Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

Brainy is the new sexy!比起高富帥,虎皮鸚鵡擇偶更喜歡牠有腦袋

TingWei
・2019/02/12 ・1499字 ・閱讀時間約 3 分鐘 ・SR值 507 ・六年級

-----廣告,請繼續往下閱讀-----

如何選擇理想中的另一半 ── 或者至少是小孩一半的基因來源,完全會是能影響下一代表現的起跑點。
日積月來下來,某些特別的擇偶偏好也很有機會造成驚人的結果:看看雄孔雀那精美的尾巴和雄鹿的巨大鹿角,這些讓演化生物學家困擾好久(還讓達爾文跟華萊士吵架)的成果就知道惹。

 

圖/wikimedia

既然這是如此重要的一件事兒,除了那些頭好壯壯高又帥、一眼就有吸引力的外顯特質之外,內斂的聰明才智本身,有沒有機會能直接吸引到異性呢?

嘛,至少在虎皮鸚鵡眼裡,露露頭腦、懂得解決問題獲得食物的雄鸚鵡可以快速贏得雌鸚鵡的芳心,從魯蛇翻身成心上人喔~[註]

只要會找食物,虎皮鸚鵡魯蛇也能大翻身!

這組研究由中國科學院動物研究所主導,於今年 (2019) 發表。他們將虎皮鸚鵡二公一母三隻為一組,前期的實驗中,會先進行第一次的偏好測試:將雌鳥關在兩隻雄鳥中間的籠子,紀錄她在籠子兩側花的時間。在這個實驗中,科學家假設雌鳥花了更多時間在哪一側,就代表她更偏好其中的哪一位。

-----廣告,請繼續往下閱讀-----
圖/取自論文

接下來,就是科學家插手幫魯蛇作弊的時間啦!

在實驗組中,一開始不被青睞的雄鳥會進行特訓,訓練他們打開培養皿(一步驟)和箱子(三步驟)獲得食物。雄鳥特訓完畢獲得新技能,就進入展示時間:雌鳥會見到自己原來偏好的雄鳥打不開培養皿束手無策,也會見到一開始不喜歡的那個展現了出乎意料(?)的才智,見招拆招順利獲得食物的畫面。

於是在下一次的偏好測試中,大多數的雌鳥都花了更多的時間在原來不偏好的雄鳥那一側。芳心 Get! (戀愛特訓班大成功

有吃得不是重點,有腦袋才受青睞?!

且慢且慢,憑什麼這樣就說雌鳥是「移情別戀」?難道不能是「這招不錯我偷要學起來」或是「他吃得不錯我看看是否能蹭點來吃」……之類的想法嗎?

-----廣告,請繼續往下閱讀-----

因此在這個實驗中,安排了兩種實驗對照組。

其一同樣是二公一母的組合,但這個對照組中,沒有安排特訓,展示時間只安排雌鳥看到原先不被偏好的雄鳥獲得食物,而原受偏好的雄鳥什麼也沒得吃。但如此一來到了第二次偏好測試階段時,展開仍然是一開始愛誰就是誰;顯然光是吃香喝辣(?)並不足以讓雌鳥移情別戀啊XD

另一個對照組稍微出乎意料一點:步驟與實驗組相同,但三隻虎皮鸚鵡通通是母鳥來著。實驗顯示,即使是一開始不被偏好的雌性虎皮鸚鵡同樣可以打開培養皿和箱子獲得食物,但這並不會影響做選擇的雌鳥的偏好。換言之 ── 閨密能不能解決問題不重要,我喜不喜歡她比較重要(誤)。

因此能發現「移情別戀」只出現在對雄鳥的偏好之中,顯示對虎皮鸚鵡來說,聰明才智帶來的吸引力的確有可能跟選擇配偶比較有關係一點兒。

-----廣告,請繼續往下閱讀-----
圖/wikipedia

事實上,野生的虎皮鸚鵡本來就需要適應多變的覓食環境。而且即使在人工飼養環境下,配對之後虎皮鸚鵡也是由雌鳥主要負擔孵育幼鳥的工作,雄鳥負責叼食給雌鳥供應食物。因此伴侶獲得食物的能力,理論上對雌鳥來說非常重要,畢竟一家大小的口糧都要靠老爸掙來啊。

