Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
1

文字

分享

0
0
1

為什麼箱水母能號稱是「地表最毒動物」?──《毒特物種》

PanSci_96
・2018/06/22 ・3124字 ・閱讀時間約 6 分鐘 ・SR值 534 ・七年級

毫無標準武器配備,卻有一瞬間讓你致命的「孔蛋白」

Chironex 屬的水母。圖/Guido Gautsch [CC BY-SA 2.0] via wikipedia

箱水母是刺絲胞動物門中毒性最強的物種。刺絲胞動物門包括了水母、珊瑚和海葵,屬於最早出現的動物支系。大約六億年前,在骨骼、外殼和腦出現之前,就和其他的動物分道揚鑣了。身為掠食動物,刺絲胞動物缺少了我們所認知的標準武裝,而是在觸鬚上布滿許多含刺的細胞,能在剎那間送出致死的毒液。

箱水母毒液中最致命的成分為造成孔洞的蛋白質,稱為孔蛋白(porin),能在細胞膜上打出孔洞。箱水母身上的孔蛋白,會在紅血球上穿孔,使得紅血球中的鉀流出來,然後血紅素也流了出來,最後紅血球破裂。這樣的細胞破裂稱為溶解作用(lysis),接下來會造成更嚴重的後果,那些鉀的釋出才是水母的致命之處。孔蛋白使得血液中的鉀大量增加,在幾分鐘之內便讓心血管系統崩潰。其他與箱水母類似的水母所製造的孔蛋白也已經找出來,研究其特性並且加以定序了。孔蛋白是一種古老的毒素,和細菌中的孔蛋白很相似。不過箱水母的毒液裡還有許多其他成分,包括類似蛇製造的蛋白質和蜘蛛製造的酵素。

孔蛋白示意圖。 圖/Zephyris [CC BY-SA 3.0] via wikipedia

美國國家科學基金會(National Science Foundation)把箱水母中最大的澳洲箱水母(Chironex fleckeri)稱作「地球上最毒的動物」。這是什麼意思?是能產生最致命的毒液嗎?每個研究毒液的科學家,在其生涯中都會被問及這類問題。這是一種有既定觀點的提問。我們在談論毒液強弱時,都是想著對人類的毒性高低。拿份報紙,看一下跟分泌毒液動物有關的新聞標題,不論這則新聞說的是小男孩在野外活動時被毒蛇咬了,或是發現了一種新毒蛙,怎樣都好,吸引人注意的永遠是這個動物有多毒。那些看似體型小又脆弱的動物,具有擊敗人類的力量,想到這就讓人惴惴不安。箱水母不過就是一團黏呼呼的玩意兒,卻有辦法在五分鐘內殺死一個人。我們可能不經意踩死蜘蛛或蠍子,而有些蜘蛛或蠍子的毒液也可以輕易殺死人類。

在澳洲有「小心水母」的告示牌。圖 / Wikipedia

毒液所造成的威嚇在演化上至關緊要。當某個個體生存和繁殖能力超越其他個體,天擇便會發揮作用。任何會直接造成生存的變化,都會對物種帶來深遠的影響,並且可能左右這個物種的演化。能分泌毒液的動物和某些物種的關係極為緊密,特別是被當成獵物的物種。但是那些毒液對於非獵物的物種而言也一樣致命,因此分泌毒液的動物也影響了獵物以外物種的演化。很多時候這些物種包括了人類。在生態系裡許多複雜的交互作用中,這些動物占有重要的地位,並且影響了地球上的其他物種。

-----廣告,請繼續往下閱讀-----

如何知道這個東西有多致命?看看「LD50」

所以說,哪種毒液最為致命,受到幾種因素的影響。最簡單的答案是:能直接注入身體中的毒液最為致命。安潔兒在那天清晨便得到了慘痛的經驗,水母的刺差點殺死了她。有數種科學方法可測量「致死性」(deadliness)的高低,最常用的量表是半致死劑量(median lethal dosage),簡寫成 LD50。LD50 是指能殺死一半實驗動物所需的毒素劑量,通常以毫克/公斤表示:一毫克/公斤的劑量代表在兩公斤的動物身上要施用兩毫克毒素。實驗動物通常是大鼠或小鼠,但是科學家在測試不同的毒素時,也會使用到蟑螂或猴子等各種動物。

