Loading [MathJax]/extensions/tex2jax.js

1

9
2

文字

分享

1
9
2

科普到底怎麼生出來的?來聊聊台灣科普書的製作吧!

Lea Tang
・2019/04/30 ・2441字 ・閱讀時間約 5 分鐘 ・SR值 534 ・七年級

科普啊科普,你到底是何方神聖

我們熟知的「科普」,是科學普及四個字的縮寫。從英文 popular science 這個名詞來看,它又可稱作流行或大眾科學。

科普又可稱作流行或大眾科學。圖/nasa.gov

科普旨在用淺顯易懂的方式,向一般大眾傳達科學的技術知識、相關領域的學術研究與傳播科學理念及精神等。常見的媒介是網頁、電視節目、系列書籍或雜誌文章等。

在 2019 年的今日,我們已經進入了科學的時代。如同馬斯洛需求理論所說,人們在滿足了基本保暖需求後,開始對獲取更多知識產生渴望。科普在歐美日等國家已行之多年,相信在成長的過程中,這些翻譯類的科普讀物也陪伴過各位好一段青澀稚嫩的求學時光。

對喜歡科學的我們來說,科普是一種生活中的調劑。有些讀者看著看著,就萌生起一股寫作的欲望和自我期許,但礙於缺少相關了解與管道無疾而終;有些讀者歷經科普洗禮,也產生一股想要了解科普書籍誕生過程的想法和好奇心,但想法往往又因各種波折轉眼即逝、被擱置在腦後。

-----廣告,請繼續往下閱讀-----
保持好奇心。圖/hriveglobal.com

這回,我們有幸採訪到遠流出版社旗下的科普雜誌——科學人的林彥傑副總經理,由他來帶領大家了解台灣科普書的製作,希望能藉此讓我們與科普的距離更接近。

科普都從哪裡來?

要談科普書的製作,我們要先將它們做一個初步的分類:外國翻譯科普書與國內創作科普書。

前者通常由出版社主編依照國內市場,如:課業、名家 ex. 霍金或議題性,來進行選書。與外國出版社洽談獲得授權後,出版社會依照書籍的內容來挑選譯者。部分科學主題在國內會由特定的專家負責,在這種狀況下,譯者會較熟習這個科學領域,翻譯上不易產生理解偏差等問題。

而國內科普,通常會有兩種做法。第一種是科普作家自行連絡出版社提案,另一種是由出版社訂定主題後尋找合適的作者,擬定大綱供其參考。

國內科普數量稀少,且受學校方面的壓力、編輯人才不足及酸民批評等因素常有出版上的困難。圖/pixabay

須注意、應注意而要注意

編輯在科普寫作上扮演著非常關鍵的角色。首先,確認稿件文字是否流暢易讀是最基本的關卡。再來,編輯要注意文章是否都有符合以下條件:

-----廣告,請繼續往下閱讀-----

科學事實的求證

科普文章最注重的就是正確性和嚴謹度。正因為肩負著把科學知識與理念傳達給世人的重任,在這分面完全是馬虎不得的。

專有名詞的統一性 新進專有名詞的翻譯

以科學人雜誌為例,編輯部有建立標準辭庫,務必要保持某個名詞在同系列的書籍乃至所有出版書都是統一的,免得讓讀者陷入不同名詞但同義的困惑中。若有處理到科學界的新名詞,作為第一手引進者,如何準確翻譯也是一大考驗。

幕後的審訂老師 + 專有名詞的更新

每一科學領域都該有一群專家學者可供編輯諮詢,同時編輯也須注意到學界是否針對某個名詞有了新的詮釋,例如:近年「精神分裂」的用詞被改為「思覺失調」。由此可知,科普編輯通常會要求是科學背景出身,對科學具有一定敏感度的人。

最後要特別注意的是篇幅。並不是字多就是好,捫心自問:這麼多字,讀者真的有興趣嗎?適當的文字清理可以讓文章更聚焦,效果反而會更突出。

-----廣告,請繼續往下閱讀-----

雖然叫科普,但是市場小眾

當我們提到科普,第一個會想到的就是:它是專門給大眾看的、很多人閱讀,殊不知科普的市場反而比較小眾。科學本身就是一門龐大的學問,從眾多領域中挑出一種,再從中挑出一項來介紹給一般人,這個行為本身就已經是針對某一小群「對某領域有興趣」的人。換句話說,最後選出的主題是呈現給被篩選過後的讀者看的。讀者定位清楚不是壞事,有時候反而因此可以在某一群讀者中發酵,而達到不錯的銷售。

選擇科普寫作的主題,就像過篩一樣,最後呈現的結果也只能吸引小眾。圖/pexels

出版科普書籍需要花費龐大的心力,在銷售不那麼亮眼的狀況下,出版社可能更願意選擇純文學的作品,不但閱讀者多、翻譯跟事後的校對也不避耗費額外的成本。

市面上的科普書籍大多來自國外,台灣本土科普寫作因為研究者自身的觀念或是生涯規劃上的考量數量稀少。另外學校方面的壓力、編輯人才不足及網路酸民批評等因素都是影響學者是否願意投入心力在上面的因素之一。

所以在讀者這麼少的狀況下,市場的考量在下手動筆前變得尤為重要。

-----廣告,請繼續往下閱讀-----

如果全世界只有一個人看,他長怎樣?

先設定讀者,再設定怎麼編排,怎麼行銷

科學人的林彥傑副總經理分享到,科普書的製作中必須為每本書的讀者找出設定:如果全世界只有一位讀者,那他的學歷背景如何?社經地位和年齡?興趣或是專長等。這些設定都可以輔助作家和編輯找到寫作的方向,之後再針對市場的目標受眾,決定寫作的風格和敘述口吻。

圖/flickr

給新手科普作家的兩個提醒

如果各位已經決定投身科普寫作,那麼有兩件事情需要特別注意:

不要貪心,目標是說好一件事

新手作家容易犯的錯誤就是想要在短短的篇幅內解釋很多東西。這容易讓文章失去焦點,讀者變得無所適從。

有持續寫作的恆心和毅力

寫作是孤獨的,在工作課業之餘撥出時間定期定量的產出是一件不容易的事。有動機還不夠,你還必須具備持之以恆的毅力、自我督促,一步一步達成目標。

-----廣告,請繼續往下閱讀-----

讓我們放眼未來

圖/thebluediamondgallery

這是一個科學的社會,生活中到處都充斥著科學。隨著學制鬆綁,學生們更有機會從做中學、容易產生對萬物的好奇心,也更富有探究精神。大家開始會對不了解的事情產生疑惑、對過去習以為常的迷信說法產生質疑。

而這些,都是孕育台灣本土科普發展的土壤。期待在不久的將來,我們能看到台灣科普在各大書店都可以佔有一席之地!共勉之。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
Lea Tang
20 篇文章 ・ 9 位粉絲
徜徉在極北之海的浪漫主義者。 喜歡鯨豚、地科、文學和貓。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
激盪全民對科普的想像!Open Call 成果展 5 月 26 日盛大登場
PanSci_96
・2023/05/10 ・1712字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

國科會首度向全國高中職及大專院校廣下英雄帖,舉辦「Open Call 科普 創意松」,得獎名單已揭曉,並將於今(112)年 5 月 26 日在臺北松山文創園區一號倉庫進行頒獎及展示得獎作品,當日將結合國科會科普活動計畫及科普產品製播計畫成果一同展出,讓各界能藉此機會相互激盪對科普的想像!

兼顧科普傳播與社會需求,將學生科普創意轉換為未來社會影響力

聚焦校園年輕世代所舉辦的「Open Call 科普創意松」徵件活動,分「科普創意提案」及「科普短片徵件」兩類,鼓勵高職中職及大專院校學生,透過多元科普傳播模式和影音創作發揮社會影響力。

自去(111)年 8 月底啟動徵件,有將近 90 所學校、400 多隊報名、超過 1200 人次的師生參與。在學子創意孵化的過程中,國科會也邀請業界各領域執牛耳的輔導業師,透過業師陪伴及前後世代的交流互動,優化學子的提案創意並強化其作品未來之可行性。

