritual murder﹞和獻祭也同樣古老)。或是因為,它原理很簡單、但操作起來有一定的複雜度,會讓人感到安心。或者是,堅稱這個月能不能墜入愛河和天上的浩瀚星海有關,很能寬慰人心。

圖/envato

我猜,此外還有最後一個理由,那就是在一對一諮詢期間,占星師會從臉部表情、儀態、肢體語言等等,尋找和人格特質有關的線索。我們來看看知名的案例:聰明的漢斯(Clever Hans)。漢斯看來是一匹會算數的馬,牠的訓練師會擲骰子,問牠骰子上面的點數是多少。而漢斯會用馬蹄踏出正確答案,然後停住,旁觀者都大為驚異。但人們看不出來的是,訓練師原先都站定不動,等到馬兒敲到正確的次數,會有意無意地動了一下,就是這樣的反應讓漢斯停了下來。所以,不是這匹馬知道答案,牠只是反映了訓練師知道答案。人常無意間在占星師面前扮演訓練師的角色,占星師就像漢斯一樣,反映出客戶的需求。

美國天文學家卡爾.薩根(Carl Sagan)就說過,要破解占星術以及更廣義的偽科學,最好的辦法就是真正的科學。真正科學的奇妙之處也同樣神奇,不過多了一項優點:這些奇妙之處很可能是真有其事。說到底,偽科學之所以成為偽科學,並不是因為得出的結論稀奇古怪。畢竟,運氣好猜中、機緣巧合、奇特的假說,甚至是一開始的誤信,都在科學上扮演過一定角色。偽科學失當,是因為其結論經不起檢驗,以及無法和其他經過檢驗的主張之間,建立起一致的關係。我很難想像,像演員莎莉.麥克琳(Shirley MacLaine,按:麥克琳是推動新時代運動的先驅)這些人會因為證據不足、或有更好的替代解釋,就去否定通靈等超自然現象。

-----廣告,請繼續往下閱讀-----

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。