對面的女孩不肯靠過來?露個腦袋給她瞧瞧吧!能解決問題才是真性感啊!── 虎皮鸚鵡不負責任戀愛指南。

  • 註:此實驗組和對照組中,受青睞的雄鳥其基本的測量值都和不受青睞者沒有統計差異。換言之(至少在人類眼中)並沒有特別高又帥,就只是一開始比較受偏愛。

參考資料:

  • Chen, J., Zou, Y., Sun, Y. H., & ten Cate, C. (2019). Problem-solving males become more attractive to female budgerigars. Science, 363(6423), 166-167.
-----廣告,請繼續往下閱讀-----
文章難易度
TingWei
13 篇文章 ・ 15 位粉絲
據說一生科科的生科中人,不務正業嗜好以書櫃堆滿房間,努力養活雙貓為近期的主要人生目標。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
賭博與愛情公式:用數學擬定你的擇偶策略——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/06 ・2486字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

理解期望值,有助於分析賭場裡的大部分賭局,以及美國中西部和英國的嘉年華會中,常有人玩、但一般人比較不熟悉的賭法:骰子擲好運(chuck-a-luck)。

招攬人來玩「骰子擲好運」的說詞極具說服力:你從 1 到 6 挑一個號碼,莊家一次擲三顆骰子,如果三個骰子都擲出你挑的號碼,莊家付你 3 美元。要是三個骰子裡出現兩個你挑的號碼,莊家付你 2 美元。

假如三個骰子裡只出現一個你挑的號碼,莊家付你 1 美元。如果你挑的號碼一個也沒有出現,那你要付莊家 1 美元。賽局用三個不同的骰子,你有三次機會贏,而且,有時候你還不只贏 1 美元,最多也不過輸 1 美元。

我們可以套用名主持人瓊安.李維絲(Joan Rivers)的名言(按:她的名言是:「我們能聊一聊嗎?」),問一句:「我們能算一算嗎?」(如果你寧願不算,可以跳過這一節。)不管你選哪個號碼,贏的機率顯然都一樣。不過,為了讓計算更明確易懂,假設你永遠都選 4。骰子是獨立的,三個骰子都出現 4 點的機率是 1/6×1/6×1/6=1/216,你約有 1/216 的機率會贏得 3 美元。

-----廣告,請繼續往下閱讀-----

僅有兩個骰子出現 4 點的機率,會難算一點。但你可以使用第 1 章提到的二項機率分布,我會在這裡再導一遍。三個骰子中出現兩個 4,有三種彼此互斥的情況:X44、4X4 或 44X,其中 X 代表任何非 4 的點數。而第一種的機率是 5/6×1/6×1/6=5/216,第二種和第三種的結果也是這樣。三者相加,可得出三個骰子裡出現兩個 4 點的機率為 15/216,你有這樣的機率會贏得 2 美元。

圖/envato

同樣的,要算出三個骰子裡只出現一個 4 點的機率,也是要將事件分解成三種互斥的情況。得出 4XX 的機率為 1/6×5/6×5/6=25/216,得到 X4X 和 XX4 的機率亦同,三者相加,得出 75/216。這是三個骰子裡僅出現一個 4 點的機率,因此也是你贏得 1 美元的機率。

要計算擲三個骰子都沒有出現 4 點的機率,我們只要算出剩下的機率是多少即可。算法是用 1(或是100%)減去(1/216 +15/216 + 75/216),得出的答案是 125/216。所以,平均而言,你每玩 216 次骰子擲好運,就有 125 次要輸 1 美元。

這樣一來,就可以算出你贏的期望值($3×1/216)+($2×15/216)+($1×75/216)+(–$1×125/216)=$(–17/216)=–$0.08。平均來說,你每玩一次這個看起來很有吸引力的賭局,大概就要輸掉 8 美分。

-----廣告,請繼續往下閱讀-----

尋找愛情,有公式?

