5

11
2

文字

分享

5
11
2

815全台大停電,你搞清楚發生什麼事了嗎?

PanSci_96
・2018/08/15 ・3054字 ・閱讀時間約 6 分鐘 ・SR值 533 ・七年級

-----廣告,請繼續往下閱讀-----

2017 年 8 月 15 日下午 16:51 起,在臺灣各地發生的大規模無預警停電,全台灣共 17 個直轄市、縣市共約 592 萬戶用電受到影響。當天的分區停電直至晚間 21:40 才正式解除。到底發生了什麼事?真的是因為台灣缺電嗎?電力系統調度到底做了什麼呢?

事件起因

當天下午當時發電量 438.42 萬瓩(佔當時發電能力的 11.94%)的大潭電廠,來自中油的天然氣供應突然中斷,導致六部機組跳機,整體電力供應瞬間減少近百分之十二。

全台瞬間少了百分之十二的供電,然後呢?

電力系統的運作,需要供應方(發電廠)與負載方(電力用戶)達成供需平衡。當天大潭電廠跳機瞬間減少電力供應,系統上的用戶不可能自動降低需求(又不知道有事故發生了),因此整個電力系統就出現了嚴重的供需不平衡。

發電不夠的情況下,電力系統會由還在線上的發電機組汲取更多的能量以供給用戶──但如果這些機組負荷不了,很有可能也會跟著跳機,從而造成電力系統進一步崩潰。而判斷電力系統穩定程度的一個重要依據,就是電力系統內的「頻率」。如果發電機組負荷太大,發電機組的轉速會變慢,而造成電力系統的頻率下降。

-----廣告,請繼續往下閱讀-----

16:51「低頻卸載」自動執行

現行台灣的交流電系統維持的頻率為 60 Hz,電力系統上裝有電力保護裝備「低頻電驛」在偵測到發電頻率降低到一定程度時,就會自動執行「低頻卸載」:系統自動切斷一部分用電,以維持電力系統的穩定──這也就是第一波無預警斷電的由來。

低頻電驛於 16:51 分自動啟動,卸載了 336 萬瓩,影響約 154 萬戶。低頻卸載再加上緊急調度抽蓄機組(水力發電),電力系統頻率於 16:58 恢復穩定。好的,現在看起來系統不至於崩潰了(汗),如果你是電力系統的調控者,接下來該做什麼呢?

還有用戶在斷電中,系統缺了大約三百多萬瓩的電力,當然是把能打開的發電系統通通打開啊!(還有搞清楚大潭到底怎麼回事)

18:00-21:40「分區限電」恢復發電能力

但對所有人來說很不幸的,發電機組跟家用電器不同,並不是按個開關就完成開機了。(嗚嗚嗚)

-----廣告,請繼續往下閱讀-----

視不同的發電種類,有些能配合開機,有些老天不賞飯吃也沒辦法,還有些開個機就需要至少半天的時間。而就算只是想要提高輸出功率,需要時間;發電機組從頭開機,需要時間;將電力併聯上網,需要時間。被「斷氣」的大潭電廠也需要時間檢查才能從頭啟動、完成併聯發電。

因此這時需要時間才能讓發電能力提高到足以供給所有用戶的需求──明顯不夠用時就只能實施「分區限電」。在這個階段中,被分為 A-F 組別的用戶會依情況輪流停電,每區限電以 50 分鐘為限,直到供電能力回復。

  • 覺得以上的說明不夠動感嗎?你可以看看以下影片。

在停電之後:你可能想知道的幾個關鍵字

815 大停電的影響十分廣泛,光是受困電梯的案例就高達 900 多件。除了檢討中油換個開關就可以放倒全台的電力供應(真的沒有007入侵大潭嗎),亦有人開始檢討目前的能源政策是否使得電力系統的備用與備轉不夠充裕。在討論這個部分之前,我們需要來一點名詞解釋。

備用容量:通常指電力系統中較為長期(如一整年)的發電能力與預期尖峰時間負載的電力需求差額,規劃時須將機組的維修、老化等狀況納入考量。這部分會跟機組配置、投資供電成本的預算規劃有很大的關聯。

備轉容量:指當天可以調度的發電能力的與尖端負載的餘額。這部分除了跟備用容量規劃時提供的機組數量有關,還與各機組安排歲修、保養的時程有關。

關心電力供需的夥伴或多或少都知道,近年來每逢夏天最火熱、用電最吃緊的時節,大家都會眼巴巴的注意台電的尖峰備轉容量率(這裡讓你知道今天是多少),唯恐進入限電的地獄之中啊啊啊。

-----廣告,請繼續往下閱讀-----

所以如果砸大把銀子提高備轉容量率,815 就不會大停電了嗎?

