0

0
0

文字

分享

0
0
0

蟑螂腳的神經律動!The Cockroach Beatbox

Scimage
・2012/03/24 ・495字 ・閱讀時間約 1 分鐘 ・SR值 453 ・五年級

-----廣告,請繼續往下閱讀-----


腦科學的研究進步神速,但是神經科學的實驗總是讓人覺得離生活遙遠,好像只有非常貴重的儀器還有非常複雜的樣品處理才有可能在實驗室量測到神經細胞的反應。這個演講做了一個很好好的展示,怎麼利用日常生活都看到的的生物,蟑螂,還有不難架設的裝置,來進行真正的神經科學研究。

首先抓起蟑螂(@_@)丟到冰水裡,蟑螂就會乖乖的不動休息了,然後剪下蟑螂的一隻腳。蟑螂的腳毛上有神經細細胞負責傳遞震動給蟑螂的腦,所以只要把腳用兩個大頭針固定住,接上訊號放大器,就可以看到蟑螂的腳是怎麼把神經訊號傳送出來。在很多噪聲中,偶爾會有比較大的神經訊號spike,因為腳毛細細胞是偵測震動,所以只要吹吹風就可以改變輸出spike的數目,蟑螂就是用spike的數目來偵測環境震動的強度。

當然蟑螂的腳也會在收到腦的電訊號時運動來逃跑,這時候可以把隨身聽的音源線接給蟑螂腳,就可以看到蟑螂腳隨著音樂抖動起舞。 當然這樣的實驗(如果想做的跟展示的人一樣) 還是需要一點點電子基礎來做簡單訊號放大跟擷取,不過其實也不真的困難,或許有心的教師或是同學可以在課堂上做出類似的展示也說不定 !

-----廣告,請繼續往下閱讀-----
文章難易度
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
解密離岸風電政策環評:從審查標準到執行成效,一次看懂
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/21 ・3546字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

政策環評是什麼,跟一般環評差在哪?

隨著公共建設的規模越來越大,傳統的環境影響評估(EIA),難以應對當今層層疊疊的環境議題。當我們評估一項重大政策時,只看「單一開發案」已經不夠,就像評估一棵樹,卻忽略了整片森林。因此,政策環境影響評估(SEA)應運而生,它看樹,也看森林,從政策的角度進行更全面的考量與評估。

與只專注於「單一開發案」的個案環評不同,政策環評更像是一場全面性的檢視,強調兩個核心重點:「整合評估」與「儘早評估」。簡單來說,這不再是逐案評估的模式,而是要求政府在制定政策時,就先全面分析可能帶來的影響,從單一行為的侷限中跳脫,轉而聚焦在整體影響的視角。無論是環境的整體變化,還是多項行為累計起來的長期影響,政策環評的目的就是讓這些潛在問題能儘早浮現、儘早解決。

除此之外,政策環評還像是一個大型的協商平台,以永續發展為最高指導原則,公開整合來自不同利益團體、民眾與各機關的意見。這裡,決策單位不再只是單純的「評分者」,而是轉為「協調者」或「仲裁者」,協調各方的意見看法在這裡得到整合,讓過程更具包容性。

-----廣告,請繼續往下閱讀-----

政策環評並沒有所謂的「否決權」,而是側重意見的蒐集與整合,讓行政機關在政策推動時,能更全面地掌握各方意見。政策環評旨在建立系統化、彈性的決策評估程序(包含量化、特徵化等評估方式),也廣納社會面或民眾滿意度等影響因子,把正式與非正式的作法一併考量進去。再來,決策程序中能層層檢討、隨時修正,也建立了追蹤機制和成效評估標準(如環境殘餘效應、累積效應等),透過學習來強化決策品質與嚴謹度。就像一場球賽,隨時根據變化、調整策略。

這樣的制度設計,就非常適合離岸風電這類規模大、跨區域、影響層面廣泛的能源政策評估,讓我們可以在政策推動初期就想到整個工程對環境、產業發展與社會的諸多影響,也為後續政策執行奠定更穩固的基礎。

政策環評並沒有否決權,而是重在整合各方意見、量化影響以及建立追蹤與修正機制,這樣的制度設計便適用於離岸風電等大型政策評估。圖/envato

離岸風電為何需要的是政策環評?

