Loading [MathJax]/extensions/tex2jax.js

1

2
4

文字

分享

1
2
4

邏輯是絕對的,但情緒是彈性的:淺談物理學家狄拉克與情緒的故事——《情緒的三把鑰匙》

大塊文化_96
・2022/10/01 ・3554字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

保羅.狄拉克(Paul Dirac)是二十世紀最偉大的物理學家之一,他不僅開創量子力學,也是反粒子理論等領域的研究先鋒。身為量子力學先驅,狄拉克毫無疑問是形塑現代世界的關鍵要角,舉凡主宰當前社會的電子學、電腦、通訊及網路科技,無不以他的理論為基礎。

延伸閱讀:開創了量子電動力學──狄拉克誕辰│科學史上的今天:8/8

保羅.狄拉克是二十世紀最偉大的物理學家之一。圖/Wikipedia

狄拉克在邏輯與理性思考方面的天賦,使他躋身百年來最偉大思想家之列;然而,年輕時的他在與旁人交流時幾乎沒有情緒、極度缺乏親和力,這點也同樣異於常人。他直言自己對其他人、甚至對「人」的感受毫無興趣。

「我從小就不懂喜歡或愛為何物。」狄拉克對朋友如此表示。

即使長大成人,他亦不尋索這類情感。

「我的人生主要關注事實,而非感受。」他說。

狄拉克一九○二年生於英國布里斯托,[1]母親是英國人,父親是瑞士人、也是一名以壞脾氣著稱的學校老師。狄拉克和他的手足、母親成天被父親言語霸凌,他父親甚至堅持三個孩子必須以他的母語「法語」和他交談,不准說英語。

狄拉克一家總是分開用餐:父親和狄拉克在餐室,說法語;母親和另外兩名手足在廚房,講英語。狄拉克法語說得不流利,每次犯錯必遭父親責罰;於是他很快就學會盡可能少開口,這種沉默寡言的性格一直延續到青年時期。

-----廣告,請繼續往下閱讀-----

擁有極高的天賦卻缺乏情緒

儘管狄拉克學術天分極高,但這份天賦在處理日常瑣事和挑戰方面幾乎派不上用場。人類演化至今並非單靠理智思維行事,而是在情緒的引導及啟發之下進行理性思考;但狄拉克身上僅有冰冷的智力活動,嚴重缺乏喜悅、希望與愛。

狄拉克身上僅有冰冷的智力活動,嚴重缺乏喜悅、希望與愛。圖/Pixabay

一九三四年九月,狄拉克造訪普林斯頓高等研究院(Institute for Advanced Study)。到訪那天,他信步走進一家名為「巴爾的摩午餐館」的餐廳用餐,在那兒遇見了匈牙利籍、同為物理學家的尤金.維格納(Eugene Wigner)。

與尤金同桌的還有一名正在抽菸、打扮入時的女子——她是維格納的妹妹瑪姬。瑪姬剛離婚,帶著兩個年幼的孩子,她個性活潑,對科學一竅不通。多年後,瑪姬回憶道,當年的狄拉克骨瘦如柴,失魂落魄,看起來有點悲傷又焦慮脆弱,令她有些不捨,於是她請哥哥邀狄拉克一道用餐。

瑪姬可謂狄拉克的「反粒子」——她是個性情中人,健談、浮躁,有些附庸風雅;反觀他則安靜、客觀,慎思熟慮。不過在那日午餐之後,狄拉克與瑪姬不時相約晚餐,兩人的友情即隨著多次「冰淇淋蘇打與龍蝦美饌之約而日益深刻」(狄拉克的自傳作者葛拉漢.法梅洛〔Graham Farmelo〕如此寫道)。數月之後,瑪姬返回布達佩斯,狄拉克也回到倫敦。

-----廣告,請繼續往下閱讀-----

瑪姬慢慢喚醒狄拉克的情緒

回國之後,瑪姬每隔幾天就寫信給狄拉克。一封封長信滿是各種新聞消息、流言八卦,但最多的還是心情絮語。狄拉克大概幾週才回信一次,寥寥數語。

「恐怕我不像您這麼會寫信。」他寫道。

「或許是我的感受過於貧乏之故吧。」

回國之後,瑪姬每隔幾天就寫信給狄拉克。圖/Pixabay

兩人的溝通不良令瑪姬倍感挫折,狄拉克卻不明白她因何苦惱。他倆繼續維持柏拉圖式的關係,書信往返、偶爾見面,彼此的羈絆也越來越深。

某次從布達佩斯拜訪瑪姬回來以後,狄拉克寫道:

「那天離開妳以後,我覺得很難過,此刻也仍然非常想念妳。我不明白自己怎麼會這樣。通常我跟別人分開以後,不太會想念對方。」

在那之後不久,兩人於一九三七年一月結為連理,狄拉克也領養瑪姬的兩個孩子。狄拉克在婚姻生活中體會到他曾以為不可能擁有的幸福快樂。狄拉克一家和樂融融,直到一九八四年狄拉克過世;那時,他和瑪姬的十五周年結婚紀念日才剛過不久。

-----廣告,請繼續往下閱讀-----

編按:「十五周年」為翻譯疏失,原文應為「五十周年」。

狄拉克在某封信上寫道:

「瑪姬,我親愛的,妳是我最心愛的人。妳把我的人生變得十分美好,使我更像個人。」

狄拉克在婚姻生活中體會到他曾以為不可能擁有的幸福快樂。圖/Pixabay

狄拉克對瑪姬的情感喚醒了他的心。早年,無法觸及情感的他頂多只是「半個人」,然而在找到瑪姬、找回他自己的情感以後,他看世界的眼光不同了,跟其他人的互動方式改變了,也為自己的人生做了不一樣的決定。據同事所言,狄拉克簡直變了一個人。[2]

找回情緒後狄拉克的改變

一旦找回情緒,狄拉克開始喜歡與人作伴,而且——就本書討論的主題而言,最最重要的是,他也察覺情緒對他的專業思考是有好處的。

這是狄拉克在精神層次的重要頓悟。往後數十年間,曾有許多舉世聞名的物理學家向這位大師請益,請教他物理研究的成功祕訣。狄拉克怎麼回答?法梅洛那本厚達四百三十八頁的狄拉克傳記便是以這段問答劃下句點。

-----廣告,請繼續往下閱讀-----

法梅洛寫道,狄拉克建議後生晚輩:「最重要的是:聽從你的情感。」[3]

狄拉克這話是什麼意思?冷冰冰的理論物理邏輯何以受惠於情感?在人類所從事的各行各業中,若要一般人選出他們認為最不需要摻雜情緒的工作,理論物理想必名列前茅。邏輯與精確無疑是在這個領域成功發展的必要條件,但情感扮演的角色同等重要。

若是擁有高超的邏輯分析技巧便足以成功駕馭物理學,那麼物理系應該只需要電腦,用不上物理學家。各位或許以為,物理學不過就是一堆「A+B=C」的方程式,然而在做研究的時候,物理學家經常會碰上「A+B」可能等於C、也可能等於D或E的情形,端賴他們選擇哪一種假設、或如何取近似值而定。其實就連該不該探討「A+B」本身也是個選擇題——也許該換成「A+C」,或試試「A+D」。又或者根本應該放棄這套辦法,另覓其他更簡單的研究方式。

情緒引導著你的思考

我在第二章提過,人類思維的根本基礎受制於固定腳本,情緒則是更有彈性、能應付各種新處境的後起之秀——這套觀念同樣適用於物理學:情緒能引導你根據一些記載了目的和經驗的意識及潛意識思考過程(你可能從未察覺這些是怎麼記錄下來的),選擇用哪一條數學路徑來探討問題。

就像古時候的探險家大多憑藉知識結合直覺尋路、橫越曠野,物理學家不僅仰賴數學理論,也依從感覺:偉大的探險家在決定繼續推進時,通常拿不出像樣的理由支持他的選擇,而物理學想必偶爾也會受到一些「非理性」衝動的刺激,繼續跟那些艱澀的數學計算周旋到底。

-----廣告,請繼續往下閱讀-----
就像古時候的探險家大多憑藉知識結合直覺尋路、橫越曠野,物理學家不僅仰賴數學理論,也依從感覺。圖/Pixabay

如果最精確、將分析算計發揮到極致的思考活動都需要情緒調和,方能成功,那麼,若說你我的日常思考與決定也同樣深受情緒影響,想來就不令人意外了。在我們的一生中,鮮少有清晰明確的途徑或行動可供選擇,我們多半根據種種複雜的環境條件、事實、風險、可能性和不完整的資訊做出抉擇。

我們的大腦會處理、分析這些數據資料,算出心智與身體的應對方式。正如同我父親那晚在鐵絲圍籬前猶豫是否該加入同伴,大多數人在做決定時,也會相當程度受到情緒影響、做出很難單憑邏輯解釋的結論。接下來,我們會讀到情緒對心智解析的重要影響——其影響有好(如狄拉克的例子)有壞(請見下一則故事)——,明白箇中含意。

  1. 狄拉克的生平故事大多出自葛拉漢.法梅洛(Graham Farmelo)The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom (New York: Perseus, 2009), 252–63.
  2. Ibid., 293.
  3. Ibid., 438.

——本文摘自《情緒的三把鑰匙:情緒的面貌、情緒的力量、情緒的管理-情緒如何影響思考決策?》,2022 年 8 月,網路與書出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
大塊文化_96
11 篇文章 ・ 13 位粉絲
由郝明義先生創辦於1996年,旗下擁有大辣出版、網路與書、image3 等品牌。出版領域除了涵括文學(fiction)與非文學(non-fiction)多重領域,尤其在圖像語言的領域長期耕耘不同類別出版品,不但出版幾米、蔡志忠、鄭問、李瑾倫、小莊、張妙如、徐玫怡等作品豐富的作品,得到讀者熱切的回應,更把這些作家的出版品推廣到國際市場,以及銷售影視版權、周邊產品的能力與經驗。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
223 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
1

文字

分享

0
3
1
當情緒像過山車?從亢奮到低落,解碼躁鬱症的真實面貌
PanSci_96
・2024/10/12 ・2253字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

躁鬱症(Bipolar Disorder),正式名稱為「雙向情緒疾患」或「雙極性情感障礙」,是一種讓患者的情緒不受控制地在極度亢奮和極度低落之間擺盪的精神疾病。這樣的情緒變化不僅僅是短暫的起伏,而是持續多天、甚至數週的狀態,對於患者的生活、關係和工作會造成重大影響。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是躁鬱症?

躁鬱症患者的情緒通常經歷兩個極端階段:躁期和鬱期。

在躁期,患者可能會感到無比的精力充沛、自信心爆棚,甚至會有過度樂觀和衝動的行為。然而,躁鬱症不僅僅是「情緒高漲」的表現,在躁期過後,患者往往會經歷嚴重的情緒低谷,進入所謂的鬱期。此時,他們會感到情緒低落、無力感、甚至有自我傷害的傾向。

近幾年大眾逐漸正視精神疾病的影響,許多名人也曾經公開分享他們的躁鬱症經歷,如歌手瑪麗亞.凱莉、演員小勞勃道尼。這些公眾人物的經歷讓我們看到了這種精神疾病的廣泛影響,以及如何對他們的創作、生活和心理造成衝擊。

-----廣告,請繼續往下閱讀-----

躁鬱症的分類與盛行率

根據跨國研究,不論種族、性別或地區,躁鬱症的盛行率約為 1%,這意味著每 100 人中就有一人可能經歷過躁鬱症的發作。如果將所有的亞型計算在內,終生盛行率甚至可能高達 2.4%。躁鬱症的發病年齡通常集中在 20 至 30 歲之間,超過 70% 的患者在 25 歲前就會出現早期症狀。

躁鬱症依照症狀的不同,還可以分為不同的亞型。最常見的分類是第一型和第二型。第一型躁鬱症的特徵是患者會經歷完整的躁期,通常會影響患者的日常功能,甚至需要住院治療。而第二型躁鬱症的躁期則相對較輕,稱為「輕躁期」,但鬱期仍然會對患者的生活造成嚴重影響。

躁鬱症根據症狀可分為不同亞型,最常見的是第一型和第二型。圖/envato

什麼是「躁期」和「鬱期」?

「躁期」和「鬱期」是躁鬱症的兩個主要特徵階段。

躁期: 許多人對「躁」字的理解常常會聯想到「暴躁」或「焦躁」,實際上躁鬱症的躁期,更多的是情緒高昂、亢奮的狀態。在輕躁期(Hypomania),患者會持續數天感到極度精力充沛,無論在工作還是生活中,表現得比平時更有自信和創造力。但問題是,這種情緒亢奮狀態不一定持續太久,躁期可能會逐漸惡化為狂躁期(Mania)。這時,患者的行為可能會變得極端,容易做出無法預測的決定,例如過度消費、縱情娛樂或進行不安全的行為。

-----廣告,請繼續往下閱讀-----

鬱期: 在鬱期,患者的情緒和行為完全反轉。他們會感到無精打采、情緒低落,對任何事物都提不起勁。這時候,患者的日常活動變得困難,注意力和記憶力也會大幅下降,甚至有自我傷害或自殺的傾向。

從外界看來,躁期似乎是一個非常「高能」的狀態,但實際上,躁鬱症的危險之處正在於它的不穩定性。躁鬱症患者在躁期中無法控制自己的情緒與行為,即使感覺自己處於高峰狀態,這樣的「興奮」很可能會導致衝動行為,如不理智的財務決策或人際衝突。

如何應對躁鬱症?

躁鬱症不僅僅是情緒的擺盪,同時也會對患者的生活產生影響:

  1. 無法控制的躁期時間:躁期的長度和強度不是患者能控制的,患者可能從精力充沛的狀態,轉變為難以收拾的混亂局面。
  2. 鬱期的危險性:在躁期過後,進入鬱期的患者常常因為自責或對前期行為的後悔,而陷入更深的低谷,這增加了自我傷害的風險。
  3. 生活質量下降:反覆發作的情緒擺盪讓患者難以享受生活,甚至對快樂的感受也會變得懷疑和恐懼。
  4. 人際關係受損:情緒極端的變化會讓患者難以建立穩定的人際關係,這對於長期支持系統的建立是巨大的挑戰。
  5. 大腦損傷:每次發作對大腦的損害都是不可逆的,長期下來,注意力、記憶力、甚至思考能力都會受到影響。

治療與日常應對方法

對於躁鬱症的治療,藥物和心理治療是兩個不可或缺的部分。穩定情緒的藥物,如鋰鹽,是控制躁鬱症的重要工具。鋰鹽自 20 世紀開始就被廣泛用於躁鬱症的治療,能有效減少躁鬱症的復發風險。如果患者正處於躁期,醫生還可能會使用抗精神病藥物來幫助控制症狀。

-----廣告,請繼續往下閱讀-----

除了藥物治療,心理治療同樣重要,特別是在症狀穩定後,透過心理治療,患者可以學習如何識別躁鬱症復發的早期徵兆,以及如何調適壓力和情緒。

心理治療可以幫助患者學習識別躁鬱症復發的早期徵兆,並有效調適壓力和情緒。圖/envato

如何支持身邊的躁鬱症患者?

身為躁鬱症患者的家人或朋友,了解如何在不同的情緒階段支持患者是關鍵。在躁期時,避免硬碰硬,而是試著將患者的注意力引導到安全的活動上;在鬱期時,提供非批評的陪伴,讓患者感受到被理解與支持。

躁鬱症是一種需要長期管理的疾病,但這並不意味著生活的希望就此消失。許多躁鬱症患者在接受治療後,依然能過著豐富充實的生活,並在自己的專業領域中發揮才華,擁有幸福的人生。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
AI 可以幫你聽懂老婆的情緒了?AI 情緒理解原理解密!
泛科學院_96
・2024/07/01 ・510字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

讓電腦理解人類情感,一直是許多科學家關注的議題。那你知道現在 AI 已經學會人類情緒的辨識了嗎?

所以我們這集就來講講:

  1. AI 如何理解人類情緒
  2. AI 如何生成情緒語音
  3. 世界上第一款具有同理心的 AI 對話工具 Hume

那麼我們就開始吧!

最後,你覺得 AI 情緒辨識能拿來做什麼呢?

  1. 就陪我練英文而已吧
  2. 挖賽這樣我就有女友翻譯器啦
  3. 開始想跟 AI 談戀愛
  4. 其他也歡迎留言分享喔

如果有其他想看的 AI 工具測試或相關問題,也可以留言發問~

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 53 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!