嗯這個,其實只大概回答了一半的問題。在 815 大停電的情境中,斷電當時的備轉容量率是 5.51 % (203萬瓩,當天在尖峰只有 3.17 %),而大潭電廠跳機瞬間損失了超過一成的供電──所以在當時的情境下鐵定不夠用。

而即使備轉容量率提高至 15 % 好了(近年尖峰備轉容量都在 6% 左右徘徊),也並不代表在這種瞬間失去一成電力的狀況下就不會停電或者可以達到快速復電──這與發電機組的特性有關。所有的發電機組,無論是由啟動到併聯至電網,或是已在線上提高輸出功率也還是需要時間──需要多少時間完全看機組的特性。

所以如果當時有餘裕的機組無法快速反應,後面幾個小時的分區限電也是無法避免的。到這裡一定有人想到了,所以為了避免有意外發生,應該要安排有快速反應能力的備轉 stand by 才對吧!

對的,目前技術除了了水力發電可以在幾分鐘內上線(但能負擔的發電量很低),另外一個選擇則是可以在兩個小時內滿載的燃氣發電──事實上,這正是大潭電廠起初設置規劃的角色3,作為中載尖載與緊急時使用的備援電廠。而 815大停電的前夕,雖是非用電尖峰的傍晚時分,但如出事的大潭,與通霄、興達、南部電廠……等具有相對快速升降載能力的燃氣電廠,也都發好發滿,在沒有調度機組的情況下,任何一個環節出了狀況,就導致了無預警斷電,全台一起看星星。(無誤)

-----廣告,請繼續往下閱讀-----
  • 註:下圖資料所顯示各機組從開機至併聯發電、滿載一般性升降之時間,與跳機後滿載所需之時間不同。僅供理解參考,不能完全顯示 815大停電當天機組調度之情況。資料來源:台灣電力公司。
  • 因各機組型式、容量、設計等互異,起動至併聯時間均不同,僅以815事故當天相關機組為代表時程,並非所有機組起動時程均如所列。 (台電資料來源的原始註記)

815 事件時,大潭六部機組於 16:51 跳脫,於 18:51 至隔日 00:50 陸續併聯。
815 事件時,中火五號機於 17:05 跳脫,21:17 併聯。
此資料假設肇始事件為廠外事件造成核能發電機組急停後之再起動,但 815 事件時運轉中核電機組並未停機。

一年過去了,事情有改善了嗎?

事件的起因,在於大潭電廠的天然氣管線僅由單一管線供氣,而且供氣控制系統的設計顯然很有問題,因為操作疏失就關掉了整個管線的天然氣來源……

除了檢討的作業流程,事後中油亦提出短中長期計畫,希望開闢「雙迴路、雙氣源」的第 2 條迴路分散風險,施工期預計約 2 至 3 年。而這項施工原來預計與規畫於桃園觀塘的天然氣第三接收站一同動工,但第三接收站,因涉及藻礁生態爭議,於 7 月 3 日被「環差會議」退回,尚待 9 月份環評大會審議。(詳見這裡這裡

一年後的今天,大潭電廠仍只靠單一迴路供氣……

在意外發生時可以應付衝擊的備轉容量率、以及備轉機組規劃,到今天有進一步改善了嗎?

