Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

標靶藥物是如何誕生的呢?讓癌症治療露出曙光的那些科學家們──唐獎生技醫藥獎

鳥苷三磷酸 (PanSci Promo)_96
・2018/07/30 ・3704字 ・閱讀時間約 7 分鐘 ・SR值 597 ・九年級

-----廣告,請繼續往下閱讀-----

本文由《唐獎教育基金會》委託,泛科學企劃執行

  • 作者/李紀潔、羅鴻、泛科學編輯部

從古埃及的紙莎草文獻到祕魯印加帝國的古木乃伊體內,都可見到人類飽受癌症侵擾的證據。而在醫療昌明的現代,癌症仍然高居國人十大死因的首位。人類與癌症纏鬥了數千年,難道沒有有效的治療方式,終結這長年來的惡夢嗎?

在明星標靶藥物伊馬替尼(imatinib)於 2001 年出現之前,常見的癌症治療方法包含了手術、放射線治療和化學治療。但這些療法皆無法針對癌細胞進行治療,也都有相對嚴重的副作用。今年(2018)的唐獎生技醫藥獎頒給三位美國知名的科學家:東尼 ‧ 杭特(Tony Hunter)、布萊恩‧德魯克爾(Brian J. Druker)、約翰 ‧ 曼德森(John Mendelsohn),他們的研究開啟了針對癌細胞進行癌症「標靶治療」的新紀元。

宛如對癌症專用神奇子彈的標靶藥物到底機制是什麼?它又是如何誕生的呢?

-----廣告,請繼續往下閱讀-----

開啟標靶藥物研發濫觴的「酪胺酸磷酸化機制」

能成為第一個知道(科學新發現)的人,真的是非常好的感受。──東尼 ‧ 杭特博士,2017 訪談

故事從頭說起,在 1980 年代東尼 ‧ 杭特博士進行生化研究時,科學界僅知兩種胺基酸:蘇胺酸(Threonine)與絲胺酸 (Serine)有磷酸化(Phosphorylation)的現象。磷酸化意指「在分子上加上磷酸根(PO32-)」,這個作用在生物化學中有很重大的效用,可能會造成截然不同的訊息傳遞(signaling),甚或大幅影響原有蛋白質的功能。而杭特博士在科學上的主要貢獻,在於他研究會引發癌症的多瘤性病毒(polymavirus)的蛋白激酶(protein kinase)時,誤打誤撞發現其作用是磷酸化第三種胺基酸酪胺酸(tyrosine);在後續的實驗中,更進一步證實了多瘤性病毒與勞斯肉瘤病毒(Rous sarcoma virus)致癌的轉化蛋白都是酪胺酸激酶(tyrosine kinase, TK),這個發現暗示了失控的酪胺酸磷酸化機制是癌症起源的關鍵,更進一步成為現今標靶藥物研發的濫觴。

本次獲唐獎生技醫藥獎的東尼 ‧ 杭特博士。 圖/唐獎教育基金會提供

為什麼這樣一個蛋白質的化學變化會有如此劇烈的影響?我們要回過頭來從細胞內的溝通談起,當細胞接收到外來生長訊號,此訊號會一個蛋白質傳一個蛋白質地將訊號送到細胞核中,對 DNA 進行調控,影響生長、分化、代謝等重要的生理行為,這樣的溝通即是細胞內的「訊息傳遞」機制。把訊息傳遞想像成一場接力賽,在這場接力賽中,每位跑者都是不同的化學物質,這些化學物質接力傳訊的結果,最終會引發細胞重要的各種生理行為。

生物體中有非常多種酪胺酸激酶,它們在訊息傳遞的接力賽中主要扮演最前頭的跑者,會改變下游蛋白質的結構(替蛋白質中的酪胺酸加上磷酸根),從而影響細胞的生長、分化、遷移、代謝、細胞凋亡等等重要的生理行為。依照作用的位置,酪胺酸激酶可分成兩類:在細胞膜上的受體酪胺酸激酶(receptor TK)及細胞質內的酪胺酸激酶。而若是細胞不正常大量表現酪胺酸激酶或蛋白磷酸酶(tyrosine phosphatase,功能跟激酶相反)失去功能時,便可能導致細胞的不正常增生,甚至產生腫瘤。

知道了發病機制,只要找到方法抑制發生異常的酪胺酸激酶,或許就得以控制癌症──這就是 TK 標靶藥物研發的核心概念。

-----廣告,請繼續往下閱讀-----

明星標靶藥物的誕生:伊馬替尼

德魯克爾博士的貢獻,則在於承襲前述基礎研究的成果,研發出治療慢性骨髓性白血病(Chronic myelogenous leukemia, CML),也是世界上第一款酪胺酸激脢抑制劑(TKI)標靶藥物「伊馬替尼」(imatinib)。

本次獲唐獎生技醫藥獎的布萊恩‧德魯克爾博士,他的貢獻在於推動研發世界上第一款 TKI 標靶藥物伊馬替尼。 圖/唐獎教育基金會提供

1845 年 已經有紀錄描述這種疾病,但直到 1985 年才有研究指出,致病的主要成因為患者的骨髓造血細胞中出現染色體易位(chromosome translocation),後續的研究發現患者因此會製造 ABL/BCR 基因嵌合蛋白。未發生易位前的 ABL 蛋白就是一種酪胺酸激酶,在白血球產生的機制中就像個開關,會視需求打開或關起──而當這個開關卡住無法關閉,就會導致白血球無限制的增生──也就是白血病。

BCR-ABL 融合蛋白因缺少調節區域,會不停的與 ATP 結合並將磷酸加到下游分子上,導致細胞不正常增生。為了抑制此現象,經過專一性篩選的小分子藥物可以競爭 ATP 結合的位置,因此下游分子不被磷酸化及活化。 圖/原始論文:O’Dwyer, M. E., & Druker, B. J. (2000).

因此,理論上如果用小零件卡住這個開關,就可以阻止白血球異常增生──也就是針對此酪胺酸激酶接合 ATP 的位置,設計出小分子佔領其位置讓它無法工作(無誤),從而抑制白血球過度產生的訊息傳遞鏈,就可以控制白血病啦!但是,事情當然沒有想像的這麼簡單,這個分子必須要能夠通過臨床測試,不會在殺死癌細胞的同時引發太多副作用才行。

在德魯克爾博士開始實驗的那幾年,慢性骨髓性白血病病患預後的情況一般而言相當糟糕:約有 25-50% 確診的患者會在一年內死亡,臨床現場的經驗促發他不畏重重關卡,決心找到真正有效的治療方法。這個歷經重重測試、與兩個製藥公司的臨床試驗才得以誕生的藥品,就是第一代標靶藥物伊馬替尼(imatinib),商品名「基利克®」(Gleevec®)。這個藥物的誕生,使今日慢性骨髓性白血病患者生存率,與常人並無太大的差異。

-----廣告,請繼續往下閱讀-----

將抗體應用於治療癌症:西妥昔單抗

前面有提及,酪胺酸激酶主要可分成兩種,在細胞膜上的受體及細胞質內運作的酵素。伊馬替尼就是用以阻斷細胞質內酪胺酸激酶運作的小分子;而接下來的故事,則是使用抗體(antibody)來阻斷細胞膜上的受體酪胺酸激酶的作用,也就是另一位唐獎得獎人約翰 ‧ 曼德森的貢獻。

本次獲唐獎生技醫藥獎的約翰 ‧ 曼德森博士,他的貢獻在於推動研發世界上第一款使用抗體抑制 TK 活性作為標靶藥物的西妥昔單抗。 圖/唐獎教育基金會提供

1950 年代,科學家就發現了表皮生長因子(epithelial growth factor, EGF)能夠促進細胞的生長及發育。表皮生長因子事實上不會進入細胞內,會經由細胞膜上的受體(EGF Receptor, EGFR)來產生作用,EGFR 也是種酪胺酸激酶,藉由磷酸化下游分子傳遞訊息。就如前面的故事,當酪胺酸激酶出了錯──在這個例子中,當細胞表面有了太多的 EGFR 或其發生突變──便可能引發細胞的大量增生而形成癌症。

細胞表面的受體(Receptor),有點像細胞膜上專門接收特定分子訊息的小信箱,在 EGFR 的例子中,當它收到了表皮生長因子的資訊,就會進行磷酸化啟動細胞生長發育的訊息傳遞;但當細胞表面的小信箱多得不正常,細胞也會不正常成長──也就是癌細胞的起源。如果想阻止癌症,該如何處理這麼多 EGFR 小信箱?一個讓信箱失效的好辦法:拿長得很像的垃圾信件塞爆它。

