Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

大腦動不起來,是因為你不知道該如何思考! ——《學生為什麼不喜歡上學?》

PanSci_96
・2019/02/11 ・3093字 ・閱讀時間約 6 分鐘 ・SR值 540 ・八年級

編按:《學生為什麼不喜歡上學?》這本書以認知心理學研究成果為根基,歸納出大腦如何學習和記憶,並提供了教師如何應用這些認知原則於教學現場的方法。

心智模型長這樣,原來我是如此思考!

稍微瞭解一下思考運作的方式,有助於你瞭解思考困難的原因,這樣一來就能讓你瞭解如何幫助學生把思考變容易,也就能讓學生更樂於上學。

我們從非常簡單的心智模型說起:

【圖 1-6】最簡單的心智模型莫過於此。圖/《學生為什麼不喜歡上學?》

圖 1-6 左邊是環境,充滿了可見可聞的事物、待解決的問題等等。右邊是你心智的一部分,科學家稱之為工作記憶,現階段暫且將其等同於意識,承載你目前正在思考的內容。從環境指向工作記憶的箭頭,表示工作記憶是你大腦內意識到周遭環境的區塊:一道光線落在佈滿灰塵桌面的景象、狗在遠方吠叫的聲音等等。當然你也同時注意到目前不存在環境中的事物;舉例來說,你可以回想起媽媽的聲音,即使她不在房間裡(或其實已不在人世)。

長期記憶是儲存你對於世界的事實型知識的巨大倉庫:瓢蟲有圓點、你最愛的冰淇淋口味是巧克力、你家三歲幼兒昨天突然迸出「金桔」 (kumquats)一詞讓你又驚又喜等等。事實型知識可能是抽象的,比如三角形是三個邊的封閉圖形,還有你對狗一般外型的瞭解。

-----廣告,請繼續往下閱讀-----

所有長期記憶中的訊息都存在於意識之外,靜靜蟄伏,直到被需要,這才進入工作記憶中,成為意識。舉例來說,要是我問你:「北極熊是什麼顏色?」你幾乎會立刻回答「白色」。這個訊息三十秒前還在長期記憶中,直到我丟出問題,你才會意識到它的存在,讓訊息變得與目前思緒有關,於是進入工作記憶中。

來試試解題吧,體驗在工作記憶中組合訊息

當你用新的方式組合訊息(來自於環境和長期記憶),思考於焉產生。組合訊息的場域就是工作記憶。為了讓你感受此一過程,請閱讀圖 1-7 所描述的問題,並試著回答(重點倒不是解題,而是體會思考和工作記憶為何)。

【圖 1-7】/《學生為什麼不喜歡上學?》

本圖描繪有三根方樁的遊戲臺。最左邊的方樁上套著三塊面積由小到大的圓盤。題目要你把三塊園盤從最左邊的方樁移到最右邊的方樁,但移動規則有二:一次只能移動一塊圓盤,而且不能把大圓盤放在小圓盤之上。

稍微想一下,就能解出這個題目, 此時重點在於體驗工作記憶被問題占據的感覺:你一開始從環境裡汲取訊息——遊戲臺的規則與配置——然後想像移動圓盤來達到目標。

在工作記憶內,你必須保持目前在謎題的狀態——圓盤的位置——並想像且評估可能的移動方式。同時你必須記住哪些移動才符合規則,如圖 1-8 所示。

-----廣告,請繼續往下閱讀-----
【圖 1-8】你的大腦在解圖 1-7 謎題時是這麼運作的。圖/《學生為什麼不喜歡上學?》

對於思考的描述讓我們清楚知道,在工作記憶裡如何組合及重新安排概念,是成功思考的關鍵。舉例來說,在圓盤與方樁問題中,你怎麼知道要把圓盤移到哪裡?如果你沒有見過這個問題,你或許覺得自己像在瞎猜。如圖 1-8 所示,長期記憶裡並沒有任何訊息來引導你。

拆解計算的思考過程,中間需提取長題記憶

但如果你曾看過這類似問題,那麼長期記憶中很有可能有如何解題的訊息,即使訊息並不是那麼的簡單明瞭。

比方說,試著心算這道數學題:

18 × 7

你知道怎麼做這道題。我有信心你的心算步驟和以下順序相去不遠:

  1. 用 8 乘以 7。
  2. 從長期記憶中提取 8×7=56 的事實。
  3. 記住 6 是答案的一部分,然後把 5 進位。
  4. 用 7 乘以 1。
  5. 從長期記憶中提取 7×1=7 的事實。
  6. 把進位的 5 和 7 相加。
  7.  從長期記憶中提取 5+7=12 的事實。
  8. 寫下 12,後面再寫 6。
  9. 答案是 126。

你的長期記憶不僅包含事實型訊息,如北極熊的顏色與 8×7 的數值,還包含我們所謂的程序型知識,也就是進行工作時必備的心智程序知識。如果思考是在工作記憶中組合訊息,那麼程序型知識就是組合內容與時序的清單,就像是一份處方,用以完成某種類型的思考。你可能儲存處理某些事務的程序,如計算三角形面積、用 Windows 複製電腦檔案,或從家裡開車到公司。

-----廣告,請繼續往下閱讀-----
長期記憶不僅包含事實型訊息,還包含我們所謂的程序型知識。
圖/pixabay

很顯然地,長期記憶中儲存適當的程序有助於我們思考。也因如此,解上述的數學題很容易,但解圓盤與方樁問題卻有難度。那麼事實型訊息也能幫助你思考嗎?答案是肯定的,而且還以好幾種不同的方式,這點在第二章中會討論。現階段請注意解數學題需要提取事實型訊息,如 8×7=56 這樣的事實。我說過,思考需要在工作記憶中組合訊息,通常若環境中提供的訊息不足以解決問題,你必須用來自長期記憶的訊息來補充。

當工作記憶的空間被塞爆,思考就卡住了

思考還有最後一個必要條件。舉例說明最易理解,請看下列問題:

在某些喜馬拉雅村莊的旅店裡,有一種講究的茶道儀式。參與儀式者包含一位主人和兩位客人,不多也不少。客人抵達後在桌邊入座,主人會為他們表演三道規矩。這些規矩按照喜馬拉雅人認為的尊貴程度來排列,分別是:點火、搧風、倒茶。儀式進行時,在場者任何一位都能問其他人:「可敬的先生,能夠讓我為您進行這個繁複的規矩嗎?」不過,一個人只能向另一人詢問比他正在進行的規矩中尊貴程度最低的。此外,如果一人正在進行某一規矩,那他就不能要求比他已經做過尊貴程度最低的規矩更高階的規矩。習俗規定,茶道儀式結束之時,所有的規矩都會從主人移轉到客人中最年長者。請問該怎麼進行呢?

讀完這個問題,你的第一個反應可能是「啊?」你可能會覺得必須多讀幾遍才能懂,更不用說著手解題。問題看起來很棘手,因為你的工作記憶沒有足夠空間來容納所有問題的層面。工作記憶空間有限,所以工作記憶太擁擠時,思考變得更為困難。

茶道問題其實和圖 1-7 的圓盤方樁問題是一樣的。主人和兩位客人就像三根方樁,而規矩就是要在這當中移動的三塊圓盤,如圖 1-9(很少人看出這個類比以及類比對於教育的重要,這點會在第四章中提到)。

-----廣告,請繼續往下閱讀-----
【圖 1-9】此處以圓盤方樁題的形式來呈現茶道題。

這個版本的問題顯得困難許多,因為在圖 1-7 中清楚明瞭的內容現在必須憑空想像。舉例來說,圖 1-7 提供了方樁的圖片,有助於我們在思考移動步驟時,在心裡保有圓盤的影像。問題的規則占據許多工作記憶的空間,使得思考過程受阻,解題變得困難。

成功的思考有四大因素

總之,成功的思考仰賴四大因素:來自環境的訊息、長期記憶裡的事實、長期記憶裡的程序,以及工作記憶的空間。任何一個上述因素不夠,思考就有可能失敗。

讓我總結一下這一章。人類心智並沒有特別適合思考;思考很緩慢、費力、不可靠。因此,大多數情況下引導人類行動的,並非深思熟慮;實際上人們反而是仰賴記憶,遵循過去採取過的行動。

不過,人們覺得成功的思考有樂趣、喜歡解決問題、瞭解新的概念等等。因此,人們會找機會思考,但這麼做是有選擇性的;我們選擇那些有點難度,但看似有機會解決的問題,因為這些問題能帶來愉悅及滿足感。要解決問題,思考者需具備來自環境的足夠訊息、工作記憶的空間以及長期記憶中不可或缺的事實與程序。

-----廣告,請繼續往下閱讀-----

 

 

本文摘自《學生為什麼不喜歡上學?:認知心理學家解開大腦學習的運作結構,原來大腦喜歡這樣學》,久石文化,2018  年 12 月出版。

 

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2422 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
【成語科學】老馬識途:馬的記憶力好嗎?
張之傑_96
・2025/06/28 ・1305字 ・閱讀時間約 2 分鐘

一段來自春秋戰國的故事

介紹這個成語,先要簡單談談周朝的歷史。

周武王建立的周朝,傳到周幽王,已是第 12 代。周幽王寵愛褒姒,做了不少糊塗事,弄得國家亡了,自己被殺。繼位的周平王,把國都從鎬京(今西安)遷到雒邑(今洛陽),史稱東周。遷都以前,史稱西周。

東周分為兩個階段,前期稱為「春秋」,後期稱為「戰國」。春秋時,周王仍有天下共主的名義,但已不能號令各諸侯國,於是北方邊疆民族開始騷擾中原。齊桓公在大政治家管仲的輔佐下,提出「尊王攘夷」(尊崇周王,排除夷狄)的口號,藉以號令其他諸侯國,成為春秋時期的第一位霸主。齊桓公之後,還有四位霸主,史稱春秋五霸。

成語「老馬識途」,出自於齊桓公與管仲的故事。圖 / wikimedia

齊桓公提出的尊王攘夷,不只是個口號,還付諸行動。西元前 663 年,北方的孤竹國入侵燕國。燕國向齊國求援,齊桓公親自率軍出征。去的時候是春季,打敗孤竹國時已是冬季,從春暖花開到地上積雪,由於景物變化太大,以致找不到去時的道路。

-----廣告,請繼續往下閱讀-----

大家正在不知所措的時候,管仲對齊桓公說:「主公不要憂慮,據說老馬認識走過的路,讓我們試試吧。」於是挑選了幾匹老馬,讓牠們在前面行走,軍隊跟在後面,果然找到去時的道路。這個故事就是成語老馬識途的出典,記載在《韓非子》這本書上。

 因此,老馬識途的含意,比喻有經驗的人對事情較為熟悉。說到這裡,循例造兩個句吧。

 要不是他老馬識途,我們進入這片森林,肯定迷路。

你老馬識途,這次前往小琉球旅行,就由你帶隊吧。

短期記憶差,長期記憶卻超強

談到這裡,該談談老馬識途的科學意涵了。馬的短期記憶很差,只能維持十幾秒,因此馴馬時,馬犯了錯懲罰牠,可能早已忘記剛才做了什麼。然而,馬的長期記憶卻好得出奇,甚至比人類還要好。馬一旦學會某件事,就會永遠記得。實驗證明,馬可以在十幾年後,仍記得和牠相處過的人呢。

馬的短期記憶力雖然很差,但長期記憶力卻十分驚人。圖 / pixabay

因此馬曾經經常走某一條路,牠是會牢記不忘的。不過由於馬的短期記憶不佳,所以先決條件是:要走過許多次才行。以管仲讓老馬帶路的例子來說,那些老馬肯定曾經在這一帶來來往往。章老師猜想,管仲挑選的幾匹老馬,或許是當地的老馬,而不是從齊國帶去的老馬。

-----廣告,請繼續往下閱讀-----

馬的長期記憶力好,還有個故事可以證明。唐代宮廷訓練馬匹跳舞,稱為「舞馬」。西元 755 年,爆發「安史之亂」,叛軍攻陷長安,叛軍首領安祿山看過舞馬表演,擄去數十匹。安史之亂結束後,這批舞馬被唐軍接收,把牠們當成一般戰馬飼養。有一天軍中宴會,鼓樂聲響起,舞馬習慣性地隨著節拍跳舞,指揮官以為是馬怪,命令士兵鞭打,牠們仍然跳個不停,最後竟然被打死了。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

33
1

文字

分享

0
33
1
大科學人專訪|台大教授葉丙成:素養就是運用知識解決真實世界問題的能力和態度
LIS_96
・2022/12/30 ・3173字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

他是葉丙成,台大電機教授,也是線上遊戲學習平台 PaGamO 和實驗教育機構「無界塾」的創辦人,葉丙成老師的求學經歷建中、台大、留美、當教授,完美符合了傳統價值對於菁英人才的期待,而直到葉丙成到美國求學、當上台大教授後,他才一再體會到著眼「好成績」將錯失生命許多彌足珍貴的探索機會,於是他展開中年叛逆,成為力推台灣「翻轉教育」的先行者,讓更多台灣孩子有機會比他更早一步擁抱不被成績綁架、有所熱情的人生。

葉丙成的人生故事和教育觀點,邀請你一起往下閱讀>>>

成為病態的考試機器,失去對世界的好奇心

Q:可以和我們分享葉丙成老師自己的求學歷程嗎?

我從小在教授宿舍長大,唸的是台科大後面的公館國小,除了去美國讀書之外,建中是我讀過最遠的學校。

在我們居住的環境裡大多都是教授父母,大家難免會比較小孩的成績,我從小就一直在「因著成績被肯定」的狀態長大,成績很好但我完全沒有學習的熱忱和好奇心,我知道自己是在應付考試,也很會應付考試,那其實是一種很病態的價值觀,我差不多在高中就已經失去對世界的好奇心,看到新東西、沒碰過的東西,我反而會覺得很煩又要花時間去搞懂。

-----廣告,請繼續往下閱讀-----

考贏別人得到師長的肯定是唯一的追求,但到了美國唸博士之後發現其實根本沒有人在 care 考試和成績排名,在派對上面我只能用傅立葉(專業知識)跟同學開話題,根本沒人想鳥我,我才看見自己的貧乏。

儘管成績很好,但完全沒有學習的熱忱和好奇心。圖/Pexels

現在在台大教書,看到這些孩子,也常常覺得成績好、會應付考試,某種程度是背負一種詛咒,不是因為成績好選擇更多,而是在追求成績的過程,我們根本不知道自己要什麼,看不到自己真的有熱情的地方,時間就一直流掉,焦慮就一直擴大,變得沒有靈魂。

非結構化學習才能培養孩子面對未知世界的能力

Q:有了前述的反思,現在葉丙成老師怎麼帶自己的兩個兒子 ?

對我而言我完全不在意他們的成績,只要他們保有對世界的好奇心、熱情,有個人特質的魅力,願意去探索任何事我都是支持。

有些爸媽會因為小孩數學考 98 分而打小孩,罵小孩怎麼能因粗心而少那 2 分,但沒有什麼應不應該,說真的數學考 100 分也不代表他長大就會變成人才,數學只要懂就好,考 80 分和 100 分其實沒有差,最怕的是他不懂。

-----廣告,請繼續往下閱讀-----

我比較在意的是孩子有沒有「非結構化學習」(unstructured learning)的能力,當孩子對一件事情感興趣,願意花時間蒐集資料,把來龍去脈搞清楚,最後建構出他對這件事情的知識體系,這就是非結構化學習。這個能力是非常重要的訓練,未來不管他做什麼,都可以很快的進入狀況。

從小到大,我們在學校學的都是結構化的學習(structured learning)有課本和教材,非結構化學習的能力很難訓練,只能靠常常實作來建構,但我們通常很少有機會鍛鍊孩子這個能力。

希望孩子有非結構化學習的能力,願意花時間蒐集資料、釐清來龍去脈,建構出知識體系。圖/Pexels

有一次我家兒子他晚上 11 、 12 點還不睡,我問他在幹什麼,他說很喜歡老師養的貓咪,想做一張貓吉拉吃人的卡片送老師,所以在學 Photoshop 看能怎麼做出來,我沒有阻止他,繼續忙自己的事情,沒想到忙一忙凌晨 3 點兒子還沒睡,但他已經用 Photoshop 做出一張還滿漂亮的卡片了!通常遇上這種情況,大部分的爸媽可能會質問孩子為何浪費時間弄一隻貓,但對我而言能自己學會而且做出來比考 100 分來得更重要。

讓孩子贏在十八歲之前,卻犧牲時間養成足以面對未來的關鍵能力

Q:葉丙成老師覺得什麼是學習過程中應該具備的關鍵能力?

108 課綱在講的就是培養台灣小孩變成終生學習者,有自主學習能力的人,過去台灣教育把學生訓練成「搜尋引擎」,孩子不斷地寫評量和考古題,考試考很高的分數,但遇到不同的題型就不知道怎麼辦,如果下一代都不敢創新,只想著搜尋既有的解法,那台灣的未來很令人擔憂。

-----廣告,請繼續往下閱讀-----

素養就是「運用知識解決真實世界問題的能力和態度」,「知識」、「能力」、「態度」三者加在一起才會擁有素養。台灣教育過分強調學習知識,孩子可能很會解困難的數學題,但你請他們在生活中利用簡單的數學解決問題,他不一定可以解決真實世界的問題,這些知識只是拿來考試用而已。

我很歡 LIS 創辦人嚴天浩說的一句話,意思大概是:「科學教育的本體不是科學的知識;科學是一種思考的方式。」這句話太精彩,一語道破許多人對科學的錯誤看法!

我們小時候常看到的「十萬個為什麼」這類的書,那是最糟糕的。爸媽買這種書給孩子,孩子博學強記,結果大人問什麼科學問題,孩子都能快速講出答案,爸媽就覺得自己孩子是小天才。孩子也以為知道所有科學相關問題的為什麼、能快速回答各種關於科學的問題,就是學科學,這簡直錯得離譜!

學科學真正重要的是:面對問題時的思考方式。圖/Pexels

就像天浩說的,學科學真正重要的,是學會科學家面對問題的思考方式:如何觀察、如何提出假設、如何設計實驗來驗證假設、如何修正自己的假說……,這一連串的過程,才是科學教育最重要的,人家問什麼都能快速答得出來 Google 網站就做得到了。

-----廣告,請繼續往下閱讀-----

期待台灣教育成為亞洲國家的教育典範

Q:葉丙成老師對台灣教育的建議與期待?

很多孩子在教育上遇到的狀況,是家長選擇造成的結果,只要放過自己的小孩,讓他快快樂樂的長大,我覺得就已經會減少很多問題,很多孩子壓抑自己的七情六慾,變得膽小慎微,失去創造性。

我最近跟一些高中生在聊,雖然他們也很想跟我聊,但我們唯一能約的時間是禮拜五晚上的十點,因為六日他們要補習,平日晚上補到九點多要回家準備明天上學,你看這個社會把孩子逼到這個樣子。

我希望我們這些對教育很有熱情的人,比方說家長、中小學高中大學、體制內教育和體制外教育的老師,看可以怎麼把各個不同領域的力量串起來,更加速改變整個台灣社會對教育的看法。讓台灣的小孩能夠在亞洲有相對開放鬆綁的教育,我認為是很有機會的,這是接下來十年想和大家一起努力的目標!

葉丙成認為,讓台灣的小孩能夠在亞洲有相對開放鬆綁的教育,是很有機會的。圖/Pexels

響應本次「LIS 第二季大科學計劃」,葉丙成老師分享給我們的大科學人宣言:

❛❛ 有科學的思維,才能看出誰在胡扯  ❜❜  —— 葉丙成

邀請您一同成為各行各業中的大科學人,您的捐款將支持「科學公益教材」的穩定開發,一起 支持台灣科學教育,讓孩子從小開始像「科學家一樣思考」,帶著自信長大成為各行各業中「 永保好奇」、「邏輯思辨」的大科學人!

-----廣告,請繼續往下閱讀-----

【LIS 大科學計畫 ✦ 第二季】|暖心上線 ▸▸▸▸▸▸▸
❛ 教育不只是老師的事,這是我們的任務,下一個世代的科學史,現在就得開始寫起! ❜
募資倒數 30 天,尚缺 60 萬元定期定額製作啟動金
每月 523 小額捐款,支持全台十萬名孩子都期待的科學教材 https://bit.ly/3VbX9Eb
#參與募資成為大科學人,#解鎖泛科學贈送的神祕好禮
關注 LIS 最新消息歡迎加入 FB 社團「LIS大科學人製造所

-----廣告,請繼續往下閱讀-----
LIS_96
22 篇文章 ・ 11 位粉絲
LIS ( Learning in Science )情境科學教材,成立於2013年7月,是一個非營利組織,致力於為國中小自然教師及學生,設計有別於填鴨教育的科學教材,協助教師進行STEAM和科學素養導向的教學,讓教師更簡單地進行教學創新,幫助更多孩子找回對科學的學習動機,並培養解決問題的能力。 在 Youtube 頻道【LIS情境科學教材】上,我們會即時更新所有LIS教材的影片,而完整的教案、學習單,亦同步上傳於【LIS教材平台網】歡迎您前往瀏覽完整內容。