面對愛情,有人從感性出發,有人以理性去愛。兩種單獨運作時顯然效果都不太好,但加起來⋯⋯也不是很妙。不過,如果善用兩者,成功的機率可能還是大一些。回想舊愛,憑感性去愛的人很可能悲嘆錯失的良緣,並認為自己以後再也不會這麼愛一個人了。而用比較冷靜的態度去愛的人,很可能會對以下的機率結果感興趣。

在我們的模型中,假設女主角——就叫她香桃吧(按:在希臘神話中,香桃木﹝Myrtle﹞是愛神阿芙蘿黛蒂﹝Aphrodite﹞的代表植物,象徵愛與美)有理由相信,在她的「約會生涯」中,會遇到 N 個可能成為配偶的人。對某些女性來說,N 可能等於 2;對另一些人來說,N 也許是 200。香桃思考的問題是:到了什麼時候我就應該接受X先生,不管在他之後可能有某些追求者比他「更好」?我們也假設她是一次遇見一個人,有能力判斷她遇到的人是否適合她,以及,一旦她拒絕了某個人之後,此人就永遠出局。

為了便於說明,假設香桃到目前為止已經見過 6 位男士,她對這些人的排序如下:3—5—1—6—2—4。這是指,在她約過會的這 6 人中,她對見到的第一人的喜歡程度排第 3 名,對第二人的喜歡程度排第 5 名,最喜歡第三個人,以此類推。如果她見了第七個人,她對此人的喜歡程度超過其他人,但第三人仍穩居寶座,那她的更新排序就會變成 4—6—1—7—3—5—2。每見過一個人,她就更新追求者的相對排序。她在想,到底要用什麼樣的規則擇偶,才能讓她最有機會從預估的 N 位追求者中,選出最好的。

圖/envato

要得出最好的策略,要善用條件機率(我們會在下一章介紹條件機率)和一點微積分,但策略本身講起來很簡單。如果有某個人比過去的對象都好,且讓我們把此人稱為真命天子。如果香桃打算和 N 個人碰面,她大概需要拒絕前面的 37%,之後真命天子出現時(如果有的話),就接受。

-----廣告,請繼續往下閱讀-----

舉例來說,假設香桃不是太有魅力,她很可能只會遇見 4 個合格的追求者。我們進一步假設,這 4 個人與她相見的順序,是 24 種可能性中的任何一種(24=4×3×2×1)。

由於 N=4,37% 策略在這個例子中不夠清楚(無法對應到整數),而 37% 介於 25% 與 50% 之間,因此有兩套對應的最佳策略如下:

(A)拒絕第一個對象(4×25%=1),接受後來最佳的對象。

(B)拒絕前兩名追求者(4×50%=2),接受後來最好的求愛者。

如果採取A策略,香桃會在 24 種可能性中的 11 種,選到最好的追求者。採取 B 策略的話,會在 24 種可能性中的 10 種裡擇偶成功。

以下列出所有序列,如同前述,1 代表香桃最偏好的追求者,2 代表她的次佳選擇,以此類推。因此,3—2—1—4 代表她先遇見第三選擇,再來遇見第二選擇,第三次遇到最佳選擇,最後則遇到下下之選。序列後面標示的 A 或 B,代表在這些情況下,採取 A 策略或 B 策略能讓她選到真命天子。

-----廣告,請繼續往下閱讀-----

1234;1243;1324;1342;1423;1432;2134(A);2143(A);2314(A, B);2341(A, B);2413(A, B);2431(A, B);3124(A);3142(A);3214(B);3241(B);3412(A, B);3421;4123(A);4132(A);4213(B);4231(B);4312(B);4321

如果香桃很有魅力,預期可以遇見 25 位追求者,那她的策略是要拒絕前 9 位追求者(25 的 37% 約為 9),接受之後出現的最好對象。我們也可以用類似的表來驗證,但是這個表會變得很龐雜,因此,最好的策略就是接受通用證明。(不用多說,如果要找伴的人是男士而非女士,同樣的分析也成立。)如果 N 的數值很大,那麼,香桃遵循這套 37% 法則擇偶的成功率也約略是 37%。接下來的部分就比較難了:要如何和真命天子相伴相守。話說回來,這個 37% 法則數學模型也衍生出許多版本,其中加上了更合理的戀愛限制條件。

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。

1

4
2

文字

分享

1
4
2
人口有限的古代社會,依然盡量避免近親配對?
寒波_96
・2023/03/28 ・4848字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

現代台灣社會中,像是堂兄弟姊妹之間的近親結婚,直接受到法律禁止。不過台灣法律的標準並非舉世通用,當今世上許多人的父母,可謂血緣上的親上加親。

近親結婚與近親繁殖,是人類的「常態」嗎?近年蓬勃發展的古代 DNA 研究,讓我們有機會深入探索這些問題。

公元 2010 年時,世界各地近親婚姻的分布狀況。「大中東地區」的比例非常高。圖/Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report