LD50 是毒性高低的約略值,某個成分的 LD50 越低就越毒,表示只要些許劑量就會有致命的效果。水的 LD50 高於九千毫克/公斤,所以被認為是無毒的,但要是一口氣喝下六公升以上,就可能會致命(不建議嘗試)。肉毒桿菌毒素(botulinum toxin)的 LD50 估計約為一奈克/公斤(奈克是毫克的百萬分之一),是已知對人類最強的毒素。僅六十奈克的肉毒桿菌毒素就可以讓一般人死亡;只要一小把平均施用下去,就可以殺死全世界的人類。但是許多名流或是太在意皺紋的人,喜歡把少量(例如十分之一奈克)這種化合物(藥名為保妥適〔Botox〕)注射到前額。

使用 LD50 的麻煩之處,在於這個數值只和「致死」有關。實際上,施用的方式會影響 LD50 的高低(例如注射到實驗動物的靜脈或是肌肉中),也牽涉到實驗的物種。在五十三頁的表格中,實驗動物是小鼠,即使如此,施用毒素的方式依然重要。如果科學家把最致命毒蛇海岸太攀蛇(coastal taipan, Oxyuranus scutellatus)的毒液,直接注入小鼠的靜脈中,那麼 LD50 為 0.013;如果使用皮下注射,毒性便降了幾級,LD50 變成 0.099,相差幾乎十倍。此外,我們還沒有測量所有有毒物種的數值,內陸太攀蛇(inland taipan, Oxyuranus microlepidotus)與海岸太攀蛇的親緣關係相近,但是我們不知道哪一種比較毒,因為前者的毒液只進行過皮下注射測試,還沒有靜脈注射的 LD50 資料。

圖/馬可孛羅出版提供

進行 LD50 的測量,需要小心地取得毒液,然後在實驗室中研究毒液的效應。科學家已經研究了很多種能夠分泌毒液的動物,依然還有一些尚未寫在科學文獻上,牠們可能是世界上最毒的動物。

-----廣告,請繼續往下閱讀-----
藍圈章魚被認為是世界上已知最毒的動物。 圖/David Breneman [CC BY-SA 3.0] via wikipedia

藍圈章魚(blue-ringed octopus, Hapalochlaena)的毒液中,最主要的成分是河豚毒素(tetrodotoxin),這種毒素的 LD50 是 0.0125 毫克/公斤,可是沒有人測試過天然毒液的強度。安潔兒被夏威夷箱水母(Hawaiian box jelly, Alatina alata)所刺傷,牠的孔蛋白LD50 範圍為 0.005 到 0.025 毫克/公斤,可是沒有人知道一條帶刺的觸鬚會施加多少毒素。類似的狀況還有砂葵(zoanthid),這一類珊瑚具有沙海葵毒素(palytoxin),這種毒素的 LD50 為 0.00015 毫克/公斤,是地球上最毒的物質之一,但是為何這種毒素會出現在毒液中而非散布在全身(用以對抗掠食者),依然是個謎。

許多動物所分泌的毒液還未進行過 LD50  測試。喇叭毒棘海膽(flower urchin, Toxopneustes pileolus)的毒液可能是地球上最毒的了,是已知唯一會致人於死的海膽,與牠親緣關係相近的是白棘三列海膽(collector urchin, Tripneustes gratilla),將其毒素以腹腔注射方式得到的 LD50 推估為 0.05 毫克/公斤,但是沒有人進行過實驗。令人懼怕的伊魯坎吉水母(Irukandji jellyfish)是箱水母的一種,大小不到兩公分,能夠引起伊魯坎吉症候群(Irukandji syndrome),惡化時會造成大腦出血而致死。除非我們真的知道是哪些水母引起這種症狀(目前找到至少有十六種水母是罪魁禍首),並且收集到足夠多的毒液好進行致死劑量實驗(這並不容易,因為有些物種只有拇指頭大小),無法知道牠們真實的毒性有多高。

由於 LD50 是在小鼠或大鼠身上測試而得,並不絕對表示那些毒素對人類而言就是那般危險。不同的物種對毒液的反應各自不同。舉例來說,天竺鼠對黑寡婦蜘蛛毒液的敏感程度,要高出小鼠十倍,高出蛙類兩千倍。某種動物的毒液對大鼠的 LD50 低,並不表示你被那種動物螫咬後一定會死;LD50 高也並不表示對人類安全無虞。研究致死性較好的方式,或許是比對個案的死亡率:人類的死亡百分率。例如每年被澳洲箱水母螫傷的人類,有百分之 0.5 會死亡。即使是可怕的內陸太攀蛇,由於抗毒素已經在一九五六年發展出來,實際上已經不再高度致死了(在此之前,造成的死亡率幾乎達百分之百)。

