分享本文至 E-mail 信箱
學術引用格式
MLA
APA
EndNote(.enw)

長達兩公尺的遺傳資訊如何塞進六微米的細胞核?讓我們從染色體上的「拓樸結構域」談起

  • 文/張家銘│  政治大學資訊科學系生物資訊實驗室,希望透過資訊方法的幫忙,來一探生物之秘。

收納大作戰,兩公尺長的遺傳資訊怎麼收?

我們知道每個細胞攜帶 23 對染色體,而這遺傳資訊儲存在細胞核中,相較於 6 微米的細胞核,把存在其中的 DNA 資訊拉直約有 2 公尺長,這有多麼不可思議? 有如把繞地球 3 百多萬圈的細繩,放到一顆籃球裡面,這究竟是如何折疊存放的?

圖/ OpenStax@Wikimedia Commons [CC BY 4.0]

這一切得從最簡單的 DNA 兩條序列開始,華生跟克里克在 1953 年提出 DNA 雙螺旋結構,也就是兩條序列有如雙螺旋般環繞,再往上一層,約 146 個 DNA 鹼基對環繞著組織蛋白 (histone) 構成 10 奈米大的核小體,有假說這如一串珠珠再纏繞形成 30 奈米的細胞質纖維(chromatin fibers),最後形成整個染色體,這中間的三級結構又是如何架構?

首先要想辦法搞清楚 DNA序列之間是否有結構上的特徵。但 DNA序列這麼多這麼長,該怎麼做起呢?

染色體上的結構特徵:拓撲結構域

2002 年美國哈佛大學 Job Dekker 等人發表染色體結構捕獲技術 (Chromosome Conformation Capture, 3C)1 ,主要利用甲醛將染色體空間中相近DNA序列固定住,然後透過限制酶剪開特定字串功能,將染色體裁切成小片段,進而把空間中相近DNA序列成對連接,最終透過 PCR 來觀察特定DNA片段在空間中是否相近交互。後續不斷有技術演進,其中 Hi-C 結合次世代定序技術 (next- generation sequencing)2與生物資訊分析方法,更易得到全基因組層面的成對 DNA 相近序列。

這些技術讓科學家進而推導出許多染色體結構上有趣的特徵,其中一個就是 TAD 拓撲結構域(Topology Associated Domain, 縮寫為TAD) 。

可將TAD想像成捲成一團的毛線球。圖/maxpixel

TAD 首先在 2012 年果蠅與人類的 Hi-C 論文中被提出來3,4,從 Hi-C 資料來看,TAD 區段內彼此交互的頻率會遠高於該區段外 (即空間上彼此會靠得比較相近,可以想像成一條線在這邊捲成一團,如毛線球),此性質可形成各自獨立的基因調控區域 ,隔開不該對應的啟動子 (promoter) 與增強子 (enhancer),避免錯誤的調控。

TAD可以依據不同生物特性,進一步區分成不同類別,如:活躍(active)、抑制(repressed)等。如何找出 TAD 的邊界、滿足上述性質,可以表達成一個數學問題,也就是給定一個 2 維數字矩陣 (Mi,為交互作用強度介於第 個與第 個基因體位置),如何找出區間集合 S,使得 (Mi,j > Mi,k | i,j ∈ Sx, k∈Sy)

究竟,TAD是染色體結構中真實存在的單位?還是 Hi-C 實驗中細胞群統計平均所得到的數學抽象概念?筆者本身參與了相關的研究5-7,剛好要試著回答這問題。

這一系列的研究,牽涉了相當多不同的技術。首先結合超高解析度光學顯微鏡 (dSTORM)與先進的 DNA標記技術 (Oligopaint),Cattoni 等人在單細胞層次觀察奈米尺度 TAD接觸行為,透過量化TAD內與外空間上接觸強弱機率,發現接觸強弱與細胞的型別、表觀的基因調控息息相關5

接著 Szabo 等人進一步將顯微鏡光學標記(probe)標識在不同表觀類別的 TAD 上6,發現到,不同表觀 TAD 有著不同的行為:抑制 TAD 可觀察到為穩定的染色體組建單元,然而活躍 TAD 看不到空間中形成相對應的球聚架構 (圖一)。透過計算顯微鏡下奈米結構單元數量與當初所標記的抑制 TAD 數量一致,證明抑制 TAD 為染色體三級結構組成的基本奈米結構。另外,在顯微鏡底下可發現 TAD 內的兩點果真比TAD外的兩點距離來得短,再次證明 TAD 在三級上會形成一個較為緊密的架構,此外相同表觀類別的 TAD 在空間上較容易接觸。。

圖一. 左-粉紅色光學探針平均標示在 3M bps 的區段上,其中對於單一TAD另外標上綠色探針;右-依所標示的 TAD不同類別觀察 – 抑制 (Blue, Black) 和 活躍 (Red),可以看到單一TAD綠色探針在抑制TAD會形成一球,但在活躍TAD卻是分散的。圖/參考資料6 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC) )

另外,染色體的結構在發育過程中也並不是固定一成不變的。Ogiyama 等人透過HiC實驗觀察染色體三級結構在果蠅胚胎發育的變化過程7,發現到染色體的結構是漸進式出現的:從前期無任何特定模式,到晚期形成 TAD 形式,這進展的過程與基因調控有密切的關係。

早期週期 1 到 8 染色體較為隨機的狀態,接著第一波 zygotic 轉錄時(週期 9~13),開始形成特定的活躍染色質環 (chromatin loop),接著才是TAD的形成,在更晚的週期 14,抑制的染色質環開始形成,最後跨整個染色體的長距離接觸在胚胎晚期系統地建立起來。

未來展望

近來利用超解析螢光顯微鏡8或電子顯微鏡9直接來觀察染色質結構也有所突破,打破先前教科書上理想的模型:「從10納米的串珠,往上架構成30納米的染色質纖維,再往上構成更大100~200納米的纖維」。科學家發現染色質會因細胞型別有各式不同的動態單元 (nucleosome clutches)8 或 5~20納米無序的鏈9。相信之後結合 Hi-C 與顯微鏡兩種資訊,人們終可以一解染色質結構功能之謎,並且回答更多的問題,例如:TAD 形成原因,其在演化上扮演的角色,與轉錄作用間的連結……等。

備註

  • 若藍球直徑 24.5 公分, 則籃球直徑為細胞核的 40833 倍 (0.245/6 * 106 = 40833.33),就體積來說,一顆籃球約可以放入 408333 顆細胞核,把這些細胞核內染色體接起來 2*408333,若地球直徑為 40075 公里,共可繞 2*408333/(40075*1000)= 3397741 圈

參考資料

  1. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing Chromosome Conformation. Science 295, 1306–1311 (2002).
  2. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–93 (2009).
  3. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–72 (2012).
  4. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–80 (2012).
  5. Valeri, A. et al. 2017. Single-cell absolute contact probability detection reveals chromosomes are organized by multiple low-frequency yet specific interactions. Nature Communications. 8, 1 (2017), 1753.
  6. Szabo, Q., Jost, D., Chang, J.-M., Cattoni, D., Papadopoulos, G., Bonev, B., Sexton, T., Gurgo, J., Jacquier, C., Nollmann, M., Bantignies, F. and Cavalli, G. 2018. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Science Advances. 4, 2 (2018), eaar8082.
  7. Ogiyama, Y., Schuettengruber, B., Papadopoulos, G., Chang, J.-M. and Cavalli, G. 2018. Polycomb-Dependent Chromatin Looping Contributes to Gene Silencing during Drosophila Development. Molecular cell. 71, 1 (2018), 73–88.e5.
  8. Ricci, M. A., Manzo, C., García-Parajo, M. F. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–58 (2015).
  9. Ou, H. D. et al. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).
 

 

不論是即將進入高中、剛脫離高中、脫離高中很久的你;說到物理課,是否只有無奈跟眼神死?!

本月 PanSciTALK 跟天下文化合作,邀你一起用全新的視角來看物理課以及我們所生活的這個世界!

馬上點我免費報名

關於作者

活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策