0

0
0

文字

分享

0
0
0

DNA 為遺傳物質嗎?為何早期科學家不相信?——《生物學學理解碼》

PanSci_96
・2019/04/15 ・2410字 ・閱讀時間約 5 分鐘 ・SR值 612 ・十年級

二十世紀初,科學家普遍認為遺傳物質為蛋白質而非 DNA。奧斯華.艾佛瑞 (Oswald Avery) 的研究團隊利用酵素與免疫學方法,於 1944 年證明遺傳物質為 DNA ,但一直到 1952 年,阿佛雷德.第.赫雪 (Alfred Day Hershey) 與瑪莎.考爾斯.蔡斯 (Martha Cowles Chase) 利用同位素與噬菌體,再度得到相同的結論,科學界才逐漸接受。艾佛瑞的研究設計實為嚴謹,但為何其成果沒有立即說服科學界?

DNA。圖/Flickr

格里夫茲的發現

弗雷德里克 · 格里夫茲 (Frederick Griffith) 於 1928 年發表著名的細菌轉形 (transformation) 實驗 (Griffith, 1928) ,發現了肺炎鏈球菌 (Streptococcus pneumoniae) 有不同的表現型,包含光滑型(S 型)與粗糙型(R 型);

其中光滑型可引發老鼠患病而死亡,而粗糙型不會。

透過老鼠皮下注射各表現型的菌種,格里夫茲發現若同時注射死亡的光滑型菌種與粗糙型菌種活菌,老鼠會患病後死亡,且體內血液中可發現光滑型的活菌。格里夫茲認為不同菌種會因轉形因子 (transforming principle) 的傳遞,使粗糙型菌種因獲得光滑型的轉形因子,而轉形為光滑型菌種。這個著名實驗提供了一個研究遺傳物質的生物模式,也許可透過研究轉形因子的特質,一窺遺傳物質的本質。

隨著 1939 年第二次世紀大戰的爆發,格里夫茲實驗室擴充成立「緊急公共衛生實驗室中心」 (the emergency public health laboratory service) ,格里夫茲死於 1941 年德軍對倫敦的轟炸,無緣見證其研究成果的後續發展。

「轉形因子」與艾佛瑞的實驗。(點圖放大)圖/《生物學學理解碼

DNA是遺傳物質?科學家:有可能

1935 至 1944 年艾佛瑞與同事麥克林恩 · 馬卡地 (Maclyn McCarty) 和柯林.麥克羅 (Colin MacLeod) ,以肺炎鏈球菌作為實驗生物,利用 RNA 酶、 DNA 酶、蛋白酶與 R 型菌抗體等材料,證明轉形因子應為 DNA ,而不是蛋白質或 RNA ,暗示生物體的遺傳物質可能是 DNA  (Avery, et al., 1944) 。艾佛瑞團隊的實驗設計精巧嚴謹, 1960 年諾貝爾生理醫學獎得主彼得.梅達華爵士 (Peter Medawar) 稱讚該研究為「 20 世紀最有趣且最前瞻的生物學實驗」 (the most interesting and portentous biological experiment of the 20th century) 。雖然艾佛瑞團隊的實驗具有重要里程碑,但其論文的結論依然措辭謹慎而保守,只有一句話:

我們目前的證據支持「去氧核糖型的核酸」是第三型肺炎鏈球菌轉型因子的基本組成。

Oswald T. Avery portrait。圖/wikimedia

存疑的原因

雖然艾佛瑞團隊的研究成果支持 DNA 可能是遺傳物質理論,但 1950 年代大部分科學家仍認為蛋白質為遺傳物質。課堂上常用以下理由解釋當代科學家的觀點:

1. 蛋白質由 20 種胺基酸組成,其複雜度大於只由四種核苷酸組成的 DNA 。
2. 依據染色體遺傳學說,染色體包含了遺傳物質,而染色體上蛋白質的含量高於 DNA ,故蛋白質較可能為遺傳物質。

一條染色體中到底有多少蛋白質呢?圖/《生物學學理解碼

許多證據擺在眼前,問題到底出在哪邊?

