有兩組獨立的研究團隊,分別利用錢卓X射線觀測衛星(Chandra X-ray Observatory)和其他望遠鏡,繪製23億光年遠的Abell 383星系團周圍的暗物質(dark matter)立體分佈圖,不僅可清楚看到暗物質在天空中橫向的2維空間分佈,還有沿著視線方向的第3維分佈狀況,因此可獲得此處暗物質精確總質量的訊息。
暗物質是宇宙中的謎樣物質,不吸收也不發射任何可見的光,僅能藉由它與其他物質的重力交互作用來瞭解暗物質的性質。有許多證據顯示宇宙中暗物質的量是一般可見的普通物質,或稱重子物質(baryonic matter)的6倍左右。因此,若能瞭解這些神秘物質的性質,或許可以解決某些天文物理學上發現的問題。
星系團是宇宙中規模最龐大的重力結構,對暗物質和宇宙學等研究領域舉足輕重。Abell 383星系團位在波江座方向,距離約25億光年(z=0.189)。這兩組研究團隊將錢卓的X射線觀測料與各望遠鏡的可見光資料結合,以便從普通物質的重力透鏡資料來瞭解暗物質分佈狀態。其研究結果都發現Abell 383周圍的暗物質分佈呈美式足球(橄欖球)狀,而不是像籃球這樣的圓球狀,而且其中橄欖球兩個突出尖點的連線朝向,恰好接近視線方向。右上圖中,錢卓的X射線資料(紫色)顯示的是星系團中的熾熱氣體,是星系團中最主要的普通物質;星系的可見光影像(藍色和白色)則分別來自哈柏太空望遠鏡(Hubble Space Telescope, HST)、超大望遠鏡(Very Large Telescope,VLT)和史隆數位巡天(Sloan Digital Sky Survey,SDSS)。
重力透鏡效應(gravitational lensing effect)最早由愛因斯坦提出,遙遠的背景星系所發出的光,會受到星系團的普通物質與暗物質共同組成的龐大質量影響而彎曲,在星系團某部分被扭曲的比較嚴重而形成一些光弧,在星系團另外一些部分扭曲的比較輕微。從不同部分的背景星系扭曲程度,再扣除可見光影像中所見的普通物質,便可估算星系團中的暗物質分佈。其中,星系團中心一帶由於質量最為集中,因此能提供的暗物質線索也愈重要。
由以色列特拉維夫大學(Tel Aviv University)Andrea Morandi等人組成的研究團隊,以HST的重力透鏡影像進行研究,結果顯示愈往星系團中心、暗物質的密度愈大,這個結果與絕大部分的理論模擬結果相同。
而由美國加州理工學院(California Institute of Technology)Andrew Newman等人組成的研究團隊,則利用HST和位在夏威夷的日本昴望遠鏡(Subaru)、凱克望遠鏡(Keck)等觀測資料,測量星系團中心的星系內的恆星速度,以便估算此處的物質量。他們發現星暗物質含量並沒有隨著接近星系團中心而有劇烈的改變,與標準冷暗物質模型( standard cold dark matter model)預測結果不符。
這兩個研究團隊有這樣截然不同的結論,極可能是因為選用的資料型態不同、所使用的數學模式不同等因素造成的。其中一個重要的差異,是因為Newman等人的團隊使用的是星系團中央星系的速度資料來估算暗物質密度,但這種方式只能獲得星系團中心方圓6,500光年以內範圍的訊息;而Morandi等人的分析計算方式則無法瞭解星系團中心方圓80,000光年以內的狀況。
另一個重要的差異是Morandi等人使用一個比較精細的3D暗物質分佈圖模型,可以估算暗物質空間分佈的「朝向」,結果顯示其空間分佈類似橄欖球狀,幾乎其中長軸方向幾乎側向地球,不過還是稍微向視線方向傾斜。
這兩組研究所呈現的差異,或許在未來的其他觀測中能得以適切解釋。如果Abell 383星系團中心區暗物質密度未如預測大的現象被證實為真,則可反過來讓天文學家進一步瞭解星系團中心區一帶普通物質的行為模式,或是可顯示暗物質粒子可彼此交互作用這樣與現行理論衝突的物理現象。
資料來源:Abell 383:Getting a Full Picture of an Elusive Subject[2012.03.14]
轉載自台北天文館之網路天文館網站