 

 

本文選自泛科學2018年6月選書《毒特物種:從致命武器到救命解藥,看有毒生物如何成為地球上最出色的生化魔術師》,馬可孛羅出版社。

-----廣告,請繼續往下閱讀-----





-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2442 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

9
1

文字

分享

1
9
1
五花八「門」——各種肛門的特異功能
阿咏_96
・2021/07/24 ・2618字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

一般說到肛門,我們常常會用其他詞來表示,例如「後庭」、「菊花」等等,好像是一個「不可說」的部位一樣,平常和別人聊天時,萬一有人脫口而出它的名字,當下就會想立馬播放「最怕~空氣突然安靜~」尷尬的氣氛幾乎可以讓人窒息。

但很多人不知道的是,「肛門」在演化上有很重要的意義,也跟我們的起源有很大的關係。平常不好提沒關係,我們今天就要來大談特談肛門的厲害!

一切才「肛」開始

看到標題先別驚訝,這個故事要從胚胎時期講起,最早期的胚胎稱為「囊胚 (Blastula) 」後來發育成「原腸胚」時,會形成胚孔 (Blastopore) ,而這個開口之後發育成我們的肛門,因此人類屬於「後口動物 (Deuterostome)」,也就是嘴巴是後來形成的,並非由胚孔發育而來,相反的,胚孔之後發育成嘴巴的,稱為「原口動物 (Protostomia)」;而後口動物除了我們脊索動物門(Chordata) 之外,也包含棘皮動物門 (Echinodermata) ,例如海星,以及有「超強肛門」的海參(至於牠的肛門到底有多厲害,看到最後一段就知道了)。

原口動物與後口動物胚胎發育過程的差異。圖/ Wikimedia common

有肛門?沒肛門?

以人類來說,我們將食物從嘴巴送入體內,中間經過消化系統的處理,最後食物殘渣從肛門排出體外;那現在想像一下,如果消化道的尾端沒有像肛門這樣的開口,殘留的食物便會逆流而上,從原本進食的地方排出去⋯⋯沒錯!從人類的角度來看或許會覺得怪怪的,但數億年前,許多在海裡生活的生物都是只有單一開口,由同一個地方進食、排出殘渣,在現存的生物中,例如海葵、珊瑚等,牠們在進食時一次吃一團食物,然後再從同一個孔排出去,也因此這些生物的消化囊就像是假日大賣場的單道停車場,因為空間有限,必須一進一出才能再進,攝取進體內的量便有一定的限制。

-----廣告,請繼續往下閱讀-----
海葵的肛門。圖 / flickr

肛門的出現,就像是把停車場變成了高速公路,有了交流道之後,生物不需要等上一餐排出去才能繼續吃,而能夠一餐接著一餐,而且消化道變長之後,逐漸分隔成不同區域,各自具有獨特的微生物相,也形成能吸收不同的營養,讓生物能夠從攝食中獲取養份的效率提高,與生物的體型變大、變長以及移動方式的改變也有密切的關係。

酷肛門!

在了解肛門在生物體中的重要程度後,如果你以為肛門只能把食物殘渣排出去,那就太小看它了~接著我們來聊聊世界上百百款的肛門吧!

首先,有些動物的消化道、生殖器和泌尿道的末端合併成一個開口,稱為泄殖腔(cloaca) ,能夠排出糞便、尿液、卵子或精子,像是鳥類、兩棲爬蟲類都有這樣的構造,泄殖腔有時候很方便,譬如雌鳥在和不喜歡的雄鳥交配的時候,就能夠輕鬆地將精子排出去。至於為什麼有些動物的生殖孔和肛門是分開的,但位置卻很接近,這又是另一個故事了。

鳥類的泄殖腔。圖 / Judi Lapsley Miller 

除了泄殖腔外,前面提到海參有「最強肛門」,這不是亂說的,因為海參的肛門不只是一個排廢物的出口,還能作為牠的第二張嘴,可以吞食一些藻類,金價ㄟ「後庭進食」就是海參啦!除此之外,海參消化道的末端旁分出一對樹枝狀的器官,稱為呼吸樹 (respiration tree),可以透過肛門肌肉收縮,將海水吸進體內,藉由吸收海水中的氧氣進行氣體交換,也就是用肛門呼吸(屁之呼吸啾4尼啦~)。

-----廣告,請繼續往下閱讀-----

如果你覺得肛門可以進食和呼吸還不夠看,那接著更猛的是——肛門還可以發動攻擊。海參體內有一個防禦器官稱為「居為業小管 (Cuverian tubules)」,在遭受機械刺激時,會從肛門排出一種白色細絲,這些細絲在海水中會變長,與其他物體接觸時還會變得黏黏的,可以用來纏住捕食者,而且對某些魚類來說是有毒的。

除此之外,有些海參的肛門還有「肛齒 (anal teeth) 」,顧名思義就是長在肛門的牙齒,可以避免一些不請自來的生物,在牠的後庭來去自如;但是其實也有生物能夠自由進出海參的肛門,例如隱魚 (pearlfish) ,牠們不會被居為業小管攻擊,而且也對海參排出的毒素有較強的抵抗力,所以當海參張開肛門呼吸時,有時候你可以看到在裡面蠕動的隱魚們 say hi~,正所謂「全家就是你家,你的肛門就是我家啦!」

最後也是我覺得最酷的是,不是所有生物的肛門都像便利商店一樣 24 小時營業的,2019 年的一篇研究發現有一類櫛水母 Mnemiopsis leidyi 的肛門在排便的時候出現,之後就消失了,而重複排便間隔的時間長短則和體型大小有關,例如幼體約十分鐘、成體一小時左右,換句話說,這是一種「間歇性肛門」,科學家們認為這個發現對肛門演化過程有很大的幫助,若繼續深入研究,有機會找到永久性肛門是如何演化出來的。

關於肛門的故事,大概可以聊個三天三夜,例如肛門的演化也是非常精彩,下次當你提到肛門,但旁邊的人露出「假裝不認識你」的表情時,就可以跟他解釋肛門有多偉大、介紹那些超酷的肛門,然後他就會⋯⋯(自行想像)

-----廣告,請繼續往下閱讀-----
  1. Nielsen, C., Brunet, T., & Arendt, D. (2018). Evolution of the bilaterian mouth and anus. Nature ecology & evolution, 2(9), 1358-1376.
  2. Hejnol, A., & Martín-Durán, J. M. (2015). Getting to the bottom of anal evolution. Zoologischer Anzeiger-a Journal of Comparative Zoology, 256, 61-74.
  3. What is Deuterostomes?
  4. Superphylum Deuterostomia
  5. Dean, R., Nakagawa, S., & Pizzari, T. (2011). The risk and intensity of sperm ejection in female birds. The American Naturalist, 178(3), 343-354.
  6. Parmentier, E., & Vandewalle, P. (2005). Further insight on carapid—holothuroid relationships. Marine Biology, 146(3), 455-465.
  7. Flammang, P., Ribesse, J., & Jangoux, M. (2002). Biomechanics of adhesion in sea cucumber Cuvierian tubules (Echinodermata, Holothuroidea). Integrative and Comparative Biology, 42(6), 1107-1115.
  8. Ru, X., Zhang, L., Liu, S., & Yang, H. (2020). Plasticity of respiratory function accommodates high oxygen demand in breeding sea cucumbers. Frontiers in physiology, 11, 283.
  9. Jaeckle, W. B., & Strathmann, R. R. (2013). The anus as a second mouth: anal suspension feeding by an oral deposit‐feeding sea cucumber. Invertebrate Biology, 132(1), 62-68.
  10. Tamm, S. L. (2019). Defecation by the ctenophore Mnemiopsis leidyi occurs with an ultradian rhythm through a single transient anal pore. Invertebrate Biology, 138(1), 3-16.
  11. The Body’s Most Embarrassing Organ Is an Evolutionary Marvel

泄殖腔親吻是什麼?一起看影片了解吧!

-----廣告,請繼續往下閱讀-----
所有討論 1

0

2
1

文字

分享

0
2
1
過敏反應是怎麼一回事?──《毒特物種》
PanSci_96
・2018/06/22 ・3445字 ・閱讀時間約 7 分鐘 ・SR值 575 ・九年級

-----廣告,請繼續往下閱讀-----

免疫系統反應過頭,造成過敏反應

我們的靈長類祖先屬於毒蛇的獵物而非掠食者,毫不意外地對毒液沒有抵抗力。但是有少許證據指出,由於我們具備了適應性免疫系統,所以能獲得某種程度的抗毒能力。然而很不幸地,也因為相同的系統,讓我們對通常無害的毒液(例如蜜蜂的毒素)產生過敏反應,有時會因此死亡。