離岸風電是能源轉型的重要策略之一,但這不是只在某塊空地上架幾個風車,而是要在廣闊的大海中進行大規模建設,牽涉的不僅是發電,還涉及海洋保育、航空交通、水下文化資產等議題,更與當地漁民的權益息息相關。

這樣的大型離岸風電工程,因海洋環境的風險和不確定性極高,很容易讓人擔心生態影響。如何在海洋生態保護和綠能發展之間找到平衡點?這就需要政策環評的把關,從多方檢視這些複雜的挑戰,確保政策推行既能穩妥,又能達成發電目標。

-----廣告,請繼續往下閱讀-----

2016 年 3 月,經濟部自願提出「離岸風電區塊開發政策評估說明書」,是臺灣首次針對再生能源政策所進行的政策環評。根據這份評估說明書,政府將採分期公告、逐年檢討的方式,每三年開放 0.5~1 百萬瓩(GW)的電量額度鼓勵業者投入開發。當時環保署(現為環境部)歷經九個月召開 2 次意見徵詢會議,蒐集環評委員、專家學者、相關機關、民眾等意見,最終於同年 12 月的環評委員會作出徵詢意見。這些協商和檢討的過程,讓政策「名正言順」,得以充分顧及各方利益與生態平衡。

共通性環境議題與因應對策

在「離岸風電區塊開發政策評估說明書」中,環評會議盤點了開發過程中共通的環境議題。

首先,對於海洋生態保育的重點,特別是對中華白海豚的保護。環評會要求風機基座必須距離白海豚棲地1公里以上,以減少對其生態的干擾。實際上,這項規範在後續的實務執行中更為嚴格,例如,福海二期示範風場已退縮到 2.5 公里外,臺電二期風場甚至退到 4.2 公里外,顯示政策環評確實發揮了實質作用。此外,針對施工期間的聲音干擾,要求施工需有 30 分鐘以上的打樁緩啟動時間,並限制聲量不得超過 180 分貝等。

針對鳥類保育,政策環評也訂立了具體規範。其中,包括風機之間必須留設 500 公尺以上的鳥類穿行廊道,並在施工期間避開每年 11 月至隔年 3 月的候鳥過境期。同時,為確保這些措施確實生效,工程方也被要求設置「鳥類活動監測系統」,持續追蹤、評估風場對鳥類的影響。

-----廣告,請繼續往下閱讀-----

此外,環評會也確立了「先遠後近」的開發原則,要求優先開發較單純的航道外側區塊,待累積足夠經驗及相關資料後,再進行近岸區域的開發。這項原則考量了近海生態系的複雜性,也顧到養殖漁業的漁民權益,展現出政策環評在平衡發展需求與環境保護上的價值。

新一代的審查機制:達成能源轉型及環境保護雙贏

為提升環評效率並確保審查品質,環境部參考過去離岸風電審查經驗,制定「風力發電離岸系統開發行為環境影響評估初審作業要點」,建立了全新的二階段審查機制。

環境部推動二階段審查機制,提升離岸風電環評效率與審查品質。圖/envato

這套新機制分為兩個階段。第一階段,就像「初步檢查」,由環境部依照檢核表進行初審,並由環評審查委員會執行秘書邀集 2-5 位環評委員進行初審,通過第一階段初審之業者,可取得經濟部遴選資格,其初審結果有效期為兩年,必要時可申請展延一年。接著進入「第二階段」,開發單位檢附目的事業主管機關核配的容量證明文件等資料,提供更詳細的環境影響說明書以進行實質審查。

檢核表明確規範了 15 大項審查事項、112 項檢核項目,涵蓋開發案的全生命週期。

-----廣告,請繼續往下閱讀-----

工程面,包含風機及海上變電站基礎設置、海域電纜路線規劃、陸域設施工程等硬體設施的規範。其中,風機基礎設置必須避開海岸保護區、河口、潮間帶等環境敏感區域,且須進行地震危害度分析。海域電纜部分,除特殊情形外,埋設深度至少須達 1.5 公尺,且不得跨越中華電信海底電纜 1 公里的範圍。