這時正是免疫科學中,能夠辨識細胞表面特殊分子的抗體出場的時機了,在 1980 年代初期,免疫科學並不曾被視為癌症的潛在療法。約翰‧曼德森博士與同事成功找出能夠與變異的 EGFR 結合並且抑制其功能的抗體:西妥昔單抗 (cetuximab),商品名「爾必得舒®」 (Erbitux®)。同樣歷經層層測試的西妥昔單抗最終在 2004 年上市,而後成為大腸癌、頭頸癌(範圍涵蓋顏面、鼻咽腔、口腔、咽喉、頸部)等癌症的重要標靶藥物;後續有更多研發跟進使用抗體作為標靶藥物,來抑制受體酪胺酸激酶的活性。

-----廣告,請繼續往下閱讀-----
表皮生長因子受體(EGFR)在接收訊號分子(EGF)後會二聚化(dimerization),使受體細胞內側的活化酪胺酸激酶區域(domain)磷酸化自己,接著活化一連串下游分子。 約翰‧曼德森博士研發出的抗體可以與訊號分子競爭受體結合位,所以受體不會活化;亦或促使細胞回收受體及啟動免疫反應使細胞死亡。 圖/原始論文:Patil, N., Abba, M., & Allgayer, H. (2012)

破解複雜生命謎團的漫長接力賽還未結束

正如細胞中的訊息傳遞,是經歷多種化學物質環環相連的複雜接力賽;人類要治療並解密癌症的致病機轉更是一場漫長的接力賽,是眾多的科學家投入了他們的光陰歲月,才得以逐漸撥雲見日、去破解複雜生命故事中的每個環節。1980 年代杭特博士發現酪胺酸磷酸化機制、辨識致癌基因的基礎研究是標靶治療得以蓬勃發展的基石;而接著 2001 年德魯克爾博士推動的第一支 TKI 標靶藥物伊馬替尼上市,和 2004 年曼德森博士研發的第一個 EGFR 抗體標靶藥物西妥昔單抗上市,也才讓癌症治療的曙光漸漸乍現。直至今日,仍有許多人投入標靶藥物的研發,不論是藥物或是治療癌症的種類都在逐步增加中。

人類與癌症千年的抗爭還未結束,但眼前不再只有一片漆黑;只要我們懷著像是這三位唐獎生醫獎得主;以及眾多科學家們在面對問題時的科學精神:在謎團與困境中不屈不撓,面臨失敗時永不放棄,並總是以最大的努力去找尋重要問題的答案。終有一天,我們能擊敗這個困擾已久的惡夢。

本文由《唐獎教育基金會》委託,泛科學企劃執行

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
乳癌治療不再冗長!新一代標靶療法更省時省力
careonline_96
・2025/04/04 ・2169字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

圖/照護線上

30 多歲的王小姐因為健檢而確診早期乳癌,後續接受手術治療,根據病理報告的結果,醫師建議術後進行 HER2 雙標靶治療。

「醫師,如果做 HER2 雙標靶治療,是不是每次都需要兩、三個小時呀?」王小姐問,由於平時工作相當忙碌,讓她很擔心後續治療的安排。

「依照妳的狀況,HER2 雙標靶治療能夠降低復發風險。」醫師說,「因傳統 HER2 雙標靶治療是透過靜脈輸注給藥,的確需要比較長的時間;現在已經有皮下注射新劑型,每次只要幾分鐘,可大幅縮短治療時間,方便很多!」

ER2雙標靶治療
圖/照護線上

根據腫瘤基因型態分類,約有 20% 屬於「HER2 陽性乳癌」。HER2 陽性乳癌因惡性度較高,過去被認為是預後較差的亞型,容易復發、轉移,但在 HER2 標靶藥物問世後,治療成效已大幅提升。亞東紀念醫院腫瘤科暨血液科蕭吉晃醫師表示,HER2 的中文全稱是『第二型人類上皮成長因子受體』,若腫瘤出現 HER2 過度表現時,代表癌細胞複製能力強、生長快速,也較容易產生抗藥性。

-----廣告,請繼續往下閱讀-----

針對 HER2 陽性乳癌採用 HER2 標靶藥物對症下藥,已成為乳癌治療的準則。HER2 標靶治療的進展也由一開始的單標靶演進到目前的雙標靶,應用期別也由晚期逐步推進至早期。蕭吉晃醫師指出,在晚期乳癌治療,HER2 雙標靶治療比單標靶更有機會能延長整體存活期,並延緩疾病惡化;於早期乳癌治療,則是針對高風險的病患,在術前就建議採用 HER2 雙標靶治療,以提高治療反應,增加達到病理完全緩解(pCR)的機率,降低復發風險。「HER2 雙標靶治療可說對於早期和晚期的患者都扮演重要角色!」蕭吉晃醫師強調。