圖/pixabay

沒有人真的知道我們為什麼會有過敏反應,科學家對於這個免疫之謎已經爭論了數百年。

你可以把過敏反應想成免疫系統反應過頭的狀態。

過敏的定義是「免疫反應太過敏銳」(hypersensitive immune response)。讓人過敏的東西是過敏原,任何東西都有可能是過敏原,只要它能被身體裡製造抗體的系統辨認出來就行了。

-----廣告,請繼續往下閱讀-----

在你首次接觸到過敏原時,並不會引發過敏反應,這時你的免疫系統正在對過敏原留下印象,好在下次遇到時能夠記起來。當過敏原再次出現,你的免疫系統便抓狂了,盡責地送出大量抗體。但是因為某種原因,有些抗原會讓身體送出免疫球蛋白E(IgE),而不是更普通的免疫球蛋白G(IgG)。

IgE抗體的結構。圖/wikipedia

造成過敏反應的 IgE 免疫球蛋白有什麼用?

IgE 本身有點麻煩,它們只占全身所有抗體的百分之 0.001 是有原因的,因為它們會刺激組織胺和其他發炎物質的大量釋放,造成全身性過敏反應(anaphylaxis)。過敏反應如果能讓血壓下降,那就是有益的,但是如果讓心跳停止,可是會要人命的。

由於 IgE 很容易就引起麻煩,科學家一直想要了解這種免疫球蛋白在免疫系統中的功用。怪的地方就在它看起來沒有什麼好處,只會引起過敏,有兩到三成的人曾發生過敏。能解釋 IgE 由來的證據並不多,對免疫學家而言這還是未解之謎。

-----廣告,請繼續往下閱讀-----

為什麼會有一種弊多於利的抗體?

在人類演化史的某個階段,IgE 應該有些功用,不然持續引發過敏所付出的代價,應該會讓這種抗體消失。有些人認為 IgE 的功用是對抗寄生物,而現在我們周遭滿滿的洗手乳和抗生素,讓 IgE 沒了對手,所以我們只能在它功能失調時才注意到它的存在。

有些證據支持這個理論,但這個理論認為過敏只是 IgE 的副作用而非目的,可是無法解釋為何有些成分更容易引起過敏反應。我們抵抗寄生物的手段怎麼會那麼差勁,居然把花粉、食物、藥物、毒液和金屬誤認為寄生物?其他科學家則認為,這些惱人的抗體可能還有其他有趣的用途:

對抗有毒物質,包括毒液。

毒素理論:

演化生物學家 Margie Profet。圖/psychologytoday

-----廣告,請繼續往下閱讀-----

「毒素理論」最早是由一位特別的科學家瑪姬.普羅菲特(Margie Profet)在一九九一年提出。雖然她有物理、數學和哲學學位,不過她讓免疫學界震驚的是對過敏的激進想法:過敏演化出來有其道理,而不是其他程序的副作用。她解釋:

「在演化的過程中,過敏持續存在。過敏耗費了大量成本,這意味著過敏是一種因適應而得到的能力,這種能力顯然是值得的。如是觀之,把過敏當成免疫上的缺陷是不正確的。」、

「過敏反應由一些特別的機制集合而成,顯然這是一種適應而得的反應。這些機制精確、經濟、有效率且複雜,目的就是要造成過敏。」

毒素理論包含了四大論點:

  • 首先,毒素無所不在而且會造成嚴重的傷害,這當然會成為演化驅力。如果毒素常見且造成的傷害又大,那麼我們的身體會發展出對抗毒素的方式,是非常合理的。除此之外,普羅菲特指出,大部分的毒素會造成急性傷害與長期傷害,例如許多毒素會刺激突變,進而引發癌症。
  • 第二,我們知道毒素具備的生理活性會引起過敏反應。例如許多毒素會和血清蛋白形成共價鍵,這通常會引發過敏。
  • 第三,絕大多數的過敏原,如果本身不是有毒物質,就是接上了其他較小毒素分子的攜帶蛋白。舉例來說,毒液本身及其中所含的物質都是劇毒,但有些乍看之下不會造成傷害的抗原也能攜帶毒素,例如乾草可以攜帶由真菌產生的黃麴毒素(aflatoxin),這種毒素會引發急性肝衰竭。
  • 最後,毒素理論指出,過敏症狀可以解釋成幫助緩解中毒狀況的方式。如果身體利用IgE 來調整對毒素的反應,那麼過敏症狀應該是有利的。事實上,嘔吐、噴嚏和咳嗽都有助於排出毒素,血壓降低能減緩毒素在體內散播的速度。就算是在過敏反應中釋放肝素這種抗凝血物質,都可以解釋成在對抗多種毒液的凝血作用。