若分析當時的局勢,許多科普書籍 (Davies, 2001/2011;White, 2001/2012) 亦由以下三方面解釋為何當代科學家沒有接受艾佛瑞的結論:

1. 天時:艾佛瑞團隊的研究成果於 1944 年 2 月印行,當時正是美國介入二次世界大戰的最高峰,因此許多科學家沒有注意到。

2. 地利:艾佛瑞團隊的研究成果發表於《實驗醫學期刊》 (JEM) ,主要讀者為免疫學家而非遺傳學家,也不是一般生物學者會注意的刊物。

3. 人和:艾佛瑞在美國洛克斐勒大學的另一位同事阿弗雷德.莫斯基 (Alfred Mirsky) ,對艾佛瑞的研究成果提出懷疑,認為該研究過程受到蛋白質汙染,因此無法排除蛋白質的角色,而莫斯基的評論頗具影響力。但事實上,科學家本來就有「懷疑」的精神。

因為戰爭影響學術界的例子比比皆是。圖/8af

真相無法一步登天

早在 1935 年溫德爾.斯丹里 (Wendell Stanley) 純化煙草鑲嵌病毒並分析結晶的化學成分後,只發現蛋白質而無核酸類物質,所以科學家一直假設蛋白質是最可能的遺傳物質。雖然艾佛瑞團隊用精巧的實驗設計,提出 DNA 為遺傳物質的證據,科學界仍無法完全確認,即使是艾佛瑞本人,也用保守的態度詮釋自己的研究成果。

後來科學家才發現,煙草鑲嵌病毒含 RNA ,約占病毒重量 6%,但斯丹里卻沒有偵測到。艾佛瑞於 1948  提早退休,七年後過世,期間都未從事科學研究。直至 1952 年赫希與蔡斯利用噬菌體與細菌進行研究,證明  DNA 在噬菌體可作為遺傳物質 (Hershey and Chase, 1952) ;以及科學家逐漸了解 DNA 的分子結構與性質後,艾佛瑞的研究成果才逐漸廣為接受。

所以,不是當代科學家漠視了艾佛瑞團隊的研究結論,而是科學家本來就不會因幾個實驗的成果,就宣稱發現了真理。

情資來源:

本文摘自《生物學學理解碼:從研究史、生態、生理到分子生物,完整剖析39個高中生物學疑難案例》,紅樹林,2019  年 3 月出版。

文章難易度
PanSci_96
1011 篇文章 ・ 1110 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
被 Covid-19 感染後,病毒進入人體後去了哪裡?嗜好你哪一個細胞?——《從一個沒有名字的病開始》
商周出版_96
・2022/11/14 ・3757字 ・閱讀時間約 7 分鐘

我們的生命被機緣所定義,即使是那些我們錯過的。
——《班傑明的奇幻旅程》

「有症狀的人,請戴口罩。」

這是長久以來,預防呼吸道感染的策略。我們一貫以呼吸道症狀,來辨識誰是那個可能散播病毒的「行動病毒複製機」。但隨著新冠病毒的出現,呼吸道症狀不再適用於辨識感染性與否;於是在疫情蔓延期間,防疫策略是無論有沒有症狀都得戴上口罩,甚至激進一點的作法,直接規定大眾關在家中、減少移動。

疫情蔓延期間,無論是否有症狀都得戴上口罩。圖/Pixabay

但是病毒真的這麼安分,就只待在呼吸道嗎?透過不同研究,我們可以一窺在 Omicron 出現前,新冠病毒在人體內到底「去了哪裡」。

最受新冠病毒青睞的人體細胞

新冠病毒透過棘蛋白與人類細胞表面的 ACE2 蛋白質受體結合。與特定細胞受體結合,是病毒「可能」入侵人體的第一個步驟。

那麼人體中哪些地方有最多 ACE2 呢?不管是口腔或鼻腔黏膜的上皮細胞,都有非常高量的 ACE2。

值得注意的是,與 SARS 病毒相比,新冠病毒棘蛋白與人體 ACE2 分子的親和力,增加了 10~20 倍[1]

也就是說,當你吸入含有病毒的空氣(機率較低),這些新冠病毒在路過上呼吸道之際,附著在上皮細胞的機率可能是 SARS 病毒的 10~20 倍,或者更有可能是透過你沾染病毒的手,觸摸鼻腔、口腔、眼睛的黏膜表皮(機率較高),而給了病毒機會感染上皮細胞。這足以解釋,為何新冠病毒最初感染階段,都是先在上呼吸道複製,且被感染的人甚至在沒有症狀的情況下,就具有傳播病毒的能力。這一點與 SARS 病毒非常不一樣,SARS 主要感染下呼吸道,且病人要在肺炎重症發病後 3~4 天才具有效感染性。

2020 年新冠疫情剛爆發時,穿梭在東亞各國的鑽石公主號遊輪[2],因為一位被感染的乘客在香港上了船,造成全遊輪被隔離在日本橫濱港。最終咽喉試子呈 PCR 陽性的有 712 人(占 19.2%),其中超過 50% 的人自始至終都沒有覺察到病毒的存在,這就是無症狀感染的比例。另外,約有 20% 的感染者出現下呼吸道肺炎症狀,以及 30% 屬於輕症的上呼吸道感染。整體來看,最大宗的感染者(80%)呈現輕微或無症狀。