「科普創意提案」獲獎案例展現出青年學子對於科學教育、環境永續、生 態保育、偏鄉孩童心理輔導等議題的關注與熱情,並嘗試透過創新的科普傳播手法為在地社會議題尋求新解方。

-----廣告,請繼續往下閱讀-----

大專組金獎由來自臺北醫學大學及中國醫藥大學合組團隊「醫線教育」獲得,該團隊跨區域、跨校號召志同道合夥伴,針對疾病診斷邏輯,設計互動式教具與課程,幫助國內外大學生模擬情境以銜 接基礎知識在臨床的應用,獲評審們一致認同是難能可貴的社會實踐行動。

高中職組金獎,由彰化二林工商的「哇哈哈科學服務團」團隊獲獎,該團隊以在地高中職學生為出發點,率先成立科學服務社團,學習科技教育知識,再教導鄰近國中小學童,達到自助人助,進一步儲備種子志願團,由受助者變成助人者,形成良善循環機制,不僅將科學教育資源帶入偏鄉,培養在地科學人才, 且結合科學教育與地方文化,對地方經濟和社會發展有正面且積極的影響。

科普短片類大專組金獎作品為清華大學「清大天文社」之〈進擊的黑洞:類星體〉,該創作短片從熱門的科學新聞切入,呼應天文迷對於黑洞的好奇心, 片中穿插許多令人會心一笑的譬喻與橋段,風趣又不失其意涵。

高中職組金獎作品,是由虎尾高中「動感光波」團隊所創作之短片〈光通訊〉,主要講述以 發射器(燈泡)產生之光訊號,經由接收、轉換成電訊號,進而發出特定音階, 透過生動活潑的表演和拍攝手法,故事情節可愛清新,搭配簡易動畫和資訊圖卡,讓影片具知識性及趣味性。

-----廣告,請繼續往下閱讀-----

當日除了展示 21 個來自校園學子的獲獎科普創意,下午在舞台區會放映獲獎的 11 支科普短片及科普產品製播計畫影片,內容生動更兼具知識性與教育性,讓民眾沉浸於深入淺出的科學知識寶庫與科普視聽饗宴。

精選年度科普活動計畫作品及科普產品製播影片成果同步展出

國科會為持續推動全民科普,使科學教育不僅走入校園、更深入大眾生活,今年首度集結科普相關計畫 45 個團隊共同展出成果,國內長期推動科普、第一線面對學子的科普推手,為本次展覽設計豐富多元的科學演示,將深奧的科研成果轉化為各年齡層易懂的手作互動實驗等,包括循環材料與物件微展覽、 原住民文化數學數位教材、科普桌遊、AI 自駕車模擬行駛、植物染手作體驗、 蝴蝶科普解謎遊戲等有趣又豐富的科普體驗;此外,「數感盃中英文數學詩創作競賽」的創作成果,也將在展場中幻化為 24 公尺長的「數學詩牆」,當縝密精準的數學與柔軟詩意的文學交會,迸發出跨域創作的科普新火花!歡迎大小朋友帶著好奇心一同共襄盛舉!

活動官網

Open Call 頒獎典禮暨科普成果展」活動資訊

  • 時間:2023 年 5 月 26 日(星期五)上午 10:00 ~ 下午 5:00
  • 地點:臺北松山文創園區一號倉庫(信義區光復南路 133 號)
  • 展覽活動詳情請上活動官網:www.opencall-nstc.org.tw
-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
0

文字

分享

0
2
0
本地工作者暢談科學時代的人文發展:哲學、專才培訓與大眾教育
臺灣邏輯、方法論、科學與科技哲學學會_96
・2023/02/01 ・5061字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

  • 撰文/詹遠至|臺灣邏輯、方法論、科學與科技哲學學會助理、臺灣大學哲學系碩士生
  • 校對/陳樂知|臺灣大學哲學系副教授、臺大傳統與科學形上學研究中心執行長、臺灣邏輯、方法論、科學與科技哲學學會秘書長

我們所處的二十一世紀已是科學的時代,科學理論被視為宇宙的終極答案。在這個「科學至上」的時代,人文探求還如何可能?人文如何可以與科學攜手並進?以「人文」與「科學」之間的對話為主軸,臺灣邏輯、方法論、科學與科技哲學學會(LMPST Taiwan)於 2022 年 11 月 19 日在臺灣大學主辦了一場以《科學內外的人文可能》為題的論壇,邀請了國內哲學學者以及科學普及界的資深工作者擔任講者。

本活動主持人由鄭會穎教授(政治大學哲學系助理教授、政大現象學研究中心主任)擔任,受邀講者則包括陳竹亭教授(臺灣大學化學系名譽教授)、陳樂知教授(臺灣大學哲學系副教授、臺大傳統與科學形上學研究中心執行長、LMPST Taiwan 秘書長)、鄭國威先生(PanSci 泛科學知識長)與嚴如玉教授(陽明交通大學心智哲學研究所副教授兼所長)。

本論壇屬於 LMPST Taiwan 長期舉辦的《種種意識論壇》系列。除 LMPST Taiwan 以外,這一系列的論壇由政治大學現象學研究中心、清華大學實作哲學中心、臺灣大學哲學系、臺灣跨校意識社群、PHEDO 台灣高中哲學教育推廣學會、沃草公民學院共同合辦;贊助單位則為順奕有限公司。

《科學內外的人文可能》邀請了國內哲學學者,以及科學普及界的資深工作者擔任講者。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

科學為人文帶來危機?先論科學主義與自然主義

主持人鄭會穎教授點出了本論壇的核心議題後,陳樂知教授(臺灣大學哲學系副教授、臺大傳統與科學形上學研究中心執行長、LMPST Taiwan 秘書長)發表了他的觀點。

-----廣告,請繼續往下閱讀-----

陳教授想要討論的是「就其理論本質而言,科學是否威脅人文」這個問題。陳教授首先談到一些人持有「科學主義(scientism)」的世界觀。科學主義認為,科學是唯一可以讓我們獲得知識的可靠方法。陳教授認為科學主義是一種自相矛盾的世界觀;原因在於科學主義本身並不是科學,並未被科學方法證明,它只是一個哲學理論。因此,科學主義身為一個哲學理論,它本身就是自己會排斥的對象。

回到核心問題,科學是否帶來了人文危機?陳教授的答案是否定的。他認為科學所帶來的其實不是科學主義,而是「自然主義(naturalism)」。自然主義認為,這個世界最根本、基礎的組成,就是自然科學理論認為存在的那些事物,例如粒子、力場、化學反應等。

陳教授認為科學所帶來的自然主義是現代世界觀的基礎;即使一些特定人士因為宗教背景等理由而不同意自然主義,其實也應該要同意例外情況相當有限。如果我們接受「自然主義」,而非「科學主義」,那麼科學本身根本就不會帶來人文危機。這是因為,自然主義只認為世界最根本的組成是科學所談論的事物,但是它並不認為我們只能透過科學方法來認識這些事物。

「就其理論本質而言,科學是否威脅人文?」。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

事實上,從科學世界觀的角度來說,人類也是自然的一員。人類作為一種自然生命體,出於其演化而來的結構,與生俱來就有各種世界互動、認識世界的方式,不限於科學方法。就此而言,人類會發展出的人文也是一種自然現象。因此,雖然人類後來發展出了「科學方法」這種較為優化的認識途徑,我們依然不能否定「人文方法」也是一種認識世界的可靠方法。

-----廣告,請繼續往下閱讀-----

接著,陳教授提及羅素(Bertrand Russell)對「熟知知識(knowledge by acquaintance)」以及「描述知識(knowledge by description)」的區分。熟知知識指的是我們透過直接的感受、互動與掌握所獲得的知識,描述知識則是理論性的知識。

陳教授認為熟知知識與描述知識不可被截然二分,兩者之間是程度上的差別。而人文學門的一些觀念就較為接近熟知知識,因為它們重視同理及感受。雖然如此,這一切都符合腦神經科學的描述,人文仍然是自然現象。另一方面,人文因此仍然是科學可以研究的對象,也需要科學的補充。人文學門自己也必須要了解,自己所研究的熟知知識其實也是自然現象,有其組成基礎與運作原理。

因此,科學可以幫助人文把熟知知識轉換為更精確的描述知識,並且為人文提供更精密的研究方法,以及協助其排除錯誤,比如排除人類先天認知系統的偏誤、漏洞等等。總結來說,科學與人文其實研究的是同一個自然界;科學非但不應帶來人文危機,還可以幫助人文研究走得更加長遠。

跨科際合作的需求,兼論「人類世」中的人文與科學走向

不同於陳樂知教授從哲學觀點出發,陳竹亭教授(臺灣大學化學系名譽教授)帶來的是他在教育方面的經驗。首先,陳教授介紹了他為台灣教育部主持的「科學人文跨科際人才培育計畫」,簡稱「SHS(Society-Humanities-Science)計畫」。

-----廣告,請繼續往下閱讀-----

由於現代社會中的問題包含人文以及科學的面向,因此 SHS 計畫的主軸在於推動「跨科際教育(trans-disciplinary education)」。以往的教育先是學科主義,然後衍生出「多領域(multi-disciplinary)」或是「跨領域(inter-disciplinary)」,也就是由各學科各自探究共同問題,或是由兩個學科進行合作。

跨科際教育則有所不同,它以「真實世界的共同問題」為核心,直接打破學科之間的界線。只要是對解決真實世界的問題有幫助的知識,參與的學科,甚至政府、產業、民間的 NPO 或利害關係人都擔責分工合作進行知識生產、解決問題。

SHS 計畫的主軸在於推動「跨科際教育」。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

由於現代社會中的問題愈趨複雜、多元,且多樣,社會對科學界的要求也跟以往有所不同。科學家開始被要求具備社會意識及社會參與的能力,還有溝通與對話的能力;這些能力都是傳統的科學界非常缺乏的。有鑑於此,陳教授所主持的 SHS 計畫積極推動「問題導向的學習」、「系統思考」、以及「實用方法論上的創新」。他也提到,SHS 計畫的推動非常有賴於大學對本身社會角色的自覺與復興。

陳教授參與的另一個國科會計畫是「以社會需求為核心的跨領域研究計畫」。與 SHS 計畫相同,這個計畫也非常重視跨科際教育,並且認知到單靠科學知識無法解決真實世界的複雜問題。

-----廣告,請繼續往下閱讀-----

那麼,人文究竟該扮演什麼樣的角色呢?陳教授討論到他撰寫的新書《丈量人類世》中的「人類世(anthropocene)」這個概念。「人類世」指的是一個新的地質紀元。在工業革命之後,人類文明成為影響地球環境與生態變遷的關鍵角色。因此,部分學者認為地球已經進入「人類世」這個地質紀元。

在人類世中,全球有非常多的變遷趨勢,其中一個就是:科學發展帶動理性價值的昂揚,其他的人性價值卻被輕忽。陳教授說,我們培養出了許多「職業科學家」。可是,在科技急速發展的同時,人類的科技文明卻缺乏方向感:我們正面臨物質文明與精神文明之間極大的不均衡。總而言之,他認為「人類的智能尚未學會如何掌舵文明巨輪的方向」。

最後,針對人文與科學應該要如何在人類世中發展,陳教授提出了他本人的看法。首先,科學研究的同儕審核程序需要人文專業學者的投入,也就是科學家不能閉門造車。再來,婦女應該要積極加入科學與科技事業的陣容,因為科學發展不能只由男性思維主導。

最後,未來教育的趨勢必須往跨科際的方向邁進,也就是人文與科學必須並重。如此一來,陳教授強調:「人文的啟發價值和社會重大需求必須挺身而出,為人類文明的永續承擔文明指南針的角色,與科學共同尋求世紀困境的解方。」

-----廣告,請繼續往下閱讀-----

「科學實作哲學」帶來人文與科學的合作新可能

繼陳竹亭教授分享了跨科際教育發展的大方向後,嚴如玉教授(陽明交通大學心智哲學研究所副教授兼所長)則分享了她在科學人文互動的個案經驗。嚴教授身為一個哲學學者,卻在因緣際會下,走上了不同於普通學者每天關在辦公室做研究的路。她為了提升生醫背景的學生對哲學的興趣,也為了把哲學帶到課堂之外,推動了青銀共學。