ER2雙標靶治療,早期、晚期乳癌都受惠
圖/照護線上

惟傳統 HER2 雙標靶治療採靜脈輸注,給藥時間長。蕭吉晃醫師解釋,為避免輸注或藥物過敏反應,首次給藥輸注時間會拉更長,每個藥物都需要約 90 分鐘,因此,光是雙標靶本身的給藥時間就需要約 3 小時,另外還要加上化療、等待、留院觀察時間等,患者每次治療幾乎都要半天起跳,對患者與家人的生活、工作造成影響。

所幸,目前已發展出 HER2 雙標靶藥物新的皮下注射劑型,治療效果與靜脈注射相當,但可大幅縮短治療時間,大幅提升便利性,節省患者時間。蕭吉晃醫師說,皮下注射劑型不用透過靜脈滴注給藥,每次透過皮下注射緩慢推入藥物即可,將時間所短到首次給藥只要 10 到 15 分鐘,後續隨著注射次數增加,若沒有過敏現象,注射時間更可以縮短至 5 至 8 分鐘!同時採用皮下注射也有機會不用用裝設人工血管,也不需要找血管打針,減少患者的心理壓力與不適。

蕭吉晃醫師進一步說明,皮下注射 HER2 雙標靶治療是經特殊設計的劑型,因此能夠確保藥物的分散和吸收,根據臨床試驗結果顯示,皮下注射 HER2 雙標靶藥物的療效與傳統靜脈注射相當,療效與安全性皆已獲得確認,患者可安心選擇。

-----廣告,請繼續往下閱讀-----
皮下注射ER2雙標靶治療,提升便利性
圖/照護線上

HER2 雙標靶治療筆記重點整理

  • HER2 陽性乳癌惡性度較高,過去被認為是預後較差的亞型,容易復發、轉移,不過在 HER2 標靶藥物問世後,治療成效已大幅提升。
  • HER2 雙標靶治療對於早期和晚期的患者都扮演重要角色:在晚期乳癌治療,HER2 雙標靶治療比單標靶更有機會能延長整體存活期,並延緩疾病惡化;於早期乳癌治療,則是針對高風險的病患,在術前就建議採用 HER2 雙標靶治療,以提高治療反應,增加達到病理完全緩解(pCR)的機率,降低復發風險。
  • 相較傳統 HER2 雙標靶治療採靜脈輸注,患者每次治療需耗費數個小時;新劑型採皮下注射,將每次治療時間縮短到僅 5-8 分鐘,患者有機會於一小內完成治療,大幅提升治療便利性。
  • 採用皮下注射 HER2 雙標靶治療,有機會不用裝設人工血管,也不需要找血管打針,減少患者的心理壓力與不適。
  • 皮下注射 HER2 雙標靶藥物的療效與傳統靜脈注射相當,療效與安全性皆已獲得確認,患者可安心選擇。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

careonline_96
558 篇文章 ・ 278 位粉絲
台灣最大醫療入口網站

0

0
0

文字

分享

0
0
0
腹脹、腹痛、體重驟減…竟是後腸腫瘤悄悄作祟!
careonline_96
・2025/04/02 ・2337字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

圖/照護線上

「曾經有位中年患者因為腹部劇痛被送到急診室,檢查發現是左大腸腫瘤導致腸套疊及腸道缺血,於是安排緊急手術切除腫瘤。」台中榮民總醫院大腸直腸外科陳周誠醫師表示,「病理報告顯示腫瘤為神經內分泌腫瘤,且惡性度較高容易復發。」

回溯患者的病史,他有明顯的腹漲、腹部不適、慢慢地體重減輕從 70 公斤降到 56 公斤,與功能性神經內分泌腫瘤有關。陳周誠醫師說,因為腫瘤惡性度較高,患者術後開始接受體抑素類似物治療,至今已超過七年,目前狀況穩定,腫瘤沒有復發的狀況,持續在門診追蹤治療。

神經內分泌腫瘤(Neuroendocrine Tumor/Neuroendocrine carcinoma,NET/NEC),過去稱為「類癌」,是一種會產生神經內分泌激素的腫瘤,這些細胞具有分泌激素的特性,能夠釋放組織胺、多胜肽、和前列腺素等,而在生理功能上造成腹脹、腹痛、腹瀉、體重減輕、臉部潮紅、呼吸急促、心跳加快等症狀。

神經內分泌腫瘤可能出現在多個器官,例如大腸、小腸、胃、胰臟、肝臟、肺臟、卵巢和胸腺等橫跨多個專科領域。陳周誠醫師說,在人類胚胎發育過程中,原始消化管可分成前腸、中腸、後腸,前腸會形成食道、胃等,中腸會形成空腸、迴腸、升結腸、橫結腸等,後腸會形成遠端橫結腸、降結腸、乙狀結腸、直腸等。後腸神經內分泌腫瘤就是發生在左大腸及直腸等部位。

-----廣告,請繼續往下閱讀-----
什麼是後腸神經內分泌腫瘤
圖/照護線上

陳周誠醫師說明:神經內分泌瘤的症狀通常不具有特異性,可能出現腹脹、腹痛、腹瀉、體重減輕、臉部潮紅、呼吸急促、心跳加快等症狀。這些症狀主要是因為腫瘤分泌的物質會影響血管擴張和腺體分泌。由於神經內分泌瘤的症狀不具有特異性,或症狀不明顯,都是水煮青蛙慢慢來,讓患者及醫師不易察覺。

其次,常見之大腸癌(腺癌)原發點發生在黏膜,但是後腸神經內分泌腫瘤生長在黏膜下層,所以在做大腸鏡檢查時可能也不容易發現。

後腸神經內分泌腫瘤可能長在直腸、肛門,有時能藉由肛門指診檢查發現肛門附近的腫瘤,透過手套感覺腫瘤的硬度。陳周誠醫師說,通常摸起來的硬度及大小類似生的1公分以下的紅豆或綠豆,與正常組織的柔軟度不同。

近年來,大家對於神經內分泌腫瘤越來越熟悉,病例數已大幅增加。特殊染色的應用,也提高了神經內分泌腫瘤的診斷準確率。

-----廣告,請繼續往下閱讀-----

如何治療後腸神經內分泌瘤?

針對後腸神經內分泌瘤,主要採手術治療,目的是切除腫瘤並確定診斷。陳周誠醫師說,如果腫瘤靠近肛門而且腫瘤大小小於 1 公分,可以經由肛門進行切除,不需要切除整段腸道;如果腫瘤位於較高位置或比較大,則需進行腸道部分切除並吻合。切除的檢體會進一步送檢驗,檢查淋巴結並進行特殊染色,以確認腫瘤的性質。

如何治療後腸神經內分泌腫瘤
圖/照護線上

腫瘤切除後,病理醫師會根據癌細胞有絲分裂數目分級,分為 Grade 1、Grade 2、Grade 3和混合型。如果功能性症狀明顯或病人不適合切除腫瘤手術,則可能需要使用藥物治療,如體抑素類似物(Somatostatin Analogue),體抑素類似物能夠抑制腫瘤細胞增生、促進腫瘤細胞凋亡,達到抗腫瘤的治療效果;也能夠控制功能性症狀,有助於降低神經內分泌瘤復發的風險。陳周誠醫師表示,體抑素類似物通常採肌肉注射每 4 週一次,目前有新型長效體抑素注射凝膠,採深層皮下注射,注射體積很小,僅 0.5 ml,有助於減輕注射時的不適,就醫時間短便利性較高。

體抑素類似物幫助降低復發風險
圖/照護線上

筆記重點整理

  • 神經內分泌腫瘤是一種會產生神經內分泌激素的腫瘤,這些細胞具有內分泌激素的特性,能夠釋放組織胺、多胜肽、胃泌素和前列腺素等,而對生理功能造成影響。
  • 後腸神經內分泌腫瘤可能出現在橫結腸、降結腸、乙狀結腸、直腸等部位。症狀通常不具有特異性,可能出現腹脹、腹痛、腹瀉、體重減輕、臉部潮紅、呼吸急促、心跳加快等。
  • 針對後腸神經內分泌腫瘤,主要採手術治療,目的是切除腫瘤並確定分期及惡性度分級診斷。若腫瘤惡性度較高或症狀較明顯,可能需要使用藥物治療,如體抑素類似物,幫助降低神經內分泌腫瘤復發的風險。
  • 體抑素類似物通常採肌肉注射每 4 週一次,目前有新型長效體抑素注射凝膠,採深層皮下注射,注射體積很小,僅 0.5 ml,有助於減輕注射時的不適,就醫時間縮短便利性較高。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

careonline_96
558 篇文章 ・ 278 位粉絲
台灣最大醫療入口網站