而根據研究,24% 的確診者,眼睛結膜試子也會呈 PCR 陽性,陽性率約可維持五天左右。

現在就很清楚,為什麼防疫宣導一直告訴大家不要用手摸眼睛、嘴巴、鼻子,這是絕對有科學根據的。這些黏膜表皮,就是病毒入侵人體的要害,同時是人體系統受到影響的元凶,值得持續探討。

免疫機制控制病毒不亂竄

病毒在口腔或鼻腔黏膜上皮細胞的複製過程中,我們的身體也不是閒著沒事等病毒大軍進攻。當病毒嘗試與 ACE2 結合時,人體有足夠的時間,透過自身的先天性免疫反應對付病毒。

當免疫系統開始作用,我們可能會出現發燒、流鼻水、咳嗽等症狀。因為鼻腔與口腔是貫通的,病毒可以緩慢移到口咽、鼻咽、喉咽和整個上呼吸道,附著在黏膜上與 ACE2 結合進行複製。所以當我們使用快篩劑,無論是鼻咽或是唾液快篩,很容易從這些部位檢測到病毒。

鼻咽或是唾液快篩容易檢測到病毒。圖/Envato Elements

如果身體的先天免疫機制和肺部防禦能力夠強,透過上呼吸道局部的免疫反應,將病毒圍堵並控制,就可以預防病毒侵入下呼吸道和其他器官。病毒感染上呼吸道的表皮,並沒有影響到關鍵的人體功能(嬰幼兒除外,因為他們的呼吸通道較窄小,若有任何發炎腫脹,就可能造成呼吸困難的緊急狀況),因此新冠感染者多數呈現無症狀,或者可能只有輕微的上呼吸道症狀。最終新冠患者在完全無症狀或症狀輕微的情況下,有效地抵抗了病毒的入侵;大多數健康的年輕感染者都是這樣的情況。

但若是入侵的病毒量過高,或個人先天性的免疫力不足,病毒會在體內持續擴散。嚴重呼吸道感染症狀,甚至呼吸衰竭,可能發生在 1~3% 的人身上,而且經由解剖的結果已證實呼吸衰竭是最主要的死因。

德國解剖註冊中心在 2021 年10 月之前就已收集 1,129 名新冠疫歿者的解剖資料[3],認定 86% 的死因為新冠病毒感染,14% 為其他共病。研究發現,肺部的病變,以及病毒侵襲肺細胞,以至於大量發炎細胞浸潤,從而得出「嚴重發炎反應造成肺功能衰竭」是最主要的死因這個結論。

新冠病毒讓我們再度正視,肺臟這個重要器官,因其功能所需而座落在如此易受傷害的人體部位。台灣每年的十大死因,肺炎都有上榜,可見不論健康與否,一不小心,肺炎都可能成為終結生命的最後一根稻草。

病毒與你的「表面關係」可以很長久

我們已經知道新冠病毒嗜好人體的呼吸道,除此之外,它還有其他落腳處嗎?

回答這個問題之前,得先釐清一個重點:不同變異株喜歡去的人體部位不一樣。Delta 嗜好感染肺部,Omicron 的感染位置大多止於上呼吸道的咽喉部位。(參見第三章)

為什麼要知道病毒在我們體內去了哪裡?根據觀察,新冠確診者癒後可能出現各式與呼吸道功能無明顯關係的症狀,也就是現在俗稱的「長新冠」(Long Covid)。病毒學家因此懷疑,病毒是否透過不同機制持續存活在人體內,造成更深層的器官感染,才會導致多元症狀的長新冠出現。這是非常值得探討的問題。

事實證明,的確如此。

病毒透過不同機制持續存活在人體內。圖/Envato Elements

除了呼吸道的分泌物及口水(咽喉感染相關)等新冠診斷的主要檢體外,糞便也經常被檢測到病毒存在的跡象,頻繁到可以用下水道的病毒監測系統瞭解疫情的起伏,甚至可以監測變異株的多寡[4]

腸胃道:病毒長存的溫床

病毒不只頻繁出現在糞便中,還會長期存在某些人的腸胃道內。史丹佛大學團隊進行的長期研究[5],針對 113 名新冠輕症與中症的病人(重症已被排除),追蹤研究十個月,收集並分析他們糞便中是否仍有病毒 RNA。