環境保護上,檢核表則對施工噪音管制訂立了明確標準。舉例來說,打樁期間警戒區 750 公尺範圍內的水下噪音不得超過 160 分貝,且必須全程採用最佳噪音防制工法。同時,每個開發案或聯席審查的風場,同一時間內只能進行一支基樁施作,而日落前一小時到日出前也不得啟動新的打樁作業。

環境監測計畫更是檢核表中的重點,分為「施工前、施工期間、營運期間」三階段,每個階段都規定了詳細的監測要求(包括海域底質監測、水下噪音監測、鯨豚目視監測等)。以鯨豚監測為例,每年需執行20趟次,四季中每季至少執行 2 趟次。此外,所有監測數據都必須上傳至環境部「環保專案成果倉儲系統」(https://epaw.moenv.gov.tw/)供各界查閱。

這套標準化的審查機制不僅解決了「同一風場可能有多家廠商重複調查或審查」的資源浪費,也透過明確的檢核項目,讓開發單位在規劃階段就能掌握更具體的環境保護要求。不僅如此,該機制亦確保了環境保護標準前後一致,避免不同案件之間標準不一。

-----廣告,請繼續往下閱讀-----

結語

透過新的審查機制,環境部正積極推動再生能源開發案的環評審查作業,在提升行政效率之餘,也確保環境影響評估的品質,支持臺灣的離岸風電開發及國家能源轉型政策,也做好把關。藉由標準化檢核表和二階段審查制度,期待能在推動能源轉型的同時落實環境保護。

為確保制度能持續精進,環境部每半年至一年會進行制度檢討,並持續公開所有環評書件於「環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)。此外,環評會議召開前一週,也必須在指定網站公布開會訊息,讓民眾能申請列席旁聽或發表意見。透明化措施一方面展現了政府推動永續發展的決心,另一方面也確保全民能共同參與監督離岸風電的發展過程。未來,這套制度將在各界的檢視與建議中持續完善,為臺灣的永續發展貢獻心力,發揮環評作業的最大效益。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

7
3

文字

分享

1
7
3
看見蟑螂就害怕?為什麼我們總特別怕牠?
PanSci_96
・2023/08/26 ・3929字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

***溫馨提醒,本文有小強畫面,請斟酌觀看***

唐伯虎點秋香讓小強成為蟑螂的代名詞。圖/經典放映

周星馳的唐伯虎點秋香上映後,讓小強成為蟑螂的代名詞,但你看到小強的瞬間,是順手將它解決,還是尖叫著逃跑呢?

台灣曾做過調查——不做調查也知道,蟑螂絕對是大家最討厭的害蟲第一名。美國甚至做過大規模調查,有超過四分之一的美國人表示自己最討厭的害蟲就是蟑螂,是第二名蜘蛛的兩倍之多!

所以,若要幫全人類找一個共同的敵人,蟑螂肯定算得上是一個。

但過去的日本節目中,卻發現北海道人竟然不怕蟑螂,難道他們都是勇者嗎?或是我們能從他們身上找到克服蟑螂恐懼的方法?

-----廣告,請繼續往下閱讀-----
北海道人好像沒看過蟑螂?!圖/Hituzi Chang

恐懼源自於未知?北海道人為什麼不怕蟑螂

你是不是光想到蟑螂的外表,就覺得全身起雞皮疙瘩?

面對蟑螂還能如此淡定,甚至能覺得牠們可愛的北海道人,別說你不敢相信,一群演化心理學家也是覺得匪夷所思,開始針對這些人做起了研究。

演化心理學就如字面上的意思,是將達爾文演化論套用到現代人的心理特質上,試圖以天擇的角度解釋許多無法解釋的人類心理現象。

例如近年來被診斷率越來越高的注意力不集中與過動症,也就是所謂的 ADHD,在演化心理學看來其實不是需要治療的「病」,而是環境變化太大導致的適應不良。想像一下,如果你是上萬年前生活在野外的人類,每天都必須在山林裡一邊躲避猛獸、一邊想辦法靠打獵與採集獲取食物。