每個人的遺傳組成都大同小異,兩個人的血緣關係愈近,彼此 DNA 的差異愈小。例如街上隨便找兩位台灣人,即使非親非故,台灣人彼此間的血緣差異,要比台灣人與非洲人更小。

一個人的基因組,源自父母各一半。例如第十一號染色體,各有一條來自父母。父母間的血緣關係愈近,小孩的一對染色體之間也愈相似;因此,要判斷一個人的父母是否為近親,不用知道兩人各自的遺傳訊息,只需要小孩的基因組。

-----廣告,請繼續往下閱讀-----

也就是說,假如有幸獲得一位三萬年前古人的基因組,只要這個古代基因組殘留的 DNA 訊息夠多,即使完全缺乏其餘的考古脈絡,我們也能判斷他父母的血緣親疏。

最近十年來,各路科學家獲得愈來愈多古代基因組。儘管數量有限,不過目前應該足以做出初步推論:近親繁殖不是智人的天性。

尼安德塔人的父親母親,親上加親?

討論智人以前,先來看看我們的近親尼安德塔人。兩群人的祖先超過 50 萬年前分家後,各自在非洲與歐洲發展,總人口應該都不多。

這兒要先澄清一個概念:「族群人口少」和「近親繁殖」是兩回事。即使全體族群只有兩千人,整群人的遺傳變異加起來很有限,只要每一次配對時刻意選擇,依然能完全避免近親繁殖。相對地,就算總共有 20 萬人,還是有機會大量近親生寶寶。

-----廣告,請繼續往下閱讀-----

重現尼安德塔人 DNA 是智人的重大成就,可惜目前為止累積的基因組樣本很少,只有 30 人左右,分散在不同時間點,廣大的地理範圍。

尼安德塔人的古代基因組,地點與數量。圖/參考資料3

如今了解最透徹的尼安德塔人,位於中亞的 Chagyrskaya 洞穴(現今的俄羅斯南部,知名的丹尼索瓦洞穴在附近),估計年代為 5 萬多年。這群人中有 8 位的遺傳訊息比較齊全,比對得知,所有人的父母都是近親!

尼安德塔人主要住在歐洲,中亞的人口極少。近親生寶寶如此普遍,或許是由於能選擇的對象有限。然而也有可能,這就是尼安德塔人一般的習慣。也許尼安德塔人不會刻意避免近親繁殖,不過程度如何並不清楚。

流動的人,流動的DNA

智人約一萬年前開始定居種田以前,生活方式和尼安德塔人一樣,也習慣分為一小群一小群人活動,不長期定居在一個地點。有意思的是,舊石器時代已知少少的智人基因組,都不存在近親繁殖。

-----廣告,請繼續往下閱讀-----

依賴採集、狩獵的生產方式下,每一群的人數都不多,近親配對好像很難避免。不過移動性高的人群,應該也常有機會互相交換人口,增加配對選項。從古代 DNA 看來,這是古早智人的普遍行為。

現有證據似乎告訴我們,遠比文明誕生更早以前,智人已經習慣刻意和血親以外的對象配對,或許可稱之為智人的「天性」,但是不清楚能追溯到多早。

智人如今僅有尼安德塔人一種比較對象,而尼安德塔人好像不排斥近親繁殖。有可能兩者的共同祖先已經會避免近親配對,尼安德塔人卻不再在意;也有可能這是智人較新的性擇模式,與尼安德塔人分家以後的某個時候才形成。

捷克的 Moravia 的 Dolní Věstonice 遺址,2.6 萬年前想像畫面。當時智人人口有限,卻會避免近親配對。圖/Dolní Věstonice in Central Europe

這也可以澄清一個疑惑。有個說法是,原始人只知道媽媽,不知道爸爸,因為小孩明確由媽媽生出,爸爸的功能卻不直接。根據古代 DNA 的證據判斷,此說很顯然錯誤。

-----廣告,請繼續往下閱讀-----

如果隨機配對,一群人中勢必會有一定比例的人,父母為血緣近親。由結果反推,倘若都沒有的話,表示這群人都會刻意避免近親配對。

假如多數人都不知道爸爸是誰,實在難以想像要怎麼如此徹底的避免近親繁殖。反過來則合理得多:每個人都知道自己的爸爸媽媽是誰,擇偶時才能避開。

定居的人,設法讓 DNA 流動

一萬多年前開始,世界許多地方陸續有人定居下來,改為依靠種田營生。從流動性高的採集狩獵小群體,變成長期住在一處的小農村,人類的生活方式改變很大,這會影響配對習慣嗎?

人人採集狩獵的時期,每一群的人數都不多,但是習慣跑來跑去,有不少機會交換人口。新石器時代定居下來以後,初期的人口還是不多,卻失去流動性,只能從住在附近的有限對象中擇偶。如此一來,近親配對的機率應該會提高?

-----廣告,請繼續往下閱讀-----

目前對此問題的探討不多。資訊比較多的案例,來自安那托利亞(現今的土耳其)一萬多年前,人口頂多數百的小農村遺址 Boncuklu、Pınarbaşı。這兒新石器時代初期的居民,多數在本地長大;可是遺傳上看來,都會避免近親繁殖。

新石器時代小型農村,概念圖。圖/Paint The Past

具體狀況不明,本地與否是透過「鍶」的穩定同位素判斷,涵蓋的地理範圍不算太小。幾十公里遠的隔壁村,只要鍶同位素仍屬同一範圍,仍然會辨識為本地人。

不過我想這些線索應該足以支持,安那托利亞的人們邁入定居時代後,依然保持舊日的擇偶習慣,在有限的選項中盡量避免血親。但是近親繁殖也出現了。肥沃月灣西側的 Ba’ja 遺址(現今的約旦),至少有 1 位居民的父母為近親。

要提醒各位讀者,不同地方邁入定居的年代與狀況都不一樣,有時候差異很大,不可一概而論。

-----廣告,請繼續往下閱讀-----

從城市到文明

隨著人口增長加上工作分化,漸漸有大型聚落誕生,有些或許可稱之為城市。人類發展可謂來到另一階段。

例如前述 Boncuklu、Pınarbaşı 遺址附近,就形成知名的加泰土丘(Çatalhöyük),數千年來都有數千人口居住。由鍶穩定同位素判斷,這兒多數人是土生土長,也有少量外來移民。

加泰土丘和我們習慣的「城市」有不少差異,卻昭示人類進入大量人口群聚的階段,各地一座又一座城市興起又衰落。長期保持數千人口的城市生活圈中,即使一輩子不出遠門,似乎也不難找到近親以外的異性配對。

大城市人口多,即使一輩子留在一個地方,也有不少機會找到血親以外的結婚對象。圖/IMDB

當然在現代以前,世界各地的大部分人類並不住在人擠人的城市,而是人口密度更低的郊區與鄉村。不過倘若有心避免近親配對,應該不難達成。

-----廣告,請繼續往下閱讀-----

目前為止重現於世的古代基因組,不論何時何地,大部分不是近親繁殖的產物。某文化的眾多樣本中,有時候能見到零星幾位,甚至是兄弟姊妹或親子間的極近親,但是都不普遍。

人口有限的海島,近親繁殖好像更容易發生。義大利南方的馬爾他島,在新石器時代確實如此;但是不列顛北部的奧克尼島,青銅時代僅管人口很少,依然能幾乎避免。

是人性的扭曲,還是財富的累積?

至今所知近親繁殖最常見的古代社會,是青銅時代的愛琴世界,也就是希臘及其外島,距今 3000 到 5000 多年前,愛琴海一帶的米諾斯等文化。薩拉米斯島(Salamis)等小島的比例較高,希臘大陸相對低,整體比例約 30% 之高。

取樣一定有偏差,真正的近親比例不好說,但是大概足以判斷青銅時代的愛琴世界,堂表兄弟姊妹等級的近親婚配習以為常,不只少量統治家族,而是全民普及的現象。

愛琴在青銅時代的橄欖種植。圖/Marriage rules in Minoan Crete revealed by ancient DNA analysis

有史以來智人都會避免近親繁殖,為什麼愛琴人改變婚配方式?目前沒有答案。考古學家提出一個可能,種植橄欖之類的經濟作物,最好不要分割土地,而近親配對有助於保留土地,讓產業留在大家族內傳承。這聽起來合理,可惜缺乏更直接的證據。

社會中有人累積土地等資產,是人類發展的趨勢之一,而不論王公貴族或小地主,時常都有集中資產的需求。目前缺乏古代基因組的其他文化,是否也會見到類似愛琴世界的現象?我猜頗有可能,應該是有趣的探索方向。

隨著不同時空的樣本累積,加上容易操作的父母親緣分析軟體,未來「父母是否為近親」也許能成為古代基因組的標準化分析步驟,讓我們更方便認識人類的性擇。

延伸閱讀

參考資料

  1. Scott, E. M., Halees, A., Itan, Y., Spencer, E. G., He, Y., Azab, M. A., … & Gleeson, J. G. (2016). Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nature genetics, 48(9), 1071-1076.
  2. Genomic landscape of the Greater Middle East
  3. Skov, L., Peyrégne, S., Popli, D., Iasi, L. N., Devièse, T., Slon, V., … & Peter, B. M. (2022). Genetic insights into the social organization of Neanderthals. Nature, 610(7932), 519-525.
  4. Sikora, M., Seguin-Orlando, A., Sousa, V. C., Albrechtsen, A., Korneliussen, T., Ko, A., … & Willerslev, E. (2017). Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science, 358(6363), 659-662.
  5. Svensson, E., Günther, T., Hoischen, A., Hervella, M., Munters, A. R., Ioana, M., … & Jakobsson, M. (2021). Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Current Biology, 31(14), 2973-2983.
  6. Pearson, J., Evans, J., Lamb, A., Baird, D., Hodder, I., Marciniak, A., … & Fernández-Domínguez, E. (2023). Mobility and kinship in the world’s first village societies. Proceedings of the National Academy of Sciences, 120(4), e2209480119.
  7. Yaka, R., Mapelli, I., Kaptan, D., Doğu, A., Chyleński, M., Erdal, Ö. D., … & Somel, M. (2021). Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Current Biology, 31(11), 2455-2468.
  8. Wang, X., Skourtanioti, E., Benz, M., Gresky, J., Ilgner, J., Lucas, M., … & Stockhammer, P. W. (2023). Isotopic and DNA analyses reveal multiscale PPNB mobility and migration across Southeastern Anatolia and the Southern Levant. Proceedings of the National Academy of Sciences, 120(4), e2210611120.
  9. Cassidy, L. M., Maoldúin, R. Ó., Kador, T., Lynch, A., Jones, C., Woodman, P. C., … & Bradley, D. G. (2020). A dynastic elite in monumental Neolithic society. Nature, 582(7812), 384-388.
  10. Fowler, C., Olalde, I., Cummings, V., Armit, I., Büster, L., Cuthbert, S., … & Reich, D. (2022). A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature, 601(7894), 584-587.
  11. Rivollat, M., Thomas, A., Ghesquière, E., Rohrlach, A. B., Späth, E., Pemonge, M. H., … & Deguilloux, M. F. (2022). Ancient DNA gives new insights into a Norman Neolithic monumental cemetery dedicated to male elites. Proceedings of the National Academy of Sciences, 119(18), e2120786119.
  12. Dulias, K., Foody, M. G. B., Justeau, P., Silva, M., Martiniano, R., Oteo-García, G., … & Richards, M. B. (2022). Ancient DNA at the edge of the world: Continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney. Proceedings of the National Academy of Sciences, 119(8), e2108001119.
  13. Ariano, B., Mattiangeli, V., Breslin, E. M., Parkinson, E. W., McLaughlin, T. R., Thompson, J. E., … & Bradley, D. G. (2022). Ancient Maltese genomes and the genetic geography of Neolithic Europe. Current Biology, 32(12), 2668-2680.
  14. Freilich, S., Ringbauer, H., Los, D., Novak, M., Pavičić, D. T., Schiffels, S., & Pinhasi, R. (2021). Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Scientific Reports, 11(1), 16729.
  15. Gnecchi-Ruscone, G. A., Szecsenyi-Nagy, A., Koncz, I., Csiky, G., Racz, Z., Rohrlach, A. B., … & Krause, J. (2022). Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell, 185(8), 1402-1413.
  16. Fernandes, D. M., Sirak, K. A., Ringbauer, H., Sedig, J., Rohland, N., Cheronet, O., … & Reich, D. (2021). A genetic history of the pre-contact Caribbean. Nature, 590(7844), 103-110.
  17. Zhang, F., Ning, C., Scott, A., Fu, Q., Bjørn, R., Li, W., … & Cui, Y. (2021). The genomic origins of the Bronze Age Tarim Basin mummies. Nature, 599(7884), 256-261.
  18. Skourtanioti, E., Ringbauer, H., Gnecchi Ruscone, G. A., Bianco, R. A., Burri, M., Freund, C., … & Stockhammer, P. W. (2023). Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean. Nature Ecology & Evolution, 1-14.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。