結果發現,在確診後的第一週內,49.2% 的患者糞便中可檢測到新冠病毒 RNA; 四個月後仍有 12.7% 的人糞便中檢測得到病毒 RNA,但此時這些人的口咽試子的病毒 RNA 都已呈陰性,而在七個月後, 還有 3.8% 的人糞便中仍能檢測到病毒 RNA。仔細分析後,發現胃腸道症狀(腹痛、噁心、嘔吐)與病毒 RNA 是否持續存在於糞便中具有關聯性。

作者同時提醒,以上研究是在變異株 Omicron、Delta 出現之前進行的。不同變異株可能對呼吸道與胃腸道有不同嗜好或親和力,可能也會表現出清除率(每單位時間去除某種物質)的差異,這是病毒變異株固有的生物學特點,可能影響潛在疾病的特性。同時病毒如何存在於體內,也會受到自然感染生成的免疫反應,或疫苗接種引起的宿主免疫狀態的影響而有所差異。

病毒如何存在於體內會受疫苗接種引起的宿主免疫狀態而有所差異。圖/Envato Elements

另一項多中心的合作研究[6],長期追蹤 87 位新冠確診患者六個月,發現他們的 RBD 特異性記憶型 B 細胞數量維持不變(沒有減少),還出現單株抗體細胞有更新的現象,表達的抗體具有更多抗原差異,但病人血清對原始病毒株的中和抗體效價則持續下降。這表示六個月後,這些確診病人體內的 B 細胞仍持續對新冠病毒製造的分子作出反應,而這些病毒分子的來源就是腸胃道。研究指出,14 位確診者當中有一半可以在他們的小腸中檢測到新冠病毒 RNA,同時呈現陽性免疫反應。

病毒不只長存於腸胃,而且還是活跳跳的病毒。另一項研究[7]提供了充分證據。該研究追蹤免疫功能下降的病患,在確診一年之後,還可以從他們的盲腸組織細胞及乳房細胞直接培養出活病毒。研究者的結論是,免疫功能低下的患者,同時經歷了長新冠症狀和持續的病毒複製。整體而言,這些研究結果以及新興的長新冠研究,提高了胃腸道做為病毒長期藏匿之處,且可以長期影響症狀的可能性。

最後我們要問,除了上述提及的部位,還有其他人類的分泌物可以檢測到病毒嗎?我們必須釐清病毒會在哪些分泌物出現,以便在執行防疫措施時,可依重點需求區分輕重緩急的必備資訊,否則防疫很容易落入草木皆兵,造成不必要的恐慌與浪費資源。

* 本文內容所引用的文獻均發表在 Omicron 出現之前。基於 Omicron 與其他變異株在細胞嗜性的差異,本文部分內容不適用於 Omicron 感染。

——本文摘自《從一個沒有名字的病開始》,2022 年 11 月,商周出版,未經同意請勿轉載。

參考資料

  1. Wrapp et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar 13;367(6483):-1263.
  2. Sakurai et al. Natural History of Asymptomatic SARS-CoV-2 Infection. N Engl J Med. 2020 Aug 27;383(9):885-886.
  3. von Stillfried et al., First report from the German COVID-19 autopsy registry. Lancet Reg Health Eur. 2022 Feb 18;15:100330.
  4. Amman, et al. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat Biotechnol (2022). https://doi.org/10.1038/s41587-022-01387-y
  5. Natarajan, et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med (N Y). 2022 Jun 10;3(6):371-387.e9.
  6. Gaebler, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021 Mar;591(7851):639-644.
  7. RNAhttps://www.researchsquare.com/article/rs-1379777/v2
商周出版_96
101 篇文章 ・ 344 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商業出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

3
0

文字

分享

0
3
0
原來這裡也有數學?病毒的形狀、DNA 的結構都與數學有關!——《生物世界的數學遊戲》
天下文化_96
・2022/10/25 ・2015字 ・閱讀時間約 4 分鐘

二十面體與小兒麻痺病毒

菸草嵌紋病毒是螺旋柱狀體,還有一種常見的病毒形狀則是二十面體。有些科學家稱二十面體為「自然界偏好的形狀」,因為這種形狀在病毒上很是普遍,譬如天花病毒、小兒麻痺病毒、疱疹病毒,以及蕪菁黃嵌紋病毒(turnip yellow mosaic virus)。

一九八六年,荷格爾、周瑪麗及菲爾曼三人發現了小兒麻痺病毒的結構。這種病毒是由四種蛋白質單元(每一單元有六十個複本)所組成,排列出來的形狀帶有二十面體所具有的對稱性。要描述小兒麻痺病毒的結構,最簡單的方法是由一個十二面體和一個二十面體的合併來開始討論。組合成的立體看起來像一個每面都有微凹的五面體的十二面體(圖三二)。湯普生若知道這種結構,一定會很喜歡:這比放射蟲的主觀想像繪製圖還要使人信服。

足球的外型為截角二十面體。圖/維基百科

另外,這種結構是基於某種原因、某種病毒結晶學原理而存在的:正如晶格是由大量原子所形成的最小能量結構,近似球形的多面體則是由少量的相同單元所形成的最小能量結構。在規則的正立體當中,二十面體與球最為近似,但是你仍然可以利用五邊多面體和六邊多面體的混合體,來更逼近一個球。現在使用的足球就是一個例子:足球的外形基本上是二十面體,不過卻是截去了每一個角的二十面體。

在這樣一個多面體中,一定有剛好十二個面是五邊形;六邊形的面的數目,則取決於一系列特殊的代數形式,也就是所謂的「幻數」(magic number);大部分的數字都不是幻數。小於三百的幻數為 12、32、42、72、92、122、132、162 、192、212、252 及 272。這些數字在病毒的結構中扮演了特殊角色,正如費布納西數在植物結構中扮演的特殊角色。

(圖三二)小兒麻痺病毒的結構示意圖:把十二個五角錐(b 圖折疊後就是五角錐)黏在一個十二面體(a 圖是把十二個面攤開),做成一個三維的模型(如 c 圖)圖/
《生物世界的數學遊戲》。

事實上,能夠以大致規則的方式幾乎併成球面的同一蛋白質單元的數目,就是幻數。

下面這些證據,顯示病毒知道這種限制。蕪菁黃嵌紋病毒有三十二個單元,而人類多瘤性病毒、BK 病毒及兔子乳頭瘤病毒有七十二個單元。(人類多瘤性病毒與兔子乳頭瘤病毒幾乎相同,只不過互為鏡像。)

REO 病毒有九十二個單元,單純疱疹(由於第一型的感染部位大多為口腔周圍,所以也稱為口唇疱疹)病毒有一百六十二個單元,雞腺病毒有兩百五十二個單元,犬類傳染性肝炎病毒則有三百六十二(這也是幻數)個單元。

還是要靠數學

要證明數學模式對於形成地球生命(我們知道的唯一一種生命)的重要性,再沒有比 DNA 更令人信服的證據。DNA 之所以扮演這種角色,是因為本身的簡單幾何模式——雙螺旋。就某種意義而言,由於關鍵特徵不在螺旋,而是互補的鹼基配對,因此這不只是一種「合乎邏輯」的模式。

DNA 的關鍵特徵是互補的鹼基配對。圖/維基百科

演化在創造地球上的生命時所用的基礎,正是這個並存於觀念與物理定律中的模式,在這層基礎之上,其他的模式也建造了起來,特別是遺傳密碼——這種「準數學」之謎。為什麼是這種特殊的密碼? 基本上,任何密碼都可以,但捷足者先登,哪一種先被建造了,就有可能壓倒群雄,因為生命可以生生不息地繁衍。或許克里克是對的,遺傳密碼是一種「凍結的偶發事件」;或許何諾斯夫婦是對的,遺傳密碼亦來自深藏於物理定律中的深奧模式。

DNA 對於更廣義的生命(不再是這裡所談的生命)所扮演的角色有多重要?假定還有很多其他種類的分子可以複製,也可以把大量資訊編成密碼,那為什麼我們得到的是 DNA,而不是其他分子?

也許 DNA 是在宇宙各處都可運作的唯一一種,也許 DNA 是唯一能夠輕易從原始地球化學混合物質中演化出來的東西,也許 DNA 本身就是一次凍結的偶發事件——第一種脫穎而出的「可複製與編碼」的分子系統,開始時由於還沒有多少競爭,而使自己趁機占據地球,接下來又因為自己已經占據要津,使其他競爭者更加沒機會進行競爭,因而成為主宰者。

我不清楚。但我知道,如果沒有數學,我們就永遠無法探知。

——本文摘自《生物世界的數學遊戲》,2022 年 9 月,天下文化,未經同意請勿轉載。

天下文化_96
110 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

9
4

文字

分享

0
9
4
一切都為了快快長大!斑馬魚的「無合成分裂」,「表面」到你難以察覺
研之有物│中央研究院_96
・2022/10/08 ・5419字 ・閱讀時間約 11 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

不用合成新 DNA 的細胞分裂——無合成分裂

細胞分裂,想來是再簡單不過的事情:一顆細胞先將遺傳物質複製為兩份,再一分為二,分配給兩顆細胞。然而,由中央研究院細胞與個體生物學研究所的陳振輝助研究員領軍,2022 年 4 月發表在《自然》(Nature)的論文,卻報告了過往未知的一種分裂方式:斑馬魚的皮膚細胞,可以直接一變二,再二變四,過程中不用合成新的 DNA!這項未來將改寫教科書的新知識,當初是如何發現、驗證,未來又有什麼衍生方向呢?中研院「研之有物」專訪陳振輝助研究員,請他和我們仔細分享斑馬魚的「表面功夫」。

陳振輝研究團隊發現斑馬魚表皮細胞有「無合成分裂」現象,研究成果於 2022 年 4 月發表在國際頂級期刊《自然》。圖為陳振輝(右)與第一作者陳潔盈(左)合影。圖/研之有物

將顏色植入斑馬魚的每一個細胞

陳振輝實驗室的研究大多著重於「再生生物學」,新研究算是「發育生物學」的領域。不過了解背後細胞行為調控的機制就會知道,這兩個領域其實是共通的。

陳振輝以斑馬魚作為實驗材料,基因改造後讓不同細胞被標記上不同顏色,使得不同細胞的動態行為,能夠被清晰地分辨和追蹤。這個研究方法可以用來探究逆境下複雜組織的再生,也能用來研究正常狀況下動物的發育進程,因為這些過程都涉及大量細胞的動態調控。

陳振輝以斑馬魚作為實驗材料,基因改造後讓不同細胞被標記上不同顏色,使得不同細胞的動態行為,能夠被清晰地分辨和追蹤。圖片這隻為斑馬魚的仔魚,年齡為受精之後第 8 天。(另開圖片可放大檢視)圖/陳潔盈、陳振輝

發育生物學是生物學研究的熱門領域,投入者眾,大部分的研究者都針對部分細胞或特定基因作探討,陳振輝團隊的技術讓他們能同時追蹤單一活體動物整個組織裡所有的細胞。這項技術除了用在皮膚組織(方法名為「palmskin」),陳振輝也用類似的方法探索肌肉、肝臟等各式器官的發育、再生過程。

創造色彩繽紛的細胞,原理其實很簡單,就是利用紅色、藍色、綠色的三原色不同比例的組合。具體作法是透過基因改造,將能製造紅、藍、綠色螢光蛋白質的基因組,植入斑馬魚的細胞,利用遺傳學的工具,讓表皮、肌肉、肝臟等目標組織的每一顆細胞,隨機表現出不同的顏色組合。

舉例來說,其中一個細胞可以表現「3 個紅色螢光蛋白 + 5 個藍色螢光蛋白 + 4 個綠色螢光蛋白」,隔壁細胞可能是「1 紅 + 2 藍 + 6 綠」,鄰近細胞間便能呈現不同顏色,讓長期追蹤所有不同細胞成為可能。

將能夠製造紅、藍、綠色螢光蛋白質的基因組,植入斑馬魚的細胞,利用遺傳學技術,讓表皮、肌肉、肝臟等目標組織的每一顆細胞,隨機表現出不同的顏色組合。圖/研之有物(資料來源/陳振輝

將調色盤植入細胞的原理看似簡單,做起來卻要耗費不少功夫,尋找適合的基因轉殖魚需要半年到一年的時間。陳振輝解釋用斑馬魚當實驗材料的優點:它們容易繁殖,生長的週期不用等太久,體積小,容易操作;更重要的是魚體扁平,容易拍攝大面積、高解析度的細胞影像,進行系統性的量化分析。搭配讓每一顆細胞,從誕生到凋逝都無所遁形的全面「監控」影像平台,才有機會觀察到前人視而不見的細胞分裂方式。

圖片為斑馬魚的仔魚(上圖)和成魚(下圖)的透視圖,仔魚年齡為受精之後第 3~21 天。斑馬魚當實驗材料的優點是:容易繁殖,生長週期不長,體積小,容易操作;更重要的是魚體扁平,容易拍攝大面積、高解析度的細胞影像。圖/研之有物(資料來源/J Clin Invest.

隱藏在「表面之中」的無合成分裂

斑馬魚的皮膚和人類的皮膚基本構造類似。唯一不同是人類的皮膚有角質層覆蓋,斑馬魚皮膚的外層是沒有角質化的活細胞,適合拍照觀察。斑馬魚的另一優點是在顯微鏡下活體觀察時不會傷害到魚體,麻醉後可以直接拍照,再放回水中喚醒;如此才能追蹤同一條魚從出生到長大,身上所有皮膚細胞的動態行為。

研究斑馬魚的學者很多,皮膚發育這回事可謂天天在人們的眼前發生,可是其它人為什麼都視而不見,沒有注意到陳振輝團隊發現的無合成分裂呢?事情其實沒有說起來那麼簡單。

斑馬魚皮膚剖面示意圖,從顯微鏡看到的斑馬魚細胞是最上層的表皮細胞。圖/研之有物(資料來源/陳振輝)