-----廣告,請繼續往下閱讀-----

在這種環境下,眼觀四面、耳聽八方,且隨時保持能戰能跑的機動性,反而都是生存必須的特質,自然會成為演化過程中被保留下來的心理特質。隨著人類社會在近幾百年快速進步,我們不需要再去當高風險的獵人,但那些經年累月刻印在基因裡的特質還來不及被汰換掉,反而讓這些天生的獵人無法適應現代生活。

獵人的基因反倒讓人無法適應現代生活。圖/Giphy

同樣的道理,演化心理學認為人類對蟑螂的莫名恐懼,其實是來自於大腦主動識別並排斥潛在威脅的生存機制。在醫療資源匱乏的過去,隨便受個傷、生個病都有可能是致命的,人類只能戰戰兢兢,想辦法避開任何可能會傷害到自己的東西。這讓我們在無法辨別敵友時,會本能地戒備未知的東西。

即使從生態系的角度出發,同時兼具環境清道夫與許多動物主要食物來源的蟑螂,是維持自然平衡不可或缺的益蟲。但在無法感受到牠們好處的普通人眼裡,經常出沒於被我們視為髒亂、有害健康的垃圾與廚餘堆的蟑螂身上,只會被貼滿很髒,甚至是有害的負面標籤,當然不可能有好印象。

我猜這時有些觀眾心中閃過了「那又如何」、「我就討厭蟑螂啊」的念頭,但千萬別小看這份理所當然。雖說蟑螂因為生存與繁衍力強,被人類刻意撲殺這麼多年都還沒有要絕跡的意思,但其他昆蟲就沒那麼幸運了。由於人類對昆蟲,特別是只占大約10%的害蟲抱有負面觀感,使得這些小生物常在生態保育的討論中被冷落,甚至就這樣默默絕種,在地球生態系中留下無法彌補的缺口。久而久之,嘗到苦果的還是人類自己。

-----廣告,請繼續往下閱讀-----

話說回來,既然演化心理學表明恐懼來自於未知,那只要我們學到關於這些昆蟲的正確知識,就能扭轉刻板印象了,對吧!那麼看完泛科學,想必你就能擺脫對小強的恐懼!

只要學到正確知識,就能對蟑螂的恐懼了嗎?圖/Giphy

——雖然我很想這樣說,但很可惜,事情沒這麼簡單。還記得北海道人的訪問嗎?按照演化心理學,這些從來見過蟑螂本螂的北海道人,既然對蟑螂完全陌生,那麼應該不會有這麼正向的反應。就算不覺得被威脅,至少也該有點基本的戒備才是啊?

一篇發表於 2021 年的日本研究,正是想探討這個落差。研究團隊分析過往研究,發現「增加昆蟲相關知識」與「減輕恐懼」之間似乎沒有必然的關聯。而且,與出身郊區的人相比,從小生活在都市的人對於昆蟲竟然普遍有著較強、也較難改變的昆蟲嫌惡。

深入研究後,才發現,原來連怕不怕蟑螂這種事都得要看出身的。

-----廣告,請繼續往下閱讀-----

都市化—嫌惡假說

在針對13,000名日本人進行調查後,研究團隊提出了「都市化—嫌惡假說」。此假說以都市化為起點,拆解出兩條人類培養對昆蟲嫌惡感的路徑。

你不該出現在我家!由破壞安全感引發的厭惡

首先,由於都市化導致自然環境縮減,無法適應都市環境的昆蟲大量減少,相對的,像蟑螂、蒼蠅、蜘蛛等適應良好的昆蟲,數量不可避免地會增加,也更容易出現在室內環境裡。對我們來說,穩固的牆壁與天花板會帶來與外界隔絕的安全感。因此,當有不請自來、侵門踏戶的東西出現,除了對昆蟲本身的厭惡,我們對所處環境原有的信任也跟著崩塌了。

回想一下,上次在家裡或辦公室茶水間看到蟑螂,就算當下就把它消滅了,在接下來的一段時間內,是不是會到處疑神疑鬼,總覺得某些角落或通風管裡藏著一支蓄勢待發的蟑螂大軍,準備趁你不注意時再出來嚇你一跳?