一年後的今天的尖峰備轉容量率是 6.36%,所有電廠依舊是餘裕很少地努力工作著呢。

行政院的《815 停電事故行政調查專案報告》,有興趣的夥伴可以從中找到更多有趣的細節。

-----廣告,請繼續往下閱讀-----

參考資料:

  1. 行政院:815 停電事故行政調查專案報告
  2. 台灣電力公司
  3. 從大潭、通霄電廠是不是「蚊子電廠」談起燃氣發電甘苦經驗
文章難易度
所有討論 5
PanSci_96
1216 篇文章 ・ 2127 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

8
0

文字

分享

1
8
0
發電量增加 25 倍卻還是不夠用!再生能源是人類未來的救星嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/18 ・1730字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

我們的能源從哪裡來、往哪裡去?

全球每年對能源的需求量相當巨大,若用「瓩時」──即一度電這樣的度量單位──來表示會出現天文數字,因此改用「太瓦時」(TWh)來表示,太瓦時等於 10 億瓩時。

在一八〇〇年,全球約有 10 億人口,當時對能源的需求約為 6000 太瓦時;而且幾乎全部來自傳統的生質能源。到了二〇一七年,全球人口達到 76 億,發電量增加了 25 倍(156000 太瓦時)。

在 2017 年的全球能源使用比例中,煤炭、石油和天然氣等化石燃料占了大約 80 %左右。圖/ Pixabay

下圖顯示在二〇一七年全球主要能源消耗總量的百分比,其中近 8 成為化石燃料。其他再生能源包括風能、太陽能和地熱能,其中成長最快的是風場和太陽光電場。生質能源則主要來自傳統生質能源。

2017 年的能源消耗總量,顯示出不同能源的百分占比。圖/BP Statistical Review of World Energy, 2018; World Energy Council, Bioenergy, 2016

大約有 1/3 的全球能源消耗在將化石燃料轉化為電力精煉燃料上。

-----廣告,請繼續往下閱讀-----

剩下的稱為最終能源需求(final energy demand),是指用戶消耗掉的能源:每年約 10 萬太瓦時。

大約有 10% 是來自開發中國家傳統生質能的熱,22% 來自電力,38% 用於供熱(主要來自化石燃料) 30% 在交通運輸。熱能和電能主要都是用於工業和建築。汽油和柴油幾乎提供了所有用於運輸的燃料。

怎麼做比較不浪費?能量轉換效率大比拚!

我們看到供熱與供電一樣重要。兩者都可以用瓩時為單位,也就是一度電來測量,雖然電可以完全轉化為熱量,例如電烤箱,但只有一小部分以熱能形式存在的能量可以轉化為電能,其他的必然會散失到周圍環境裡

在火力發電廠中,存在於化石燃料中的化學能會在燃燒後轉化為熱能。這會將水加熱,產生蒸汽,蒸汽膨脹推動渦輪的葉片,轉動發電機。只有一部分熱量被轉化成電力;其餘的熱量在蒸汽冷凝,完成循環時,就轉移到環境中,成了殘熱。

這份熱電轉化的比例可透過提升高壓蒸汽的溫度來增加,但受限於高溫下鍋爐管線的耐受度。

-----廣告,請繼續往下閱讀-----

在一座現代化的火力發電廠中,一般熱能轉化為電能的效率約為 40%。若是在較高溫的複循環燃氣發電機組(combined cycle gas turbine,CCGT)裝置中,這個比例可提高到 60%。

同樣地,在內燃機中也只有一小部分的熱量可以轉化為車子的運動能量(動能);汽油車的一般平均效率為 25%,柴油車則是 30%,而柴油卡車和公車的效率約為 40%。

另一方面,電動馬達的效率約為 90%,因此電氣化運輸將顯著減少能源消耗。這是提高效率和再生能源之間協同作用的一個範例,這將有助於提供世界所需的能源。

火力發電沒辦法 100% 轉換熱能變成電能,約有 60% 的損失。圖/envato

再生能源的過去跟未來

在十九世紀末,水力發電的再生資源幫助啟動了電網的發展,在二〇一八年時約占全世界發電量的 16%。而在再生能源──風能、太陽能、地熱能和生質能源──的投資上,相對要晚得多,是在二十世紀的最後幾十年才開始。

-----廣告,請繼續往下閱讀-----

起初的成長緩慢,因為這些再生能源沒有成本競爭力還需要補貼。但隨著產量增加,成本下降,它們的貢獻開始增加。這些其他再生能源發電的占比已從二〇一〇年的 3.5% 上升到二〇一八年的 9.7%,包括水力發電在內,再生能源的總貢獻量為 26%。

不過,就全球能源的占比,而不是僅只是考慮用戶消耗的電力來看,再生能源僅占約 18%,而傳統生質能則提供約 10% 的能量。隨著太陽能和風能的成本在許多國家變得比化石燃料更便宜,它們在總發電量中的占比有望在未來幾十年顯著增加。

這世界花了很長的時間才意識到這一事實,從現在開始,再生能源勢必將成為主要的能源來源。

——本文摘自《【牛津通識課02】再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
日出出版
13 篇文章 ・ 7 位粉絲

1

17
2

文字

分享

1
17
2
發明鬼才與他異想天開的童年歲月——《被消失的科學神人‧特斯拉親筆自傳》
PanSci_96
・2020/12/03 ・2612字 ・閱讀時間約 5 分鐘 ・SR值 479 ・五年級

-----廣告,請繼續往下閱讀-----

編按:尼古拉・特斯拉(Nikola Tesla)是上個世紀的偉大科學家,諸多發明和發現,廣泛應用於後世——旋轉磁場、第一台交流電發電機、特斯拉線圈、第一台無線電發射機、X-ray攝影技術⋯⋯然而在科學作為「謀利工具」的爾虞我詐的市場,特斯拉不敵當時代的競爭對手(如騙術百出的愛迪生電力公司),而顯得沒沒無聞。

近年特斯拉的生平及貢獻重新受到重視,以下為特斯拉自傳中的童年的回憶,讓我們一起看看這位鬼才科學家童趣視野。

尼古拉・特斯拉(Nikola Tesla)照片。圖/《被消失的科學神人:特斯拉親筆自傳》,柿子文化。

搬家對我來說就像是一場災難,要跟舊家的小動物們分離,讓我傷心不已,其中有鴿子、小雞、綿羊,以及隊伍壯觀的鵝群,牠們總是在清晨時分昂首向天朝著飼養場前進,在日落時分排成戰鬥隊形從飼養場回來,那整齊劃一的隊伍,足以讓當今最精良的空軍連隊自慚形穢。

然而,到了新居,看著窗簾外的陌生人,我感覺自己就像是蹲苦牢的囚犯。我是個非常靦腆的小孩,寧願面對一頭獅子,也不願跟那些穿著入時、遊手好閒的城市紈褲子弟打交道。但是我最嚴峻的考驗發生在星期日,這一天我的服裝儀容必須保持整潔,還要參加教會禮拜的服事。

教堂禮拜闖禍,不受歡迎的兒童

有一次我不小心闖了大禍,即使事情過去了那麼多年,只要一想到當天的情景,依舊會血液像陳年優酪乳般凝固那樣地感到心驚膽跳。那是我的第二次教會驚魂記,在那之前不久,我才在一間教堂裡被困了一晚,教堂座落於人煙罕至的深山,一年只去造訪一次。那確實是一次恐怖的經歷,但是第二次的遭遇更糟。

城裡有個女富豪,她是個好人,但喜歡擺架子。她總是盛裝打扮上教堂做禮拜,臉上畫著精緻的濃妝,裙襬拖得老長,有一群僕人隨身服侍打理。某個主日,我一敲完教堂鐘樓的鐘,便急匆匆下樓梯,恰巧碰上這位貴婦大搖大擺走出來,我一個箭步正好踩到她的拖裙。

-----廣告,請繼續往下閱讀-----

接著,響起一陣撕裂聲,聽起來就像是技術生疏的新兵射擊發出的槍響,她的裙襬當場被硬生生地撕裂。我看到父親氣得臉色鐵青,他打了我一巴掌,雖然不是很用力,但這是他第一次體罰我,我到現在都還能感覺到那一巴掌在心裡的力度。我覺得很丟臉也很困惑,筆墨難以形容當時的心情。

經過這次事件後,我等於是社區裡的不受歡迎人物,直到後來發生了一件事,我的名譽才得以平反,使得大家對我另眼相看,重拾尊嚴。

敏銳直覺讓他重拾尊嚴!

一名年輕創業家組織了本地一支消防隊。他採購了全新的消防車和制服,還計畫做一次消防演練和遊行展示。所謂的消防車其實就是一具消防泵浦機組,由十六個壯漢共同操作,並漆上美麗的紅色與黑色。一天下午,官方測試正在準備中,消防機組被運送至河邊,全城的人都蜂擁到河邊想要一睹壯觀的演練場面。所有致詞和儀式都告一段落後,長官下達命令啟動泵浦,但是噴嘴卻噴不出一滴水,現場的教授和專家也束手無策,找不出問題所在,眼看演練就要失敗了。

我當時還沒有任何機械方面的知識,對於氣壓沒有一點概念,但是直覺告訴我是河中的抽水軟管出了問題。我走近看到它塌陷在河中,於是下水將它打開,大量的水突然湧出,將我身上所穿的主日服噴濕了一大片。

阿基米德沐浴時發現浮力理論,當他赤身裸體奔跑過義大利敘拉古(Syracuse)街道,聲嘶力竭高喊「我找到了!」(Eureka)時所引起的騷動,還遠遠不如我當日受到的矚目,那一天我成了英雄,被人們扛在肩膀上,接受群眾熱烈的歡呼。

-----廣告,請繼續往下閱讀-----

捕鴉冠軍手,引來鴉群動怒!

我們一家人在新居安定下來後,我進入師範學校開始了一個四年制的課程(即基礎小學教育),為進入大學或是文實中學(Real Gymnasium,一種中等教育體制,一般為五年級至十年級,高等文實中學則約為高中,但都較偏實科)做準備。這段時期,我仍然繼續我的孩子氣發明,當然也繼續製造麻煩。

此外,我還博得了「捕鴉冠軍手」的響亮名號。老實說,我的捕捉方法很簡單──進到樹林後,便躲在灌木叢後面,模仿烏鴉叫聲。通常,我會先得到幾聲回應,不久之後就會有一隻烏鴉飛到我附近的灌木叢。接下來要做的,就是把一片紙板朝牠丟過去,藉此分散牠的注意力,趁牠飛走逃脫之前,趕緊跳出來捉住牠。然而,一次意外事件讓我不得不對牠們另眼相看。

有一天,我捉到了一對漂亮的烏鴉,正當我和朋友一起往回家的路上走,準備離開樹林時,數千隻烏鴉突然群集在我們頭頂上空,發出恐怖的聒噪聲。幾分鐘後,牠們做出攻擊態勢,將我們兩個團團包圍起來,一開始我還覺得有趣好玩,直到後腦勺遭到一陣攻擊,把我撲倒在地,才覺得不對勁。接著,牠們朝我猛烈攻擊,我只得把捉到的兩隻烏鴉釋放。儘管如此,我還是開開心心地跑去跟朋友會合──他早已經躲到洞穴中藏身了!

被責罵的嗜好,成就偉大的水力發電廠

教室裡有一些讓我感興趣的機械模型,把我的注意力轉到了水渦輪機。我動手製造了許多水渦輪機,從操作中感受到巨大的快樂。若要形容我的人生際遇是何等奇妙,也許可以從這一個小插曲窺見一斑。我的叔叔不喜歡我這類消遣嗜好,所以我不只一次受到他的責罵。

-----廣告,請繼續往下閱讀-----
全球第一座交流電水力發電廠。圖/teslasociety

我曾在書中讀到關於尼加拉大瀑布的描述而為之深深著迷,並在腦海中勾勒想像利用它的澎湃水力運轉的巨大渦輪,我告訴叔叔我將來有一天會去美國實現這個計畫。三十年後,我看到我的發想在尼加拉大瀑布實現成真(一八九五年,特斯拉為美國尼加拉水力發電廠製造發電機組,至今仍是世界知名的水力發電廠之一),也讓我對心智奧祕的深不可測驚歎不已。

——本文摘自泛科學2020年12月選書《被消失的科學神人:特斯拉親筆自傳》,柿子文化,2019年01月。

所有討論 1
PanSci_96
1216 篇文章 ・ 2127 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

5

11
2

文字

分享

5
11
2
815全台大停電,你搞清楚發生什麼事了嗎?
PanSci_96
・2018/08/15 ・3054字 ・閱讀時間約 6 分鐘 ・SR值 533 ・七年級

2017 年 8 月 15 日下午 16:51 起,在臺灣各地發生的大規模無預警停電,全台灣共 17 個直轄市、縣市共約 592 萬戶用電受到影響。當天的分區停電直至晚間 21:40 才正式解除。到底發生了什麼事?真的是因為台灣缺電嗎?電力系統調度到底做了什麼呢?

事件起因

當天下午當時發電量 438.42 萬瓩(佔當時發電能力的 11.94%)的大潭電廠,來自中油的天然氣供應突然中斷,導致六部機組跳機,整體電力供應瞬間減少近百分之十二。

全台瞬間少了百分之十二的供電,然後呢?

電力系統的運作,需要供應方(發電廠)與負載方(電力用戶)達成供需平衡。當天大潭電廠跳機瞬間減少電力供應,系統上的用戶不可能自動降低需求(又不知道有事故發生了),因此整個電力系統就出現了嚴重的供需不平衡。

發電不夠的情況下,電力系統會由還在線上的發電機組汲取更多的能量以供給用戶──但如果這些機組負荷不了,很有可能也會跟著跳機,從而造成電力系統進一步崩潰。而判斷電力系統穩定程度的一個重要依據,就是電力系統內的「頻率」。如果發電機組負荷太大,發電機組的轉速會變慢,而造成電力系統的頻率下降。

-----廣告,請繼續往下閱讀-----

16:51「低頻卸載」自動執行

現行台灣的交流電系統維持的頻率為 60 Hz,電力系統上裝有電力保護裝備「低頻電驛」在偵測到發電頻率降低到一定程度時,就會自動執行「低頻卸載」:系統自動切斷一部分用電,以維持電力系統的穩定──這也就是第一波無預警斷電的由來。

低頻電驛於 16:51 分自動啟動,卸載了 336 萬瓩,影響約 154 萬戶。低頻卸載再加上緊急調度抽蓄機組(水力發電),電力系統頻率於 16:58 恢復穩定。好的,現在看起來系統不至於崩潰了(汗),如果你是電力系統的調控者,接下來該做什麼呢?

還有用戶在斷電中,系統缺了大約三百多萬瓩的電力,當然是把能打開的發電系統通通打開啊!(還有搞清楚大潭到底怎麼回事)

18:00-21:40「分區限電」恢復發電能力

但對所有人來說很不幸的,發電機組跟家用電器不同,並不是按個開關就完成開機了。(嗚嗚嗚)

-----廣告,請繼續往下閱讀-----

視不同的發電種類,有些能配合開機,有些老天不賞飯吃也沒辦法,還有些開個機就需要至少半天的時間。而就算只是想要提高輸出功率,需要時間;發電機組從頭開機,需要時間;將電力併聯上網,需要時間。被「斷氣」的大潭電廠也需要時間檢查才能從頭啟動、完成併聯發電。

因此這時需要時間才能讓發電能力提高到足以供給所有用戶的需求──明顯不夠用時就只能實施「分區限電」。在這個階段中,被分為 A-F 組別的用戶會依情況輪流停電,每區限電以 50 分鐘為限,直到供電能力回復。

  • 覺得以上的說明不夠動感嗎?你可以看看以下影片。

在停電之後:你可能想知道的幾個關鍵字

815 大停電的影響十分廣泛,光是受困電梯的案例就高達 900 多件。除了檢討中油換個開關就可以放倒全台的電力供應(真的沒有007入侵大潭嗎),亦有人開始檢討目前的能源政策是否使得電力系統的備用與備轉不夠充裕。在討論這個部分之前,我們需要來一點名詞解釋。

備用容量:通常指電力系統中較為長期(如一整年)的發電能力與預期尖峰時間負載的電力需求差額,規劃時須將機組的維修、老化等狀況納入考量。這部分會跟機組配置、投資供電成本的預算規劃有很大的關聯。

備轉容量:指當天可以調度的發電能力的與尖端負載的餘額。這部分除了跟備用容量規劃時提供的機組數量有關,還與各機組安排歲修、保養的時程有關。

關心電力供需的夥伴或多或少都知道,近年來每逢夏天最火熱、用電最吃緊的時節,大家都會眼巴巴的注意台電的尖峰備轉容量率(這裡讓你知道今天是多少),唯恐進入限電的地獄之中啊啊啊。

-----廣告,請繼續往下閱讀-----

所以如果砸大把銀子提高備轉容量率,815 就不會大停電了嗎?

嗯這個,其實只大概回答了一半的問題。在 815 大停電的情境中,斷電當時的備轉容量率是 5.51 % (203萬瓩,當天在尖峰只有 3.17 %),而大潭電廠跳機瞬間損失了超過一成的供電──所以在當時的情境下鐵定不夠用。

而即使備轉容量率提高至 15 % 好了(近年尖峰備轉容量都在 6% 左右徘徊),也並不代表在這種瞬間失去一成電力的狀況下就不會停電或者可以達到快速復電──這與發電機組的特性有關。所有的發電機組,無論是由啟動到併聯至電網,或是已在線上提高輸出功率也還是需要時間──需要多少時間完全看機組的特性。

所以如果當時有餘裕的機組無法快速反應,後面幾個小時的分區限電也是無法避免的。到這裡一定有人想到了,所以為了避免有意外發生,應該要安排有快速反應能力的備轉 stand by 才對吧!

對的,目前技術除了了水力發電可以在幾分鐘內上線(但能負擔的發電量很低),另外一個選擇則是可以在兩個小時內滿載的燃氣發電──事實上,這正是大潭電廠起初設置規劃的角色3,作為中載尖載與緊急時使用的備援電廠。而 815大停電的前夕,雖是非用電尖峰的傍晚時分,但如出事的大潭,與通霄、興達、南部電廠……等具有相對快速升降載能力的燃氣電廠,也都發好發滿,在沒有調度機組的情況下,任何一個環節出了狀況,就導致了無預警斷電,全台一起看星星。(無誤)

-----廣告,請繼續往下閱讀-----
  • 註:下圖資料所顯示各機組從開機至併聯發電、滿載一般性升降之時間,與跳機後滿載所需之時間不同。僅供理解參考,不能完全顯示 815大停電當天機組調度之情況。資料來源:台灣電力公司。
  • 因各機組型式、容量、設計等互異,起動至併聯時間均不同,僅以815事故當天相關機組為代表時程,並非所有機組起動時程均如所列。 (台電資料來源的原始註記)

815 事件時,大潭六部機組於 16:51 跳脫,於 18:51 至隔日 00:50 陸續併聯。

815 事件時,中火五號機於 17:05 跳脫,21:17 併聯。

此資料假設肇始事件為廠外事件造成核能發電機組急停後之再起動,但 815 事件時運轉中核電機組並未停機。

一年過去了,事情有改善了嗎?

事件的起因,在於大潭電廠的天然氣管線僅由單一管線供氣,而且供氣控制系統的設計顯然很有問題,因為操作疏失就關掉了整個管線的天然氣來源……

除了檢討的作業流程,事後中油亦提出短中長期計畫,希望開闢「雙迴路、雙氣源」的第 2 條迴路分散風險,施工期預計約 2 至 3 年。而這項施工原來預計與規畫於桃園觀塘的天然氣第三接收站一同動工,但第三接收站,因涉及藻礁生態爭議,於 7 月 3 日被「環差會議」退回,尚待 9 月份環評大會審議。(詳見這裡這裡

-----廣告,請繼續往下閱讀-----

一年後的今天,大潭電廠仍只靠單一迴路供氣……

在意外發生時可以應付衝擊的備轉容量率、以及備轉機組規劃,到今天有進一步改善了嗎?

一年後的今天的尖峰備轉容量率是 6.36%,所有電廠依舊是餘裕很少地努力工作著呢。

行政院的《815 停電事故行政調查專案報告》,有興趣的夥伴可以從中找到更多有趣的細節。

參考資料:

  1. 行政院:815 停電事故行政調查專案報告
  2. 台灣電力公司
  3. 從大潭、通霄電廠是不是「蚊子電廠」談起燃氣發電甘苦經驗
文章難易度
所有討論 5
PanSci_96
1216 篇文章 ・ 2127 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。