中毒了?這時候給他一個牽制,擋住這波攻擊。圖/wikimedia

根據普羅菲特的說法,過敏是適應性免疫系統對抗毒素(包括毒液)最後的奮力一擋。每次接觸到同一種過敏原,過敏就變得更加嚴重,這並非免疫系統發生錯誤,而是這種反應的重點。因為同一種毒素倘若多次接觸,傷害便會累積。

-----廣告,請繼續往下閱讀-----

換句話說,如果你接觸到某種毒素的次數越多,下次就越需要更快排除。

這個說法並不是說現在的各種過敏反應不會造成困擾,每年用來治療流鼻水、眼睛紅腫、乾草熱的醫藥費用高達數十億美元,這些過敏症狀由各式各樣的物質引發。毒素理論的支持者認為,如果只注意這些麻煩,會讓人忽略了全貌。他們指出,過敏被視為麻煩,這是因為我們不了解這種反應經常幫我們擦屁股。

普羅菲特的毒素理論在一九九三年為她贏得麥克阿瑟基金會(MacArthur Foundation)的「天才獎」(genius grant),但時至今日,科學社群還是無法完全接受。科學家一直說,是因為沒有實驗證據支持這個理論。

有些人(包括普羅菲特)指出,受過敏所苦的人比較不容易得到癌症,可能是因為過敏反應排除了致癌物,但這並非明確的證據。畢竟反應過頭的免疫系統會隨時警惕、啥都攻擊,當然也會更警覺地攻擊癌症。如果毒素理論被證明是對的,那麼過敏反應就應該有些特別的益處。

毒素理論有哪些實驗證據?

嗡嗡嗡。圖/wikimedia

-----廣告,請繼續往下閱讀-----

普羅菲特激進的看法在二十年後才有實驗證據支持。二○一三年,科學家指出用少量的蜜蜂毒液引發過敏,有助於小鼠對抗後來承受致死的毒液劑量。

最有說服力的證據在於用基因工程改造小鼠,讓牠們缺少這個過敏程序中的某一個步驟(沒有 IgE、IgE 的受體,或是具有這個受體的肥大細胞),如此一來事先接觸少量的毒液便沒有幫助。這個實驗把 IgE 的反應和保護效果建立起直接的關連。後來科學家用毒性更強烈的山蝰(Russell’s viper)進行相同的實驗,之前由 IgE 引發的效應也具有抗毒的功能。

毒素理論如果要在仔細的檢驗下站得住腳,還得要能解釋更多的現象,包括一直受到仔細調控的免疫系統在過敏反應中是如何失控的。不過這是個讓人信服的理論,可以解釋我們身體對應毒素所產生的反應,特別是毒液中的毒素,而且也和我們對製造毒液動物的認知相符,特別是牠們的劇毒真的會影響周遭的動物。

嘶嘶嘶。圖/pxhere

-----廣告,請繼續往下閱讀-----

我們現在或許還沒有辦法在自己的血液製造對抗毒液的蛋白質或分子,但是我們古老而嬌小的祖先(以及其他像小鼠那樣被當成獵物的動物)可能已經發展出複雜的免疫反應,目的就只是為了處理毒液這種威脅生命的毒素。如果毒素理論是正確的,那麼科學家可能就不需如此費力就能找出具有救命潛力的治療方式。中毒之後能活下來的祕密也許就在眼前,只是偽裝成過敏而已。

無須多說,對於致死性的中毒,我們急需更好的療法,估計每年有四十萬人遭到毒蛇齧咬,十萬人因此死亡。其他分泌毒液的動物,包括了蜘蛛、蠍子、水母等,也取人性命—我會在最後一章介紹這些動物。

不過抗毒科學未來一片光明,我們現在發展的許多方向,例如普羅菲特的見解、免疫動物、自我免疫者或抗毒學等,都充滿了希望。此外,我們越了解毒素在分子階層的運作方式,越能發展出對抗毒素的武器,就算是不致命的毒素也一樣。畢竟有些毒素雖然不會致人於死,引起的痛苦也要人命。

 

 

本文選自泛科學2018年6月選書《毒特物種:從致命武器到救命解藥,看有毒生物如何成為地球上最出色的生化魔術師》,馬可孛羅出版社。

-----廣告,請繼續往下閱讀-----





-----廣告,請繼續往下閱讀-----