對蟑螂的厭惡可能源自於牠破壞了你對環境的信任感。圖/Giphy

同樣的,就算不是在你家,而是外出用餐時在餐廳裡看見蟑螂,基於恨烏及屋的情感連結,你對於餐廳的信任感也跟著下降,甚至激動一點當場走人也有可能。但換個場景,假如你今天是在馬路上看見蟑螂,或許還是會覺得害怕、覺得噁心,但反應很可能不會像在家裡這麼大。

-----廣告,請繼續往下閱讀-----

這便是都市化—嫌惡假說第一條路徑強調的重點。在都市化程度高的環境裡「室內」跟「室外」的界線變得分明,因此當有不該存在的東西出現,我們的反應也會更強烈。

因為不熟,所以討厭?

至於都市化—嫌惡假說的第二條路徑,是延續演化心理學裡,人們對於不了解的事物會產生恐懼的觀點。但比起針對單一種昆蟲,都市化—嫌惡假說發現,都市化環境會普遍降低其居民接觸大自然的頻率。就算是出生於郊區環境的人,在都市生活久了也會喪失這股熟悉感,甚至開始對大自然出現排斥心理。

同樣的,今天即便你是個都市小孩,只要到郊外生活夠久,而且自發地去接觸自然環境,那份對昆蟲的恐懼便會在洪水療法下逐漸被減敏感。說不定某天你會跟北海道人一樣,開始欣賞蟑螂的可愛之處喔!

說不定某天你會跟北海道人一樣,開始欣賞蟑螂的可愛之處!圖/Hituzi Chang

從「害怕蟑螂」看見早期教育

除了解釋了我們對蟑螂的厭惡,都市化—嫌惡假說其實也點出了現代社會一個很重要的議題,那就是在現代科技的干擾下,我們接觸真實世界的頻率正在下降,無形中也失去不少珍貴的「經驗」。

-----廣告,請繼續往下閱讀-----

我們的大腦仰賴經驗法則才能運轉,想學習新技能、建立穩固的知識結構,都需要持續且頻繁地暴露在特定刺激下。讀書、背講義是一種刺激,與人社交締結關係是一種刺激,走出戶外接觸山林也是一種刺激,任何一種刺激少了,我們就會錯過發展相應能力的機會。

就好像最近幾年特別被重視的語言教育、科學教育、情感教育,甚至是平權與美感教育,其實都是在努力把握小孩子學習的黃金期,讓他們盡早接觸到足夠的相關刺激,打下扎實基礎。這在教育心理學叫做「早期暴露」(early exposure),這個理論反對只把重心放在學齡後與學校教育的傳統觀念,認為父母在學齡前給予孩子多元化刺激同樣重要。

不需要花大錢上才藝班,平時多帶孩子出門走走,或是準備不同的課外讀物與嗜好,都是很好的新奇刺激,不單能增進大腦發展,還可以培養認知彈性,讓他們在未來遇到未知事物時能保持好奇心、積極自發地去吸收新知,而非縮在固有觀念裡。

早期暴露對兒童發展學習尤為重要。圖/Pexels

這個乍看很冷門、沒什麼了不起的研究,其實衍生出來的意義可是與我們息息相關。就好像我們常說在家裡看到一隻蟑螂,代表看不見的地方還有十隻。怕不怕蟑螂事小,因為享受現代科技的便利而錯失與真實世界互動的經驗,才是最得不償失的。

-----廣告,請繼續往下閱讀-----

要在都市中增加對昆蟲的好感不容易,但也有像是中山女中蔡任圃老師,成功透過一系列的觀察、研究等課程活動,讓許多學生愛上了蟑螂這個小生物。那麼你呢,你覺得你還有機會跟小強達成和解嗎?

  1. 這還用說嗎?馬上當成寵物養起來!每天一起睡
  2. 先不要,我們彼此人蟑殊途不犯河水
  3. 絕對不可能,只要看到蟑螂,這個房子我就不要了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1262 篇文章 ・ 2394 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。