嚴教授推動青銀共學,提升學生對哲學的興趣,也將哲學帶到課堂之外。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

嚴教授把社區中的長輩們請到大學的哲學課堂上,與大學生一起進行小組報告。這些生醫背景的學生們未來大多會從醫;因此,對未來將要在醫療院所工作的他們來說,與長輩互動是很好的練習。

嚴教授也針對與學生們未來在醫療場域會遇到的一些價值性思考,與哲學作出連結,讓學生們學習哲學能夠學以致用,對醫療過程有所幫助。舉例來說,她會帶領學生討論如何面對死亡、以及照護倫理等哲學議題。她認為,在學生未來的臨床工作上,這些哲學議題將派得上用場。

除了青銀共學外,嚴教授還以非常不同於傳統學者的方式,進行她個人的哲學研究。傳統哲學學者往往是埋首於書堆中,發展自己的理論;她則是親自到醫療院所中進行田野調查,去訪問醫生、護理師等第一線的人員。藉由直接了解醫療工作者在實作上遇到的困難,她試圖讓哲學能夠真正被實用。

-----廣告,請繼續往下閱讀-----

嚴教授說,這樣的研究方法被稱為「科學實作哲學」。科學實作哲學作為一種研究方法,其實不單單適用於人文學門,也同樣適用於科學。非常理論性、艱深的基礎科學如果能夠走出象牙塔,了解社會的真實需求,便有機會與人文接軌。因此,不論是科學或人文學門,若研究者可以調整研究方法,從研究對象在實作上的細節出發,再轉而調整自己的理論,那麼科學與人文的互動、合作並非不可能。

科學素養對現代社會的重要性

最後進行分享的是科普媒體《PanSci 泛科學》的知識長鄭國威先生。鄭知識長首先釐清了「人文」的定義:他認為,「人文主義」認為人類可以靠自身的能力認識這個世界,而「人文學科」正是培養這種能力的學科。從這個定義來看,人文與科學根本就不是分開的;畢竟科學也是人類靠自身能力認識世界的方式之一。

鄭知識長提到,台灣的學生在國際學生能力評量計畫(PISA)中表現非常優異,世界排名名列前茅。然而,台灣的學生卻普遍缺乏自信,在失敗時容易產生自我質疑。

鄭知識長指出,台灣學生普遍缺乏自信,在失敗時容易產生自我質疑。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

在學習的過程中,我們大致可以把人分為兩種:具有「定型心態」與具有「成長心態」的人。前者只重視結果、學習態度較消極,且容易受挫折打擊;後者則重視過程、學習態度較積極,且勇於面對挑戰。鄭知識長指出,具有定型心態的台灣學生似乎占多數。

-----廣告,請繼續往下閱讀-----

鄭知識長在高中時也面臨相同的困境,他那時非常厭惡數學和理化,完全沒有學習他們的熱忱。他後來發現不止他是如此,有許多人也在學生階段就放棄了對科學的學習;這對台灣社會是個嚴重的現象。舉例來說,公投的題目許多都牽涉科學知識,放棄學習科學的公民要如何在這種公投中作出正確的判斷?這樣的考量促使他後來創辦 PanSci 泛科學。

鄭知識長認為,獲得成長心態最簡單的方式就是學會科學原則與方法,也就是用科學方法來面對日常生活中遇到的問題。而培養科學素養則需要承認自己對許多事的無知,且需要身處一個好的素養集體之中。最後,鄭知識長勉勵大家一起培養出「科學思辨力」,為本次的論壇畫下一個強而有力的句點。

-----廣告,請繼續往下閱讀-----
臺灣邏輯、方法論、科學與科技哲學學會_96
3 篇文章 ・ 12 位粉絲
臺灣邏輯、方法論、科學與科技哲學學會(The Taiwan Association for Logic, Methodology and Philosophy of Science and Technology, LMPST Taiwan)為國內非營利法人團體,主要幹部均為國內教授或研究員。本會以促進科學型的哲學研究為宗旨,工作包括國內專業學術工作、跨領域學科交流及哲學普及推廣。