川村老師,請用簡單的方式告訴我「歐姆定律」是什麼?
老師:的方式會使電流變弱。電阻定律告訴我們,金屬導線的電阻 R 與長度 L 成正比,也就是導線愈長,電阻愈大。相反的,截面積 S 愈大,電阻愈小。
貓咪:能捲太多圈嗎?喵!
老師:這樣會讓導線長度增加。電阻 R=ρ L/ A,ρ 是電阻率。
觸控面板是貼附在螢幕玻璃表面上的薄膜,手機與電腦普遍使用的觸控面板是利用靜電原理進行感應。觸控面板有許多感應方法,最具代表性的是電容式觸控與電阻式觸控。手機使用的是電容式觸控面板,利用靜電就能讓 CPU 知道手指是否放在螢幕上。
觸控面板中縱橫交錯著許多表面帶靜電的電極陣列,如下圖。
手指碰到觸控面板時,會吸走該位置的靜電,感測器便據此判斷何處有靜電釋放。用一般的筆或戴著手套觸碰時,手機不會有反應,是因為其他東西與手指不同,不會導電,所以也不會釋放靜電。
電阻式觸控面板無法多點觸控;也就是說,不能用兩根手指同時操作。使用手機時,可以用拇指和食指同時觸碰面板,然後手指張開把照片放大,或手指閉合把照片縮小,電阻式觸控面板就沒辦法這麼方便。
電阻式觸控面板的電流是從兩片膜之間通過;手指碰觸時,上層膜會接觸到下層膜,使電阻降低,表示該處有電流通過,此時感測器便可讀取到接觸點位置。電阻式面板是透過壓力來操控,與觸控媒介是否導電無關;所以用筆、指甲來觸碰,螢幕也會有反應。這種面板也能感應觸碰壓力的強弱,因此常用於遊戲機。
——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。
討論功能關閉中。
福島第一核電廠自 2011 年發生事故後,時隔 12 年再次躍上多國新聞版面。但這次不是因為災後核電廠除役與復興、訴訟或是 Netflix 上架的日劇《核災日月》,而是存放在福島第一核電廠廠區內的「核廢水」即將排放大海。福島第一核電廠的「核廢水」從何而來?又為什麼要在這個時間點排入大海?
時間回到 2011 年 3 月 11 日。當時東日本大地震與隨後而來的海嘯摧毀了福島第一核電廠的電力系統,導致核電廠在停機之後無法持續注入冷卻水,直到反應爐冷卻。因此發生 1、3、4 號機組氫氣爆炸、1~3 號機組爐心熔毀,以及 1 ~ 4 號機組輻射外洩的事件 註1。這次事故更被歸類為國際核能事件最高級別(第 7 級)的最嚴重意外事故。
在事故發生後,首當要務就是持續冷卻反應爐,直到反應爐的溫度降低。冷卻反應爐需要水,所以當時曾引進海水作為冷卻水。這些在福島第一核電廠事故當下出現在廠房內、遭到放射性核種汙染的水,就是日後的「核廢水」。加上當地曾遭到海嘯襲擊,因此這些受到輻射汙染的核廢水也含有鹽分。
但廠區內受到輻射汙染的水並不是只有事故發生當下出現在廠房內的水,事故發生後只要雨水剛好落在福島第一核電廠廠房上,或是地下水流經福島第一核電廠房底下,都會受到放射性核種汙染。
作為營運福島第一核電廠的東京電力公司,在事故發生後的首要任務就是防止更多乾淨的水遭到輻射汙染,同時也要防止受到輻射汙染的水流出廠房外。所以他們在福島第一核電廠 1~4 號機組外加裝擋水牆,希望隔絕乾淨的地下水流經廠房底下,但這些擋水牆實際上無法有效防止地下水從四面八方流經福島第一核電廠正下方。
再考慮到水的流向,寧可讓乾淨的水流進廠房底下受到輻射汙染、也不能讓受到輻射汙染的水外流,所以東京電力公司必須一直抽取廠房內部受到輻射汙染的水,讓廠房內的地下水位略低於廠房外的水位;但在抽水時又不能使廠房內的水位低太多,否則將會一口氣湧入更大量的地下水、產生更多受到輻射汙染的水。
時至今日,東京電力公司仍每天汲取流經 1~4 號機組的雨水與地下水,使得福島第一核電廠即使到現在,每天都還是會產生核廢水。經過 12 年來的各種嘗試,近年新增的廢水總量已有減少的趨勢,去(2022)年每日平均產生約 90 公噸的核廢水,已是事故發生以來最低的數值。
受到輻射汙染的水在被排放之前需要經過幾道淨化流程。首先是利用「銫吸附裝置」除去水中一部分的銫(caesium, Cs)和鍶(strontium, Sr),再經過淡水化裝置除去水中的鹽分,否則海水中的鹽分會侵蝕、損害廠房設備。接下來這些水有兩種命運:循環再利用或是成為核廢水。
循環再利用
循環再利用是指受到輻射汙染的水經上述淨化處理後,可以回到福島第一核電廠 1~3 號機組,作為反應爐的冷卻水及輻射防護屏障。即便如此,這些受到輻射汙染的總水量遠多於福島第一核電廠 1~3 號機組的需求,所以絕大多數的水被汲取上岸後,都得存放在福島第一核電廠廠房內一桶又一桶的巨大水槽內,成為沒有其他用途的核廢水。
ALPS 處理水
為了降低核廢水的放射性核種濃度,這些存放在巨型水槽內的核廢水會經過專為福島第一核電廠事故設計的多核種除去設備(advanced liquid processing system, ALPS),而經過 ALPS 淨化處理的核廢水又稱「ALPS 處理水」。
「多核種除去設備」,顧名思義利用物理或化學方法,大幅降低 62 種人造放射性核種的濃度 註2,但唯獨不能處理氫的同位素——氚(tritium, 3H)。這不是因為多核種除去設備成效不彰,而是即便開發其他設備也很難將氚從水中分離。
由於水分子包含氫原子,而氚和氫是同位素,它們的物理性質和化學性質幾乎一樣,難以使用物理或化學方法將它們分離,因此無法利用 ALPS 或其他方式濾掉氚。
事實上,福島第一核電廠以外的一般核電廠所排放的廢水當中就含有氚,不過在一般情況下並不會特別放大檢視核電廠廢水當中的氚濃度。
此外,自然界中本來就含有氚,我們日常在使用或是飲用的水中也含有非常微量的氚。例如臺灣對飲用水中氚的容許濃度標準為每公升 740 貝克(Bq),並沒有要求零檢出,也就是數值低到儀器驗不出來的程度。
但福島第一核電廠的核廢水並不一樣,因為這些是流經福島第一核電廠、遭到人造放射性核種汙染過的水。即使是已處理過的 ALPS 處理水,除了氚之外還是包含低量、因反應爐爐心熔毀而外洩的人造核種,並不能直接排到自然界中。
所以這些水自福島第一核電廠事故以來,被汲取上岸後就一直存放於福島第一核電廠廠區內。
然而福島第一核電廠廠區空間有限,按照它每天產生核廢水的速度來推算,今(2023)年 4 月最新的估計是最快在明(2024)年 2 月以後儲水空間就會不足。該如何為這些存放在廠區內的核廢水找尋新的出路,就成了近年難題。
這個問題在 2013 年討論之初,曾列舉了排放到大海、注入地層、埋到地底下、電解成氫氣後排放到大氣中、轉換成水蒸氣排放到大氣中五種方法。經多年評估、討論後,日本政府在去年決定選用國內、外最常見的核電廠含氚廢水的排放方法,在確保廢水中的放射性核種的濃度符合標準 註3、沒有超標的情況下,就能將核廢水稀釋後排放到海洋。
早在日本政府確定選擇「排入大海」這個方案前,就有許多反對聲浪。最主要的原因就如前面所說,福島第一核電廠核廢水和一般核電廠的廢水差異在於含有爐心熔毀釋放的人造放射性核種,氚只是這些放射性核種當中的其中一種。
即便福島第一核電廠核廢水在 ALPS 淨化處理後,除了氚以外的放射性核種濃度大幅降低,且符合科學上的排放標準,但和「沒有發生事故」的核電廠廢水相比,內容物組成還是有所不同。
不過國際原子能總署(International Atomic Energy Agency, IAEA)在今年 7 月公布的報告書表示,目前日本提出的方案符合國際安全標準,ALPS 處理水的輻射量也極低,幾乎可以無視輻射對人體或環境的影響,國際水域也幾乎不會因此受到影響。與此同時,IAEA 也會與第三方機構持續監測、分析 ALPS 處理水排放的狀況。
但上述都是關於核廢水放射性物質濃度是否符合目前科學認定的安全標準討論,撇開在科學上是否經得起檢驗、一翻兩瞪眼的檢測問題,民眾願不願意接納這些「科學上的論點」,有時還會有情感方面的考量。
對於福島漁業來說,政府好不容易才在 2021 年解除試驗性捕魚,當地漁業才正準備要復甦。更何況日本政府先前曾承諾在未取得漁業相關業者的理解之前,不會將福島第一核電廠的核廢水排入大海,但現在的態度卻是要趕在福島第一核電廠放不下更多核廢水之前,陸續將核廢水排入大海,讓當地漁業業者相當不滿。
此外,也有一派反對聲浪認為日本政府僅因經濟效益考量,而選定「排入海洋」的解決方案,考慮不夠周全、詳盡。雖然規模不同、在日本也未曾將含氚的廢水先蒸發成水蒸氣後排放,若採用這種做法或許就能大幅降低對海洋生物的危害。
也有民間團體提議,如果認為核廢水太占體積,將 ALPS 處理水混合類似水泥的材質進行固化處理,就能堆疊起來繼續存放於福島第一核電廠廠區內,而不會汙染到廠區外的環境。但上述這些做法仍有實務上的困難之處,例如廢水蒸發會影響到陸域環境、固化處理後仍會繼續消耗存放空間等。
福島第一核電廠核廢水排放在即,臺灣行政院原子能委員會(原能會)近年多次重申福島第一核電廠的廢水是核電廠事故後的廢水,不能和一般核電廠排放的含氚廢水混為一談。
也許值得慶幸的是,臺灣和日本的直線距離雖然很近,但洋流方向卻未必如此。福島第一核電廠的核廢水排放後,會因為太平洋的環流系統流向,先往東朝美國加州附近水域擴散,再順時針繞來臺灣。
根據原能會的試算,最快要四年後才會流至臺灣附近海域,屆時放射性物質的濃度已低於儀器偵測極限,濃度低到難以被偵測,不會對臺灣附近海域造成輻射安全上的危害。
但中央研究院環境變遷研究中心研究員吳朝榮以過去觀測的海洋數值模擬,福島第一核電廠的核廢水排放後最快一年內就能抵達臺灣附近海域。
目前原能會已和漁業署、氣象局等跨部會合作監測福島第一核電廠核廢水的擴散狀況並進行漁獲、水產的輻射檢測,相關資訊都公開在「放射性物質海域擴散海洋資訊平台」隨時供民眾查閱。
在臺灣的我們暫時不需要過於擔心福島第一核電廠的核廢水會影響臺灣水域,核廢水排放海洋對環境的衝擊也會遠小於福島第一核電廠事故發生之初的狀態。臺灣方面針對日本食品的輻射檢驗標準仍高於歐、美國家,在現行邊境輻射檢驗標準下毋須過於擔心。
說明:此篇文章原本乃為泛科學 Youtube 影片所寫,經簡化之後,拍攝成〈缺電、輻射、核廢料有解嗎?「核融合發電」有可能嗎?〉和〈最受期待的核融合發電在哪裡?能源數據誰在膨風?〉兩部作品。又,本文並不針對核融合的技術性問題多做解釋,而是想用最少的字數,讓讀者瞭解核融合發展的全貌與大致進程。同時,此文主題也跟「世界是否應該採用核能發電」、「臺灣是否該使用核能發電」、「台灣是否該重啟核四」無關;這是三個完全不同的問題,核融合發電跟現有的核能發電技術也有所不同,無法一概而論。
在漫威電影裡,許多情節設定都跟真實世界的科學有所關連。就前陣子上映的《蜘蛛人:無家日》來說,在公開預告片中可見到知名反派八爪博士的回歸;他不但是研究核能的科學家,在《蜘蛛人2》還打造出了核反應爐。
八爪博士的核反應爐,跟太陽可說有 87 分像;姑且不論畫面呈現得正不正確,這部機器特別的地方就在於,它是核融合反應爐,而非目前核能發電所用的核分裂反應爐。然而,這兩者差在哪裡?都已經有核能發電技術了,為什麼還要研發核融合發電?不僅如此,核融合研究甚至一度引發學術界的爭議醜聞,甚至被拿來拍成 IMDb 超低分的電影。
不久前(2021 年底),臺灣舉辦了是否重啟核四的公投。在選舉期間,我們或許聽過不少關於核能發電的利弊分析與討論。在溫室效應越來越受到關注、以及強調 2050 年要淨零碳排放的現代,核能發電極低的碳排放,是不容忽視的優點;但另一方面,核廢料問題,和核子事故風險,也是反核人士眼中無法接受的缺點。
不管如何,近數十年來,全球核能發電量雖然在日本福島核災後一度減少,但整體而言,仍大致呈現緩慢增長的趨勢。不過,核能在全球的發電佔比,則是於 1996 年達到 17.5% 的高峰後,開始緩慢下降。
另一方面,若比較從 1954 年到 2020 年,「開始運轉的核電廠」和「停止運作的核電廠」兩者的數目。可以發現,在 1990 年之前,開始運轉的核電廠,遠比停止運作的核電廠要多得多。但從 1990 年開始,兩者就呈現差不多的趨勢。
基於上述統計資料,大抵可以說,因為總總複雜的原因,不管是對是錯,在上世紀 90 年代以後,核電廠慢慢地不像以前那麼受到歡迎。而近年來對溫室效應的關注,以及仍是現在進行式的俄烏戰爭,會對核能發展帶來什麼影響,有待我們持續關注。
就在核能前景尚未完全明朗的同時,我們卻也能在許多新聞媒體上看到,除了新式核分裂發電技術的研發之外,還有「Google 和比爾蓋茲投資核融合反應爐」、「世界最大核融合反應爐進入組裝階段」、「中國核融合再創新世界紀錄」、「核融合新創 Helion 獲 22 億美元資金」、「貝佐斯投資核融合新創」等,關於核融合發電的消息;美國政府和其他許多國家也都投入資源在核融合研究。
同樣是核能發電,核融合發電和傳統的核分裂發電,有什麼不一樣?為什麼許多國家與知名人士都對核融合發電寄予厚望?八爪博士又為什麼打擊蜘蛛人的正事不幹,要去研究核融合?(搞錯重點了好ㄇ)
簡單來說,核反應可分成兩大類,一是原子核分裂成其他較輕原子核,稱為核分裂(nuclear fission);另一則是,兩個以上的原子核結合成新的原子核,稱為核融合(nuclear fusion)。因為核反應往往伴隨能量的吸收或釋放,核能電廠於是利用這一點,擷取核分裂過程中釋出的能量,作為發電之用。
至於太陽,主要由氫構成。龐大的重力將氫向內擠壓,於太陽核心產生極端的高溫和高壓,並促使氫進行核融合反應成為氦,連帶產生能量。目前的核融合研究,目的就是在地球上複製這個過程,以獲取釋出的能量。只不過,地球上並不存在如太陽核心般的高溫和高壓,所以必須人為地製造出適合的環境,核融合發電才有可能實現。也因此,有人會把核融合技術形容成人造太陽,而《蜘蛛人 2》電影裡,八爪博士製造出的核融合裝置,就長得一副太陽的樣子。
相較於傳統的核能電廠,核融合發電擁有許多優點。首先,在許多人擔心的安全性問題上,核融合發電不可能出現像是爐心熔毀或熱失控等狀況。因為核融合發電所需的「燃料」(雖然核反應不算是燃燒)需要人為持續提供,而且核融合反應的環境也需要精密控制,所以一旦系統出現狀況,就會使得整個發電程序停止運作——換言之,不可能「爆走」。
但核融合發電在安全性上的優點,也是它最大的缺點——因為核融合反應實在太容易動不動就停止了,科學家們想方設法,目前也沒辦法做到讓反應爐持續不間斷地運作;換言之,它不具有商業發電的價值。也是因為這樣,我們在新聞裡常會看到,某國科學家成功突破紀錄,讓核融合反應持續了幾秒鐘或幾分鐘。而如何讓核融合反應爐能夠持續運作,就成為相關研究最重要的課題之一。
除了安全性問題之外,核能發電產生的核廢料也常為人所詬病。不可否認,目前的核能發電方式,會產生具輻射性的核廢料,半衰期從數百年到百萬年不等,而台灣一直未能設立核廢料的最終處置場,全世界至今也沒有任何一座高階核廢料處置設施正式運轉。預計最快要到 2024 年,在芬蘭才會有全球第一座的高階核廢料永久處置場正式啟用。然而,臺灣的地質條件跟芬蘭完全不同,能否找到適合的最終處置場,仍是個問號。
那麼在核融合發電,也會面臨核廢料的難題嗎?答案既是,也不是。核融合發電也會產生核廢料,但其屬於低階核廢料,基本上就是工作人員使用過後的防護衣和清潔用品,以及反應爐的腔壁等。這些核廢料的半衰期大體而言都不長;因情況而異,約數十年到數百年,其輻射水平即可回覆到接近一般環境的背景值。所以,做為結論,核融合發電還是會產生核廢料,但相較於現有的核能發電,其危險程度以及對環境的影響要小上很多。
最後,核融合發電還有另一個優勢:燃料。現在的核能發電,主要使用鈾 -235 做為燃料;雖然全球的鈾礦礦藏相對豐富,根據世界核能協會(World Nuclear Association)的估計,足夠人類再使用 90 年,但並非取之不竭。相對地,核融合發電常用的燃料是氫的同位素——氘和氚;而氫在地球上極為豐富,要製備氘和氚也並不困難。換句話說,人類完全不需要擔心核融合的燃料不夠這種事情。除此之外,在核融合過程中,還會運用到鋰,它可幫助生成反應所需的氚,而幸好鋰的存量在地球上也是非常豐富,若把陸地上和海洋中的鋰都考慮進來,同樣不需要擔心鋰會用光。[1]
在核融合發電中,為了讓相異原子核能夠進行融合,一般會將其加熱到一億度上下的高溫。一種作法是,利用雷射直接或間接加熱裝了燃料的膠囊,以誘發膠囊內部燃料的核融合反應,稱為慣性局限融合(Inertial confinement fusion)。
另一種常見的作法則是,將燃料加熱,使其成為電漿狀態。很顯然地,一億度的電漿,是沒有任何容器可以盛裝的;所以科學家會利用強大的磁場,拘束住電漿,讓核融合反應能夠穩定持續地發生,稱為磁局限融合(magnetic confinement fusion)。八爪博士製造的機器,就比較接近這樣的作法。但跟電影不同的是,現實裡的研究人員是不可能直接站在高溫電漿旁邊的。八爪博士的設計,跟現實不但有差距,而且也顯然更危險。
上述核融合發電方式,全部都需要人為地產生高溫,讓核融合得以發生——但這並不表示核融合只能在高溫環境中產生。實際上,早在 1950 年代,科學家就發現,確實有核融合反應在低溫環境即可發生,現在稱為緲子催化融合(muon-catalyzed fusion)。緲子是一種性質跟電子非常類似,但質量比電子大得多、且非常容易衰變的基本粒子。若在氘和氚組成的氫分子中,用緲子取代電子,那麼該氫分子內部的氘和氚,甚至在室溫就可能產生核融合反應。
只不過,緲子的備製不僅需要花費大量能量,其迅速衰變的性質,也讓我們很難拿來作為核融合發電之用,再考慮到其他的技術性問題,使得目前的核融合研究,都是朝著高溫的方向進行。
然而,1989 年,有兩位科學家聲稱,成功在室溫環境下,以他們發現的新方法實現了核融合反應。這樣的消息迅速獲得媒體注意,並被大肆報導,人們對實現低溫核融合又開始寄予期望。很可惜地,其他科學家嘗試複製兩人的實驗成果,卻都無法成功;另一方面,科學社群也發現了兩人實驗上的瑕疵。於是,沸騰一時的「冷融合」話題就這麼煙消雲散。現在,雖然仍有少部分人從事相關研究,但都未能成氣候。
儘管如此,或許因為冷融合很有話題性,這個議題並未在媒體上消失;2011 年美國好萊塢甚至以冷融合為主題,拍了一部 IMDb 超低分的電影,英文片名就是冷融合(cold fusion),臺灣翻譯成《關鍵核爆》,劇情甚至把幽浮(UFO)都扯進來了。
延伸閱讀:八爪博士4ni!?《蜘蛛人》裡的人造太陽或將問世?(下)
[1] 其實,鈾也存在海洋中。若考慮到海水中的鈾,那麼基本上人類也不用擔心鈾礦不足。只不過,鈾在海水中濃度極低,約 10 億分之 3,不論在運用的技術還是成本上,挑戰都很高。