斑馬魚的皮膚分為上中下三層,下層的幹細胞,會分裂產生新的細胞,送到上層成為覆蓋身體最外側的皮膚細胞。其它研究人員如果見到表皮細胞的數目變多,直觀的想法會是下層的幹細胞又送上新的細胞,不會想到是上層既有已分化的細胞可以直接進行分裂。

陳振輝表示,一開始見到表皮細胞的數量增加時,直覺也認為是下層幹細胞產生的新細胞,可是連續追蹤後卻發現不是這麼回事。由於他的技術可以對斑馬魚身上 2,000 到 3,000 顆皮膚細胞進行同時監測,才意外察覺到上層已分化的細胞竟然會不用複製遺傳物質,就直接分裂成兩顆,甚至是四顆細胞!

陳振輝團隊觀察到斑馬魚表皮上層已分化的細胞可以不用複製遺傳物質,直接分裂成兩顆,甚至是四顆細胞。影/陳振輝

顛覆認知:不用合成 DNA 的細胞分裂

外行人聽起來好像沒什麼,上述發現其實開拓了細胞分裂研究的新領域。精子和卵子這類生殖細胞(germline cell),在複製遺傳物質以後會經過 2 次分裂,形成 4 顆細胞,也就是減數分裂(meiosis)。構成身體的體細胞(somatic cell)則會先複製內部的遺傳物質,再分裂 1 次成兩顆細胞,稱為有絲分裂(mitosis)。

還有較少見的狀況,如 DNA 複製後細胞不分裂,變成多套遺傳物質的 1 顆細胞(endoreplication);或是多個細胞融合在一起,成為 1 顆多核細胞(cell-cell fusion,例如骨骼肌細胞)。

然而不管怎麼分裂,過去研究沒有發現不用複製 DNA 就能分裂的細胞!正常細胞分裂的過程有許多監控機制,如果細胞的遺傳物質沒有完整複製,一般情況細胞應該會啟動相關的監控機制,阻止分裂過程的進行。癌症細胞不受控制的分裂,就是相關機制沒有正常運作。

斑馬魚表皮細胞竟然能在沒有複製遺傳物質的情況下,避免細胞凋亡的命運,持續分裂,是一個很特別的例外。

斑馬魚從仔魚到成魚的發育過程中,表皮細胞可以在沒有複製遺傳物質的情況下持續分裂。圖/研之有物

論文投稿到《自然》期刊後,四位同儕審查者一致給予正面評價,但是顛覆認知的新發現仍受到不少質疑,需要陳振輝團隊進行許多額外的實驗來回答。

有沒有觀察失誤的可能?

陳振輝團隊同時標記下層、上層的細胞,證實進行分裂的細胞確實位於上層。為了證明遺傳物質沒有複製,他們進一步測量細胞內 DNA 的量,包覆 DNA 的組蛋白(histone)的量,以及施加阻止 DNA 複製的藥劑。

結果顯示分裂後的細胞,遺傳物質的含量確實有等比下降,分裂過程不受阻止 DNA 複製藥劑的影響。顯然細胞沒有合成新的 DNA 就直接分開,陳振輝稱之為「無合成分裂」(asynthetic fission)。

所以,究竟是怎麼分裂的?

顯微鏡下看來似乎沒有一定的章法,有些表皮細胞會分裂 2 次成 4 顆細胞,有些分裂 1 次成 2 顆細胞,還有些不會分裂,維持 1 顆細胞;也發現有少數細胞可以逆轉分裂過程,形成雙核細胞。

陳振輝團隊現有的研究技術,尚無法辨明胞器的分配,以及每一條染色體的分配模式;團隊預計使用單細胞定序(single cell DNA sequencing),在無合成分裂後,分別定序每一顆細胞分配到的染色體組成,以釐清細胞的遺傳物質是否有特定的拆分方式。

斑馬魚表皮上的無合成分裂(影片箭頭處),還有很多細節尚待研究。陳振輝團隊預計要釐清在無合成分裂之後,細胞的遺傳物質是否有特定的拆分方式。影/陳振輝

一切都是為了節省資源!努力長大的表皮細胞

無合成分裂對斑馬魚有什麼意義呢?斑馬魚由受精卵孵化後,仔魚在前 8 天不用吃東西,成長速度緩慢;第 8 天起開始進食,體型也像吹氣球般迅速膨脹,第 14 天時成長速度達到最快。觀察發現從第 8 天 到 21 天,皮膚細胞會發生無合成分裂,團隊推測此一分裂現象與身體表面積的快速延展息息相關。

斑馬魚的仔魚從受精卵孵化之後的第 8 天到第 21 天,表皮細胞會發生無合成分裂,陳振輝團隊推測此一分裂現象與身體表面積的快速延展息息相關。
圖/研之有物(資料來源/Nature

僅管省略掉複製遺傳物質的階段,細胞進行無合成分裂所花費的時間,卻比一般細胞分裂稍慢,所以其優點並非單純的縮短時間,應該是節省資源。斑馬魚仔魚身體的表面積在特定時間迅速增加,體表需要皮膚細胞的完整覆蓋,團隊發現細胞進行 1 次無合成分裂,表面積能增加 26%,兩次能達到 59%,這些細胞能在斑馬魚體表存活 2 到 3 週的時間。

陳振輝團隊發現,斑馬魚表皮細胞進行 1 次無合成分裂,表面積能增加 26%,兩次則能增加到 59%,這些細胞能在斑馬魚體表存活 2 到 3 週的時間。
圖/研之有物(資料來源/陳振輝)

斑馬魚如何啟動無合成分裂呢?目前仍不太清楚,團隊發現其過程受到表面張力變化的影響。皮膚細胞有感應張力變化的特定離子通道,利用藥物影響這些離子通道的活性,無合成分裂也會受到影響,詳細作用機制仍有待更多的研究。

生活數量的密度也會影響斑馬魚長大

另一項十分有趣的發現是,無合成分裂和仔魚生活的密度有關。斑馬魚從仔魚長到成體,最終的體型都差不多,但是生長過程則有很大的差異,個體成長速度有快有慢。假如將許多仔魚養在一起,處於高密度的生活環境,個別仔魚的生長速度會較慢。

奇妙的是,一旦換到低密度的環境,仔魚的成長速度會瞬間暴增,體表面積快速增加又要維持皮膚細胞的完整覆蓋,會導致更多的無合成分裂。斑馬魚如何感知、在生理上反應周遭環境鄰居密度的變化,是另一個有趣的研究方向。

斑馬魚若處於高密度的生活環境,仔魚的生長速度會較慢。奇妙的是,一旦換到低密度的環境,仔魚的成長速度會瞬間暴增,體表面積快速增加,導致更多的無合成分裂。圖/研之有物(資料來源/陳振輝)

進行無合成分裂的細胞缺乏完整的遺傳物質,還能算是有生命的活細胞嗎?陳振輝提醒我們,多細胞生物的生理機能由各式各樣的細胞一起維持,某些特化的細胞還沒有細胞核。例如紅血球的成熟會經過脫核的過程,完全沒有細胞核的紅血球有重要的生理功能也可以存活超過 100 天。在斑馬魚體表進行無合成分裂的皮膚細胞,或許也有它們短暫卻不可或缺的使命。

有可能其它生物的細胞也會無合成分裂嗎?

無合成分裂目前只在斑馬魚表皮的發育過程中觀察到,其它細胞、其它生物、其它情境下是否也存在呢?事實上陳振輝自己也很好奇。

以人體來舉例,體表的皮膚,口腔內膜、消化道組織,時時刻刻都需要大量的表皮細胞覆蓋,而且耗損甚鉅,有不斷補充的需求。這些必須持續維持完整覆蓋表面的情境,或許無合成分裂也參與在其中。

然而,無合成分裂不容易在活體動物直接觀察。例如小鼠的模式,就算能引進三原色調色盤的細胞標誌技術,也不像斑馬魚仔魚那般透明容易拍照。話說回來,知道某個現象有可能發生,就是發現的第一步。假如其它細胞或是生物也存在無合成分裂,在陳振輝團隊邁出第一步以後,未來一定有人能克服相關的技術門檻來進行研究。

發現斑馬魚表皮細胞的無合成分裂,像是開啟一扇新的大門,可以通往過去想像不到的研究方向。會有醫學應用的可能嗎?像癌症是細胞的不正常分裂,任何細胞分裂機制的基礎研究,應該有機會對癌症的治療有所啟發。陳振輝同意這是潛在的研究方向之一,但是他也強調從基礎研究到醫學應用,是很漫長的一段路,科學家能做的就是一步一步踏實前進。

對沒預期的發現保持警覺,在探索過程中充分滿足自己的好奇心,將支持陳振輝持續前進,挑戰下一個研究課題。

對沒預期的發現保持警覺,在探索過程中充分滿足自己的好奇心,將支持陳振輝持續前進,挑戰下一個研究課題。圖/研之有物
研之有物│中央研究院_96
253 篇文章 ・ 2190 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook