0

0
0

文字

分享

0
0
0

皮亞諾誕辰 │ 科學史上的今天:8/27

張瑞棋_96
・2015/08/27 ・1027字 ・閱讀時間約 2 分鐘 ・SR值 569 ・九年級

1854 年,兩顆丟到數學之池的石子,激起了不斷擴散的漣漪,對現代數學的發展產生巨大的影響。

一是英國數學家布爾發明布爾代數(或稱布林代數),將自亞里斯多德以降,超過兩千年歷史的邏輯學改用明確的數學符號表示,還賦予可以判定命題真假的運算規則。自此數學家們紛紛致力於建立符號化的邏輯系統,而衍生出全新的數理邏輯。

另一個則是德國數學家黎曼發表了超越平面幾何的黎曼幾何,推翻歐幾里得兩千年來無庸置疑的平行公設。自此數學家們不得不回頭檢視向來視為理所當然的基本觀念與定義。例如算術中最基本的自然數如何定義?啊不就「1、2、3、4、5、……,以此類推」?但這樣並未定義如何類推,無法保證涵蓋範圍,因此是無法被數學家接受的。

1889 年,義大利數學家皮亞諾(Giuseppe Peano, 1858-1932)發表了影響深遠的「皮亞諾公設」。他仿效布爾發明邏輯符號,只用 0 與「後繼數」這兩個概念,就簡潔地賦予自然數嚴格完整的定義。當自然數的概念建立起來,就可以以它為基礎,嚴密地定義整數、有理數、實數,現代分析學才得以展開。

-----廣告,請繼續往下閱讀-----

皮亞諾公設若以文字表達,可以整理成下列五條:

  • 0 是自然數;(當時仍把 0 當成自然數)
  • 如果 a 是自然數,則 a 的後繼數也是自然數;
  • 0 不是任何自然數的後繼數;
  • 如果兩個自然數的後繼數相等,則這兩個自然數相等;
  • 如果有一個自然數的集合 S 包含 0,同時,任一個自然數只要在 S 之中,它的後繼數也一定在 S 之中的話,則 S 包含所有自然數。

其中第五條公設可以用骨牌來比喻:有排望不見盡頭的骨牌,如果知道第一張骨牌會倒,同時其中任一張骨牌倒下也會使下一張倒下的話,那麼這列骨牌全部都會倒。這條公設首度賦予數學歸納法邏輯基礎,自此數學歸納法才成為數學證明的普遍方法;沒有它,一大堆定理就都無法成立。

皮亞諾公設的影響無遠弗屆,幾乎所有重要的數理邏輯和現代集合論的定理都直接或間接與它有關。羅素就是在 1900 年的第一屆國際哲學會議上遇見皮亞諾,得知他的傑作後才受到啟發,決心仿效皮亞諾的作法,而與懷海德花了十年時間撰寫出曠世巨著《數學原理》,試圖從頭打造一個「形式化」的數學體系。後來哥德爾以「不完備定理」粉碎羅素等人的夢想,關鍵也在於皮亞諾公設,不過這已是後話了。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 959 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
198 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
2

文字

分享

0
1
2
不用數字的數學還會是數學嗎?一窺當代抽象數學的面向——《不用數字的數學》
經濟新潮社
・2022/09/26 ・2865字 ・閱讀時間約 5 分鐘

  • 文/游森棚|臺灣師範大學數學系教授

讀者手上的書是一本非常特別的數學科普書。

這本書談的數學,會和絕大部分讀者心中的「數學」非常不一樣,也和絕大部分的數學科普書非常不一樣。一言以蔽之,這本書用淺顯的語言介紹現代高等數學中幾個抽象的核心領域:拓樸、分析、代數,最後提及數學的哲學基礎、建模與自動機。所有篇章都談「概念」,都沒有「數字」。

這本書談的數學所有篇章都談「概念」,都沒有「數字」。圖/Pixabay

沒有數字的數學是數學嗎?!

讀完初稿,不禁啞然失笑,回憶起自己年輕時在數學系的惶恐與不知所措。僅僅一個月我就發現大學的數學和高中數學「很不一樣」。高中數學範圍有限,目標是解設計好的題目:不要有計算失誤,快速地解題得到正確的答案。但是大學的數學範圍茫茫無際,大一的微積分(Calculus)與線性代數(Linear Algebra),除了像高中數學一樣的計算與解題,更多的是要求理解與論證。我在這兩門課的證明題中掙扎前行,不知不覺進了大二。

然後我就在大二的高等微積分(Analysis)與代數學(Algebra)卡關了。這兩門課是數學系真正的入門課程,幾乎沒有像高中數學一樣的計算題,而是一整片的理論。前面沒弄懂,後面就根本無法前進。簡單來說,這兩門課從課本內容、習題、到考試,全部是證明題。我可以整個下午在書桌前,只為了想弄懂從這一行到下一行的理由。一道敘述只有十幾個字的習題,可以耗掉好幾天,而且還做不出來,更糟的是書後面還沒有答案。同學們互相自嘲,一本薄薄的課本可以讀這麼久,真的太划算了。

-----廣告,請繼續往下閱讀-----

我原以為這兩門課已經嘆為觀止,但到了大三時,修了一門更誇張的課,叫做拓樸學(Topology)。幾百頁的課本中沒有任何數字(數字只出現在頁碼、定理標號、足碼)。每星期連續幾堂課老師寫滿七、八個滿滿的黑板,可以完全不出現任何一個數字。我們一路顛簸,掙扎忍耐到快要學期末,然後老師很興奮地預告,下學期,在書本的後半,我們將會證明 Jordan Curve Theorem 這個大定理:這個定理是說,你拿筆在紙上畫一個圓,會把紙分成兩部分,「圓內」和「圓外」。台下同學一片譁然,這能不譁然嗎!我簡直矇了,那一瞬間,我覺得我在外星球上……

這是數學嗎?!

Jordan Curve Theorem 定理是說,拿筆在紙上畫一個圓,會把紙分成兩部分,「圓內」和「圓外」。圖/Pixabay

「數學」研究的是純粹的論證與推理

是的,這是數學。經過大學數學系,我知道從定義出發,純粹的論證與推理,推出夠一般的結論,是數學理論發展的步驟。而論證與推理,才是數學的核心本質。數學和其他學門非常不同,數學是一步推一步的,要下結論必須要有理由。「論證」與「推理」在數學各個不同的主題或領域上所佔的份量不盡相同,但這個本質不會改變。即使是小學的九九乘法表,三七是二十一也是有理由的。

即使是小學的九九乘法表,三七是二十一也是有理由的。圖/Pixabay

如果我們抽離出最根本的概念,數學就是在研究形狀,研究變化,研究結構,應用之以解決實際問題,資訊時代又賦予數學新的觀點與力量。

-----廣告,請繼續往下閱讀-----

用數學專業的語言來說,數學研究形狀,就是「幾何學與拓樸學」;數學研究變化,就是「分析學」;數學研究結構,就是「代數學」;數學解決實際問題,就是「應用數學」;數學與資訊結合,就是「離散數學」。這幾個領域,就是當代數學這棵參天大樹的幾個主幹。

作者的野心藏在這本書中

這正是本書的內容。這本書的五個章節中,第一章是拓樸學(形狀),第二章是分析(變化),第三章是代數(結構),第五章是建模(應用數學與離散數學)。數學既然是一步推一步,根基是否穩固就很關鍵,這個部分穿插在第四章的基礎(數學基礎與數學哲學)。

由此可看到作者的野心非常宏大——他想要在一本小書中一網打盡介紹數學的各個主幹。這當然是不可能的,因此本書作者相當努力,在每一章中,盡量選取那些可以用口語解釋概念的主題材料。在解釋的過程中,盡可能貼近讀者的生活經驗,或是藉由各式各樣生活上的例子來讓讀者體會數學的概念。

要對一般讀者講解抽象的高等數學,細節與精確定義是不可能講清楚的。但是既然只抽離出概念,還是有機會在概念上讓讀者體會的。一個簡單的例子如下:三角形、橢圓、長方形、叉叉,這四個東西哪一個「看起來跟別人最不一樣」?很顯然就是叉叉,這個小朋友都能做。但這樣的直覺,就已經碰觸到拓樸學中的核心概念了,這正是本書第一章的第一部分要介紹的內容。所以很容易理解吧!讀者如果想學嚇人的專業術語,我來註解如下:三角形、橢圓、長方形是同胚的(homeomorphic),但是叉叉和它們不同胚。

-----廣告,請繼續往下閱讀-----
一個簡單的例子如下:三角形、橢圓、長方形、叉叉,這四個東西哪一個「看起來跟別人最不一樣」?圖/Pixabay

書中有些材料作者介紹得非常精妙,即使以我專業數學家的眼光來看,都覺得眼睛一亮,比如對稱群、自動機、物理基本粒子等等。既然作者原來的想法就是用口語敘述介紹高層次的概念,讀者就不要有壓力,當作有趣的故事書來讀,會有驚喜的發現:重複圖案的壁紙本質上只有十七種、數學中不同的主義、連續與離散真的天差地遠……

宏觀與有趣的文筆,道出數學的精妙

最後再回到讓全班譁然的 Jordan Curve Theorem。到了研究所後我才知道為什麼這個定理這麼特別─這是平面獨有的一個特別性質。到了三維空間中的流形(manifold)事情就變得非常複雜,讀者可以查「Alexander horned sphere」看看有多詭異。至於什麼是「維度」和「流形」,可以看這本書的第一章……

我欣見這本書的出版,也佩服作者的宏觀與有趣的文筆,把數學某些本質層面藉由適當的選材呈現出來。但數學何其浩瀚,不管是哪個主幹,本書提及的材料都還只是很小的部分,茫茫數學大海,還有非常多新奇的事物。但囿於篇幅與主題限制,許多重要的領域本書沒有碰觸,是較為可惜之處。但這是我太苛求了,本書的視野和高度在數學科普書中是非常少見的,碰觸到的領域已經非常廣闊,足以讓讀者對數學有完全不同的認識與體悟。

無論如何,希望本書能開一扇門,引領有緣的讀者或未來的數學家,體會當代數學的面向,從而進入數學的嚴肅、深邃與美麗。

-----廣告,請繼續往下閱讀-----

——本文摘自《不用數字的數學:讓我們談談數學的概念,一些你從沒想過的事……激發無窮的想像力!》,2022 年 9 月,經濟新潮社,未經同意請勿轉載。

經濟新潮社
4 篇文章 ・ 4 位粉絲

0

1
3

文字

分享

0
1
3
愛因斯坦建構重力方程式,背後的「藏鏡人」是幾何學家?
研之有物│中央研究院_96
・2019/10/26 ・4280字 ・閱讀時間約 8 分鐘 ・SR值 531 ・七年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯/郭雅欣,美術編輯/林洵安

愛因斯坦的廣義相對論中,以重力方程式來描述時空中的物質如何影響整個時空的幾何,顛覆了牛頓的古典時空概念,並成為廣義相對論的核心。科學家用重力方程式預測了黑洞存在、宇宙膨脹、重力波等等現象,後來一一獲得驗證。

不過,在愛因斯坦建構重力方程式的過程,幾何學家在背後擔任著「藏鏡人」的角色……中研院數學所研究員鄭日新,在 2019 年院區開放日的科普演講「幾何學–重力研究的好幫手」,跟民眾暢談愛因斯坦與幾何學家的故事。

先別管相對論了,你真的懂幾何學嗎?

大家都聽過「一個成功的男人,背後一定有個偉大的女人。」但你應該沒想過,一個成功的物理學家,背後可能有著好幾個偉大的幾何學家──愛因斯坦在重力方程式上的成功,就是一個經典的例子。2

-----廣告,請繼續往下閱讀-----

愛因斯坦「驚人」的重力方程式,是建立在度規張量、最小變分方法等等幾何學成就之上。 圖說設計/黃曉君、林洵安 圖片來源/維基百科

「幾何學,不就是數學課上教過的那些三角函數、充滿各種性質的各種圖形?怎麼會跟相對論扯上關係呢?」

我們一般認知的幾何屬於「歐氏幾何」,是以西元前 330~275 年古希臘數學家歐幾里德所撰寫的《幾何原本》做為基礎,歐氏幾何的一切性質都是建立在平面上的。但近代許多數學家紛紛找出不同的幾何,例如:建立在球面上的正曲面幾何、馬鞍形狀曲面上的負曲面幾何等等。其中一個突破性的概念,就是黎曼於 19 世紀中葉提出的「黎曼幾何」。

黎曼幾何中,所有度量的幾何量和選取的座標無關,例如兩點間的「長度」,是存在於黎曼幾何的內在性質,而不是我們一般認為的從外觀去判斷、測量而得。

-----廣告,請繼續往下閱讀-----

黎曼幾何這個「和座標無關」的特性,後來成為愛因斯坦重力方程式誕生的重大關鍵。

伯恩哈德·黎曼 (Bernhard Riemann,1826~1866) 年德國數學家,黎曼幾何學創始人。黎曼幾何中,所有度量的幾何量和選取的座標無關,成為愛因斯坦發展廣義相對論最重要的數學工具之一。 圖片來源/維基百科

不受座標影響的重力

愛因斯坦在 1905 年完成狹義相對論後,便一直想解決重力的問題。在牛頓所發展的古典力學中,空間中的質量分布會產生重力場,也就是一旦知道了空間中每一點的質量分布,就能找出每一點的重力位能。

然而,如果將愛因斯坦的狹義相對論加入考量,立刻產生問題。狹義相對論為了解決光速恆定,推導出質量會隨著速度而改變,這意味著,當兩個人所在的慣性座標不同——例如一人靜止於地面,另一人在等速前進的火車上,兩人看待的物體質量也會不同。

那麼,宇宙中的質量分布及重力場,不就會受到座標的不同影響了嗎?

-----廣告,請繼續往下閱讀-----

由於在愛因斯坦發展重力理論之前,著名的數學物理學家馬克士威 (James Clerk Maxwell) 已經在 19 世紀中葉提出完整的電磁學理論──馬克士威方程式組。這組方程式不論在任何慣性座標下,數學形式都不會改變,稱為符合「勞倫茲轉換」(Lorentz transformation)。

因此愛因斯坦深信,重力理論一定也有符合某種廣義的勞倫茲轉換的方程式,不會因為座標改變而不同。於是,愛因斯坦踏上了尋找重力方程式的路程。

重力場和因電磁感應而產生的電場類似,其存在只有相對的意義。因為對於一名從屋頂自由落下的觀測者而言,至少在他的附近,重力場並不存在。——愛因斯坦

黎曼幾何裡的寶藏

愛因斯坦以一個二階張量來描述質量分布,此二階張量是一個四乘四的對稱矩陣,包含了 10 個分量,速度、動量等等項目都能含括進去,才能完整的描述質量分布。

牛頓古典力學中,質量分布是重力場(位能) 二次微分的結果,所以愛因斯坦希望能找到另一個(也必須是二階) 張量,其二次微分可以得到描述質量分佈的張量,此外又符合某種廣義的勞倫茲轉換。

-----廣告,請繼續往下閱讀-----

他找了自己的大學同學格羅斯曼 (Marcel Grossmann) 幫忙,格羅斯曼的研究專長是黎曼幾何。如之前所說,黎曼幾何的一大特點便是度量與座標無關,建立在稱為「度規張量」的基礎上。

因此,如果能從黎曼幾何中找到符合所需的張量,或許就能完成愛因斯坦想要的「不隨座標改變的重力方程式」。

你一定要幫我,不然我要瘋了!——愛因斯坦給格羅斯曼的信

馬塞爾·格羅斯曼 (Marcell Grossmann,1878~1936 年),猶太數學家,愛因斯坦的大學同窗和好友,專長是黎曼幾何,建議愛因斯坦將黎曼幾何中的里奇曲率張量納入重力方程式。 圖片來源/維基百科

格羅斯曼翻閱圖書館的資料後,發現在黎曼幾何中有一個「里奇曲率張量」(Ricci curvature tensor),剛好符合愛因斯坦的需求。於是愛因斯坦把它納入方程式,於 1912、1913 年和格羅斯曼共同發表,並試著以這個方程式解決當時困擾科學家許久的「水星近日點進動之謎」。

-----廣告,請繼續往下閱讀-----

行星是以橢圓軌道在繞行太陽的,太陽就位於橢圓軌道的其中一個焦點,而軌道上最靠近這個焦點的位置,就是行星的近日點。

不過行星的軌道並非完全穩定的,軌道本身也會慢慢的旋轉,也就是近日點的位置會一點點的改變,每一次行星繞到近日點時,位置都會和上一次有些許不同,稱為「進動」。

相較於多數行星的進動幅度都在每一百年 10 角秒以內,水星的近日點進動的幅度多達每一百年 43 角秒,牛頓所發展出的天體運動學一直無法解釋這個現象。

「當時的重力方程式雖然還沒有完整,但已經可以解決水星近日點進動之謎。」鄭日新繼續說故事:「不過,愛因斯坦當時並沒有成功解釋,可能是……他算錯了。」

-----廣告,請繼續往下閱讀-----

總之,愛因斯坦的方程式還未完整,旅程還沒有結束。

重力方程式的最後一塊拼圖

原來,雖然找到了里奇曲率張量,但它可能只是用來描述重力場的方程式的最高項而已。後面應該還要加上其他項,才能讓方程式完整。

1915 年,愛因斯坦受邀到哥廷根科學院演講,邀請他的是一位幾何學專家希爾伯特 (David Hilbert),在那次見面交流的過程中,希爾伯特得知了愛因斯坦正在推導重力方程式。

接下來,希爾伯特也投入了尋找重力方程式的工作,並在一次信件往返中,向愛因斯坦提出可以利用變分方法最小作用量原理,來推導出完整的重力方程式。

-----廣告,請繼續往下閱讀-----

大衛·希爾伯特 (David Hilbert,1862~1943年),德國數學家,19 世紀和 20 世紀初最具影響力的數學家之一,建議愛因斯坦以變分方法和最小作用量原理,推導完整的重力方程式。 圖片來源/維基百科

愛因斯坦於該年 11 月,發表了完整的重力方程式。由於希爾伯特也幾乎是同一時間提出了重力方程式,對於第一個找出重力方程式的人究竟是誰,也引起了許多討論。但可以確定的是,希爾伯特在數學上提供的協助,是重力方程式能成功誕生的一大關鍵。

哥丁根街上任何一個小孩對於四維幾何的了解都要強過愛因斯坦,儘管如此,做出廣義相對論的是愛因斯坦,而非數學家!——希爾伯特

從格羅斯曼到希爾伯特,幾何學一直在愛因斯坦研究重力方程式的過程中,擔任關鍵且不可或缺的角色。身為數學家的鄭日新,對於數學時常在物理研究提供重要協助,有怎樣的看法呢?

鄭日新,中研院數學所研究員,在 2019 年院區開放日的科普演講「幾何學–重力研究的好幫手」之中,與民眾暢談愛因斯坦重力方程式背後幾何學家的重大貢獻! 攝影/林洵安

您會怎麼形容幾何學在宇宙中所扮演的角色?

幾何學有點像宇宙的「法身」,這是宗教的用語,就是描述這個真正世界背後的道理,用的是數學的語言。我們看得見這個世界,但我們看不見數學語言,幾何學就是這樣隱藏在宇宙的道理之中。

許多數學概念最初只是純理論,後來卻在真實世界找到應用,您怎麼看?

因為如此,所以我們做理論的,有時候不太相信那些從數學公式推導出來的東西真的有物理意義。像重力波一開始被提出時,許多人都保持懷疑的態度,總覺得是從數學公式預測出來的,雖然理論上只要愛因斯坦的重力方程式是對的,應該可以測得到重力波。

但在真實的物理世界是不是真的有意義?真的有這樣的東西存在呢?我們無法確定。

後來天文觀測慢慢發現,宇宙中有許多中子星、黑洞等大質量天體,有些是以雙星的系統彼此繞行,才讓我們漸漸相信可能檢測得到重力波,後來也真的偵測到重力波的存在。

站在數學家的視角,您覺得宇宙是什麼樣子?

現在一般天文學家相信宇宙是膨脹的,無限且沒有邊界,但我喜歡「宇宙是有限但沒有邊界」這樣的說法。就像一個三維的球,也可以膨脹,它沒有邊界,但是有限的。

在數學上如果曲率夠大,是可以推論出宇宙是「有限無邊」的。而我們知道幾何學上的曲率,可以從愛因斯坦的重力方程式解釋成物理上的質量分布。

所以,如果我們能夠觀測到宇宙深處有很多稠密的質量分布,很可能宇宙真的是有限無邊的。

對於近代的科學研究中,數學或幾何學是否也可能扮演愈來愈重要的角色?

幾何學或數學不會只對重力有幫助,尤其是幾何學,它的核心是希望有一個觀念可以應用廣泛,或是統一解釋各種不同的現象。我覺得幾何學對生命科學也可能有幫助,只是生命科學的發展可能還很零散。

不過,就像早期科學家對於各種電、磁的現象也是零散的發現、研究,後來才慢慢統合成馬克士威方程式,或許未來生命科學的研究也會慢慢綜合起來,然後有人看出裡面好像有某個數學觀念,可以做為基礎來建立一個統一的理論。

如果是這樣,很可能那個「好的觀念」在數學裡已經有人建立了,正在靜靜等待下一個愛因斯坦來發現。

本文轉載自中央研究院研之有物,原文為〈幾何學-愛因斯坦重力研究的好幫手〉泛科學為宣傳推廣執行單位

研之有物│中央研究院_96
296 篇文章 ・ 3465 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook