0

1
2

文字

分享

0
1
2

超超臨界是什麼?如何增加火力發電的效率?──煤的旅程(二)燃燒過程篇

鳥苷三磷酸 (PanSci Promo)_96
・2018/11/16 ・3285字 ・閱讀時間約 6 分鐘 ・SR值 546 ・八年級

  • 文/陳柏宇

上一篇我們討論了使用煤炭的前置處理,歡迎來到第二道程序「燃燒過程」。燃燒的過程,怎麼變「乾淨」?

燃燒的過程,怎麼變「乾淨」?圖/pixabay

讓煤在燃燒過程中比較「乾淨」的方法,有三個主要的方向:

1. 讓煤或固體燃料燃燒得更完全。
2. 提高能源轉換效率、讓生產單位電力所使用的燃料減少。
3. 完全改變原本的燃燒方法。

粉煤機讓煤變小,比較好混

第一個讓燃燒過程更「乾淨」的方法,增加燃煤燃燒效率

可以開始想像一下國中理化或是國小自然教的內容:當反應面積增大的時候,反應可以比較完全。因此在燃燒前,我們會將煤炭送進粉煤機變成粉煤(pulverized coal ),除了燃燒效率提升外,黑煙或是廢氣的產生也可以減少許多。如前文提到的,不同煤種會有不同燃燒特性,也是在這個階段進行「配煤」,搭配出最適合的比例。

新技術流體化床讓固體變流體,燃燒更完全

上頭講到的讓粉煤進入鍋爐內燃燒,燃燒可以比較完全沒錯。但大家應該知道粉塵這種東西易燃易爆炸,會導致鍋爐裡的溫度非常高,長期下來對於鍋爐影響甚鉅,爐壁甚至會有結渣問題,氮氧化物也會偏高,真的很麻煩。

-----廣告,請繼續往下閱讀-----

因此,讓我們用完全不一樣的流體化床fluidized bed)概念取代傳統像燒金紙那樣通通丟進一個桶子裡開始燒的運作方式,在  1970 年代左右,流體化床fluidized bed)的應用逐漸成形。

流體化一詞是用來描述固體與流體接觸時的一種運動狀態。將固體放在有氣孔的容器中,當有氣體透過孔洞噴吹快速進入容器中、速度逐漸加快時,固體顆粒將會開始懸浮、分離,並且可以自由的運動或轉動(可以想像成吹麵粉裡的乒乓球),這時這些固體的性質開始接近濃稠的液體。繼續講原理可能還要一萬字,所以就先在這裡打住囉。

說到流體化,目前最能體現這項技術的大概只有貓星人了!Image credits: guremike

這樣一來有甚麼好處呢?

相比傳統鍋爐(固定式),流體化床的固體顆粒可以均勻分布於爐內、氣體與固體間的熱質傳較高、一次燃燒的總物量相對較大、操作溫度不高比較穩定等等。破碎後的煤中加入生質物料、甚至是破碎廢棄物混燒等,流體化床都相對會是個比較好的選擇。

-----廣告,請繼續往下閱讀-----

除了燃燒效率之外,流體化床對於污染也有幫助。例如對於高含量硫份的物質,例如前兩年都吵很兇的生煤、石油焦,可以在燃燒時就先加入石灰石,讓他們一起激情翻騰燃燒,大幅減少硫氧化物的排放量。另外,流體化床爐溫較傳統的燃燒爐低,製造出的氮氧化物的濃度也就相對較低。

目前這樣的爐體在台灣並不多,除了永豐紙業、以及台汽電外,還有台塑真的拿來燒石油焦。國際間規模也因為爐體設計上的問題,使流化床鍋爐的功率(目前最大 460 MW)仍略小於傳統鍋爐(600 MW以上)。未來如果往循環經濟的方向前進,這是必須進步的技術。

提升發電效率:「超超臨界」到底是甚麼?

大家現在對於「超超臨界」這個名詞大概不陌生,但要知道超超臨界是甚麼,我們需要先來簡單了解一下火力發電的運行,整個過程可不只是燒煤而已喔。簡單來說就是蒸汽機的原理:用煤火燒水變成水蒸汽,透過水蒸汽的高壓推動渦輪機再帶動發電機,出力完畢的水蒸汽冷凝後再加熱進入新的循環。

細節版在這裡:
1. 工作流體(多數為水)先被壓縮,在壓力下成為高壓流體,溫度也跟著上升。

2. 高壓流體來到鍋爐進行加熱,高壓流體吸收了外部熱源成為過熱蒸汽。

3. 過熱蒸汽膨脹後,推動渦輪機發電;蒸汽的溫度和壓力降低,成為濕蒸汽。

4. 濕蒸汽然後進入冷凝器,被冷凝成為飽和液體,並重覆回到第一步驟。

恭喜你,已經看完了工學院都知道的「郎肯循環」(Rankine Cycle)。那超超臨界到底是甚麼啦?先來看一張圖,這是水的三相圖,就是水有三態,固態、液態和汽態的意思。

-----廣告,請繼續往下閱讀-----
水的三相圖。(圖:泛科學重製)

以上為一般的循環,而如果把水加壓加壓再加壓 (250 bar 以上)、加溫加溫再加溫(600℃ 以上),它就會突破我們稱之為臨界點的境界(上圖的粉紅色點點)。從此時起,變成具有液態、汽態特性的流體。然後把上面講的郎肯循環拿來解釋一下,如下圖。

左圖為普通機組的郎肯循環,右圖為與超臨界機組郎肯循環示意圖。(圖:泛科學重製)

左邊是原來亞臨界樣子,右邊是超臨界的樣子,因為上邊界明顯上移,中間圍起來的部分變多了,而中間的範圍其實就發電機轉換出電能的部分;所以超超臨界重點就在於在循環中提高輸出的效率。根據台電月刊提供的數據,主蒸汽壓力每提高 1 MPa,機組的熱效率可提升 0.13 ∼ 0.15 %;主蒸汽溫度每提高攝氏 10 度,機組的熱效率可提升 0.25 ∼ 0.30 %。效率更高、生產單位電力所使用的用煤量較少,也是減少污染重要方法。

這就是國際間目前講求的高效低排放(HELE)燃燒技術,概念上大概一百年前就存在了,只是礙於材料技術的發展,大約 70 年前才出現第一座超臨界機組(規模不大);大約十年前,才有第一座超超臨界。超超臨界機組整體發電效率比起亞臨界多上 6~10 %,整體的發電成本也相對減少。國際上,近幾年火力電廠的機組翻新,之前熱議的深澳電廠,也都採用這種方法。

而以目前的林口發電廠為例,該廠舊機組於 2014 年除役,1、2 號機改以超超臨界機組運轉,與其過往亞臨界機組相較,發電效率由 38% 提升為 45%,亦即在發電量相同的情況下,每年可減少 20% 排放,遠低於法規標準值(如下表),這也是為甚麼會有排放水準接近燃氣的說法出現。

-----廣告,請繼續往下閱讀-----
台灣各燃煤機組氮氧化物106年平均排放濃度圖。(資料來源:台灣電力公司)
台灣各燃煤機組氮氧化物106年平均排放濃度圖。(資料來源:台灣電力公司)
106年林口電廠排放現況。(資料來源:台灣電力公司)

從上圖來看,已經更新的林口電廠相較於台中或是興達電廠的排放有相當的區別,與燃氣電廠的標準也相當接近。另外,不僅止於發電效率高以及低排放量,因為工作流體的單相特性,鍋爐在飼水部分可以快速的做調節。也因此,升降載比傳統鍋爐也可以更加快速,打破了我們對於煤電的「基載」想像,或是配合空氣污染做及時的降載調節。

林口發電舊機組於 2014 年除役,1、2 號機改以超超臨界機組運轉,發電效率由 38% 提升為 45%。圖/Wikimedia

至此,我們還算順利的結束了第二道關卡「燃燒」。除了上面介紹較為成熟應用的技術以外,仍有許多讓燃煤更有效率的技術正在發展中,在未來幾年能源市場仍由煤炭主導的情況下,希望能讓燃煤發電朝更環保並保有競爭力的方向進展。

但是還沒結束喔,如果燃燒完後就直接排出,造成的污染還是很可怕。所以目前有哪些技術在處理燃燒後的廢氣呢?讓我們準備一起邁向下一關:燃燒後處理(post-combustion)啦。

參考資料:

  1. Power Technology:Lean and clean: why modern coal-fired power plants are better by design
  2. 蔡孟原(2010年6月)。循環式流體化床鍋爐。科學發展月刊,450期,pp.26-32。

本文由台灣電力公司委託/廣告,泛科學企劃執行

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

1
0

文字

分享

1
1
0
首度解密電力研發基地!台電今起電幻 1 號所秀 25 項研究成果
PanSci_96
・2022/09/14 ・1529字 ・閱讀時間約 3 分鐘

你知道台電有個電力研發基地嗎?台電綜合研究所因應電力研發試驗需求設立,至今已超過 20 年,平均每年進行近 400 項研究專案,是我國電力研究重鎮,今年更首次公開展出研究成果,舉辦「綠潮-2022 台電綜合研究所成果展」,今(14)日在板橋車站旁、全台首座綠能主題展館的「電幻 1 號所」盛大開展。台電表示,此次共展出 25 項電力研究成果,將電力專業知識轉化為與你我相關「看得懂的研究」,今日起免費展出至 10 月 14 日,歡迎民眾一同探索、揭開電力研發基地神秘面紗。

台電今日上午於電幻 1 號所舉辦「綠潮-2022 台電綜合研究所成果展」開幕活動,現場由中央研究院院長廖俊智、國家實驗研究院院長林法正及台電代理董事長曾文生等各界貴賓共同為展覽揭開序幕,並於希爾頓酒店舉辦「智能綠電新未來論壇」,邀請美國電力研究所(EPRI)、亞太能源研究中心(APERC)及彭博新能源財經(BNEF)分享國際電業趨勢,與產官學界進行深度對談。

台電說明,台電研發機構最早可追溯到1968年創立的「電力研究所」,隨研究需求及規模擴張,2001 年正式成立「綜合研究所」至今,扮演著支撐穩定供電、帶動能源轉型的電力核心技術關鍵研究單位,台電綜研所近年積極投入低碳能源與友善環境相關研究,並持續與美國電力研究所(EPRI)、彭博新能源財經(BNEF)等組織進行國際技術交流,以科學研究務實推動能源轉型。

台電指出,此次成果展以「綠潮」為主題,取自「綠」能與國際浪「潮」,突顯綜研所除致力綠能研究,更時刻與國際接軌。展覽共分為「Future、Power、Smart、Green」四大展區,展出 25 項電力研究成果,並第一次與YouTube影音平台訂閱超過 40 萬人、全台最大知識科普社群 PanSci 泛科學合作,將專業電力知識轉譯,搭配擬真模型、解說影片及 VR 裝置等生動有趣互動模式,主打「看得懂的研究」首次對外展出,期望打開民眾對電力的想像與視野。

-----廣告,請繼續往下閱讀-----

台電也分享展覽 3 大「必看亮點」,首先推薦「Future」展區可看見未來智慧城市樣貌的「未來電桿」。台電說明,全國電桿數量超過 300 萬支,隨時都可能有各種如颱風天災等突發狀況,台電讓電桿搭載感測器,並結合 AI 影像辨識技術人工智慧及物聯網技術,使電桿具有自動檢測控制功能,目前先於桃園、新竹地區試驗,未來廣泛布建後,除可遠端即時掌握電桿狀態、提升搶修維護效率,更可讓電力線路基礎設施成為能源網路,甚至是城市資訊數據的傳輸平台。

而國際正夯的「碳捕捉」技術也可在展覽中的「Green」展區一探究竟,台電將位於台中電廠已實際投入發電機組排碳捕捉的碳捕集設備,打造成結合科技感互動與聲光展示的「超擬真」模型,直接搬到展場。此設備未來更將以年碳捕捉量 2000 噸為目標。

台電綜合研究所所長鍾年勉(左)向中央研究院院長廖俊智(中)及台電代理董事長曾文生(右)講解台中減碳園區碳捕捉流程。

台電此次展覽亦第一次對外發表國內首創的「產業動態指數」,綜研所分析近3萬具高壓智慧電表所收集的電力大數據,並依據產業用電特性,結合生產力指數、節假日及氣象等多元資料,透過 AI 模型演算,建構出可每日即時更新的經濟領先指標「產業動態指數」,目前已透過 B2B 商業模式,提供企業作為產業發展分析重要依據。

台電表示,此次綜研所成果展自今日開幕,將於電幻1號所展出至 10 月 14 日(開館時間 10:00-18:00,週一休館),歡迎有興趣的民眾前來探索台灣電力研發基地的神秘面紗!

-----廣告,請繼續往下閱讀-----
台電綜研所成果展分為「Future、Power、Smart、Green」四大展區,將於電幻1號所展出至10月14日。
-----廣告,請繼續往下閱讀-----
所有討論 1

2

10
3

文字

分享

2
10
3
地球在 20 年間「亮度」變低了!——地球暖化讓陽光反照率直直落
Mia_96
・2021/10/23 ・2760字 ・閱讀時間約 5 分鐘

地球暖化會造成溫度升高?不稀奇!地球暖化會造成人類生活環境越來越嚴峻?也不稀奇!但你有聽過,因為地球暖化,讓我們的亮度竟然逐年遞減,地球變得越來越暗嗎?

地球亮度的改變並不是近期才出現的新興議題,關於地球亮度的變化,科學家早在 1990 年代前後便提出一種現象「全球黯化」(global dimming)去解釋為何地表獲得的太陽光能量越來越低。

當時透過資料指出,進到地球的太陽能量大幅降低,從 1950 到 1990 年入射至地表的太陽光能量,竟然平均減少 4%! 也就是身處在地球上的人類會覺得地表的亮度似乎逐漸地降低。

但入射地表能量降低的原因並非是太陽發出能量的變化,而是因為近幾年我們最常耳聞的,空污現象! (圖/pixabay

當人類使用石油、煤炭等非再生能源發電時,會在環境中產生許多氣膠微粒,而這些氣膠微粒進入大氣,微粒可以吸收、反射入射到地球的太陽光,使太陽之能量無法進到地球表面,進而造成地球亮度降低。

-----廣告,請繼續往下閱讀-----

而全球黯化同時也影響著人們過去對於全球暖化的理解,當全球黯化造成入射到地表的太陽光減少時,代表著地球所獲得的能量並不如過往我們所想像的這麼多。換句話說,全球黯化所造成的冷卻效應竟比不上人們所造成的暖化速度!

知曉地球改變亮度的方法——地照!

近期最新研究更是顯示,1998 年到 2017 年近十年內,地球的反照率逐年下降!除全球黯化造成地表獲得太陽能量減少外,當從外太空看著地球時,地球竟然也越來越暗了!

反照率是一種常用於亮度表示的方式之一,其指的是太陽電磁波段入射至地表的總量質,除以被地表反射的量值所得出的數字。不同的地表特性即有不一樣的反射量質。因此,透過反照率的升降,科學家也可以推估氣候變遷對環境所產生的變化與影響。

計算反照率的方式十分特別,在科學中我們將其稱為「地照」!

-----廣告,請繼續往下閱讀-----

地照現象指的為當太陽光照射到地表,地表會反射部分太陽光,而當地表反射太陽光至月球未被太陽照到的地方時,月球又會將地表所反射至月面的光線反射回地球。

看似應該沒有被太陽光照射到的月球表面,其實也會因為地球反射之陽光而產生微弱的光。而最適合觀測地照的時間通常為弦月時分。 (圖/Wikipedia

地照的變化與地表的改變息息相關。例如冰雪的反射率較高,當地表溫度較低,累積較多冰雪時,地照數據便可能會上升;而洋面的反照率較低,當地表溫度較高,造成冰雪融化成海洋,則地照數據便可能會下降。

透過地照反射的光線強弱,可以推測地球反照率的變化,進而推測地表本身變化。 (圖/Wikipedia

除了利用地照觀測地球反照率外,為使觀測更加精確,科學家利用於 2000 年發射的 CERES 儀器(Clouds and the Earth’s Radiant Energy System)觀測大氣至地表的太陽光輻射與地表放出之輻射,並進一步分析對影響地球溫度的重要因子──雲,和太陽輻射的交互關係。

CERES 主要希望可以解答雲在氣候變遷中所扮演的角色與造成的影響,是美國國家航空暨太空總署地球觀測系統(EOS)計畫中的一部分。 圖/Wikipedia

研究結果分析發現,從 2000 年到 2015 年,地球反照率曲線一直維持接近平坦的狀態,但近年,地球反照率的衰退卻日益明顯,如下圖表示:

-----廣告,請繼續往下閱讀-----
(圖/參考資料 1

橫軸座標為年度,縱軸座標為地照反照率之異常改變(單位為每瓦/平方公尺),黑色為地照異常之數據,藍色為 CERES 觀測到異常之數據,而灰色陰影區域則為誤差範圍。從圖中可以看出,地照反照率在這幾年下降約 0.5 W/m2,而 CERES 之數據則是下降約 1.5 W/m2

十年一變──太平洋年季震盪

科學家推測,改變反照率的原因,是週期性發生在太平洋的氣候變化──太平洋年季震盪。

太平洋年季震盪指的為太平洋的海水溫度會以十年為週期尺度產生變化:當北太平洋和熱帶太平洋間的海水溫度較高時,稱作暖相位;而當北太平洋和熱帶太平洋間海水溫度較低時,稱作冷相位。

而地球亮度改變的原因,正是因為太平洋年季震盪到了暖相位,造成海面低雲減少,反照率降低!

-----廣告,請繼續往下閱讀-----

低雲較為溫暖,其主要成分是由水滴組成,當太陽輻射照射水滴時,較多太陽反射至太空,地球的反照率較高,也造成地表溫度降低;而高雲主要成分由冰晶組成,透光性較佳,再加上高雲通常體積較低雲薄,故太陽輻射可以順利進入地表,地球反照率相對降低。

當北太平洋與熱帶太平洋間海水溫度升高時,洋面上空氣需達到飽和的水氣量相對增加,氣塊達到飽和條件較高,低層雲較難生成。(其實背後原因極其複雜,作者僅是以最簡單的方式嘗試解釋。)當低層雲減少時,反射率降低,造成較少太陽輻射至太空,地球亮度因此變得越來越暗。

雲在地球輻射能量中一直扮演著重要的角色,低雲反射太陽輻射的能力較強,高雲吸收地球輻射的能力較強,因此較多的低雲往往造成地表降溫,而較多的高雲則會造成地表增溫。 (圖/pixabay

交織纏繞的反饋機制

看完整篇文章也別急著下結論!其實地球上的現象不僅環環相扣,影響因素更是族繁不及備載,從海溫改變的原因、高低雲量多寡的變化、反照率升降的主因……,我們都很難用單純或是絕對的一段話去完整解釋自然界的現象。

科學家所能做到的,是透過原因推導、盡力的去解釋現象,所以關於地球反照率下降的趨勢原因,除了太平洋年季震盪、海溫升高、低雲變化等,或許也還有科學家尚未清楚的其他可能性。

-----廣告,請繼續往下閱讀-----

但同時,令科學家擔心的事情是,因全球暖化造成地表的反照率降低,代表地表接收到的能量、進到地表之能量相對增加,而吸收的能量又加速全球暖化的速度,地球或許會因為這樣的回饋機制持續升溫,造成更加嚴重的溫室效應。如何去因應溫度上升造成的種種問題,也將會是我們需要不斷去思考問題。

參考資料

  1. AGU AdvancesEarth’s Albedo 1998–2017 as Measured From Earthshine
  2. science alert,《Two Decades of Data Show That Earth Is ‘Dimming’ as The Planet Warms Up
  3. Wikipedia,《Clouds and the Earth’s Radiant Energy System
  4. Wikipedia,《行星照
-----廣告,請繼續往下閱讀-----
所有討論 2
Mia_96
17 篇文章 ・ 28 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師